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Abstract. Geometric imperfections have an important influence on the buckling response of structural
components. This paper describes an experimental technique for determining imperfections in long (5.7 m)
structural members using a series of overlapping measurements. Measurements were performed on 31
austenitic stainless steel sections formed from three different production routes: hot-rolling, cold-rolling
and press-braking. Spectral analysis was carried out on the imperfections to obtain information on the
periodic nature of the profiles. Two series were used to model the profile firstly the orthogonal cosine and
sine functions in a classic Fourier transform and secondly a half sine series. Results were compared to the
relevant tolerance standards. Simple predictive tools for both local and global imperfections have been
developed to enable representative geometric imperfections to be incorporated into numerical models and
design methods.
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1. Introduction

The manufacture of structural members is carried out to specified tolerances. However, within

these controlled geometric limits, imperfections exist that are directly attributable to the manner in

which the sections were produced. Both the magnitude and distribution of these imperfections have

an important influence on the load carrying capacity of structural members. Additional geometric

imperfections or damage may also arise due to handling, storage and erection. These types of

localised non-periodic imperfections (such as dents) are not well identified by the spectral analysis

techniques implemented herein. Studies of the influence of localised imperfections on the structural

performance of tubular members have been described by Pacheco and Durkin (1988) and Hambly

and Calladine (1996). Other forms of production-related imperfections will also influence structural

performance, such as material non-homogeneity and residual stresses; these are under consideration

as part of a wider study. 

The current study presents experimental results of detailed imperfection measurements made on

austenitic stainless steel angles and hollow sections produced from three different production routes:

hot-rolling and two types of cold-forming - cold-rolling and press-braking. A total of four hot-rolled
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angles, twenty press-braked angles and seven cold-rolled square and rectangular hollow sections

were examined. An imperfection rig was constructed that allowed samples of up to 5.7 m in length

to be measured. Results of this study may be used to define suitable imperfections for inclusion in

numerical models and for the development of structural design guidance. Simple predictive models

are proposed.

For structural stainless steel members there is a limited amount of published imperfection data.

Measurements of local imperfections taken from short cold-rolled stainless steel stub columns and

global imperfections taken from long column samples were reported by Gardner and Nethercot

(2004). As part of structural testing programmes on stainless steel members, Liu and Young (2003),

Rasmussen and Hancock (1993) and Talja and Salmi (1995) also present global imperfection

measurements. A review of the structural use of stainless steel has been conducted by Gardner

(2005). 

Cases where detailed imperfection analyses and modelling has been carried out are typically for

structural components that are known to be sensitive to the existence of initial imperfections. One

such area is in shell structures where the ability to characterise initial imperfections has a very direct

effect on the accuracy of predicting the load carrying capacity. To this end imperfection data banks

were set up to collate the experimental data; this development is detailed by Singer and Abramovich

(1995). 

Spectral analysis has been performed in previous research on imperfection measurements for two

reasons, firstly to identify periodic patterns in the profiles and secondly in order to generate

representative imperfection profiles that can be used in finite element models. Use of the classic

Fourier transform fits to a series of cosine and sine functions to a given profile. This technique is

based on the Fourier theorem (Bracewell 1986) and has been employed, for example, by Berry et al.

(2000) for the analysis of imperfections in steel cylinders and Teng et al. (2005) used a two

dimensional Fourier analysis on steel silos. Schafer and Peköz (1998) also used the Fourier

transform for the analysis of imperfection data from cold-formed steel lipped channel sections and

proposed a probabilistic method to generate artificial imperfection profiles from experimental

spectra for application in finite element models. Probabilistic methods of introducing imperfections

have been implemented by Dubina and Ungureanu (2002) in finite element simulations of carbon

steel channel and hat sections and used by Chryssanthopoulos and Poggi (1995) to map

imperfections in other types of components such as composite panels.

An alternative to modelling an imperfection profile as a classic Fourier series, is to use the least

squared method to fit a series of half sine waves. This technique allows direct correlation with

global buckling modes and has been successfully employed by Bernard et al. (1999), and Wheeler

and Pircher (2002). The technique had previously been used to identify chemical elements with in

pulse height spectra (Trombka and Schmadeberk 1970, Haaland and Thomas 1988).

Chryssanthopoulos et al. (1991), Lechner and Pircher (2005) and Hearn and Metcalfe (1995)

discuss the Fourier and least squared method for fitting alternative functions.

Sensitivity to imperfections in structural members depends upon material properties, loading

arrangement and the local and global geometric proportions (slenderness) of the cross-section and

member. Typically global imperfections are considered as a fixed proportion of the member length

L, whilst local imperfections are related to the thickness or local slenderness of the section. Finite

element models presented by Chou et al. (2000), and Kaitila (2002), Gardner and Nethercot (2004)

demonstrate an established method of including imperfections by introducing global and local

eigenmodes of representative amplitudes.



Measurement and prediction of geometric imperfections in structural stainless steel members 65

Both the classical Fourier transform and the least squared technique are employed in the present

study to model imperfection data collected through an experimental programme. The resulting

spectral peaks are used to develop simple models for global and local imperfections amplitudes. 

2. Modelling precedents

Extensive research has been carried out on the influence of imperfections on cold-formed carbon

steel structural members. A number of predictive models have been developed to estimate the

magnitude of the local imperfections ωo, such as those presented by Dawson and Walker (1972).

Within their paper three models were considered. Firstly a simple model which relates the amplitude

to the section’s thickness t is given in Eq. (1).

ωo = 0.2t (1)

Two more sophisticated expressions were proposed (Eqs. (2) and (3)) both of which include the

ratio of yield strength σy to elastic critical buckling stress σcr, representing the slenderness of the

plate. The value of the coefficients α and β were derived from experimental data.

(2)

(3)

Gardner and Nethercot (2004) determined values for the α and β coefficients for cold-rolled

stainless steel hollow sections based on imperfection measurements of short samples. Values of α =

0.023 and β = 7.3 × 10−6 were proposed. The yield strength σy was taken as the 0.2% proof strength

σ0.2 due to the rounded nature of the stainless steel stress-strain curve. Eq. (2) was found to best

represent the experimental data. 

Schafer and Peköz (1998) proposed expressions for local imperfections which differentiated

between internal elements ω1 and outstand elements ω2 and elements in cold-formed sections. For

internal elements, Eq. (4) (based on plate width d ) and Eq. (5) (based on plate thickness t) were

proposed.

(4)

(5)

For outstand elements, Eq. (6) was proposed to estimate the local imperfection ω2

(6)

Geometric tolerances for structural sections are controlled by a number of Standards. The

European Standard EN 10162 (2003) defines the tolerances for cold-rolled hollow sections. Global

imperfections are defined as ‘the deviation from straight’ and for square hollow sections a tolerance
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of 0.002 L, where L is the length of the member, is specified. Concavity and convexity of internal

elements, h (Fig. 1a) should not exceed 0.008d or 0.008b, where d and b are the plate widths, and

should be less than an absolute value of 0.5 mm.

Tolerances for hot-rolled angles are set out in EN 10056-2 (1993). EN 10056-2 is principally for

hot-rolled carbon steel angles, and in fact states that it is not applicable for stainless steel sections.

However, Annex C of EN 10088-3 (2005), the material code for stainless steels refers explicitly to

EN 10056-2 (1993) as the only relevant Code and as the Standard used by manufacturers. For equal

angles, of flange width less than 150 mm, the specified tolerance on deviation from straight is 0.004 L,

whilst on out of squareness h’ (Fig. 1b) an absolute tolerance of 1 mm is specified. EN 10162

(2003) explicitly states that it does not cover press-braked sections, and no other suitable Standard

has been determined.

3. Imperfection measurements

3.1 Specimens

The specimens investigated in this research programme were formed by three different production

processes: hot-rolling, cold-rolling and press-braking. A summary of the specimens is given in Table 1.

An identification system has been adopted whereby PB, HR and CR (appended by a number in the

case of multiple specimens of the same nominal dimensions) denote press-braked, hot-rolled and

cold-rolled sections respectively. This is followed by section size (b × d × t), and where relevant, the

internal corner radii ri.

Cold-rolling and press-braking are both types of cold-forming where sheet stainless steel is

formed at room temperature by plastic deformation. Cold-rolling is a continuous process using strip

material that is firstly de-coiled and then passed through a sequential set of rolls which gradually

form the section shape. For closed sections an automatic seam weld completes the section. Press-

braking is a more manual process often used for smaller batches of simple sections. The coil

material is firstly de-coiled and slit to appropriate dimensions before being placed between a tool

and die in a press-brake to create simple open sections. The properties of the final cross-sections

will be related to both the cold-forming process (cold-rolling or press-braking) and the process by

Fig. 1 (a) Convexity and concavity of box sections h, (b) Deviation from square of angle flanges, h’
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which the coil material was formed. Generally, for thicknesses of 2 mm or less the coil material is

cold-rolled (cold-reduced), whilst for thicknesses greater than 2 mm coil material is hot-rolled.

Hot-rolled sections are formed either from billets produced from a continuous caster that are

Table 1 Nominal dimensions of specimens 

Specimen identification
b

(mm)
d

(mm)
t

(mm)
ri

(mm)
L

(m)

Press-braked equal angles

PB1 50×50×2 (ri = 1.7) 50 50 2 1.7 2.0

PB2 50×50×2 (ri = 1.7) 50 50 2 1.7 2.0

PB3 50×50×2 (ri = 1.7) 50 50 2 1.7 2.0

PB1 50×50×2 (ri = 3.2) 50 50 2 3.2 2.0

PB2 50×50×2 (ri = 3.2) 50 50 2 3.2 2.0

PB 50×50×2 (ri = 3.5) 50 50 2 3.5 2.5

PB 50×50×2 (ri = 4.5) 50 50 2 4.5 2.5

PB 50×50×2 (ri = 7.5) 50 50 2 7.5 2.5

PB1 50×50×3 (ri = 3.2) 50 50 3 3.2 2.0

PB2 50×50×3 (ri = 3.2) 50 50 3 3.2 2.0

PB 50×50×3 (ri = 3.5) 50 50 3 3.5 2.5

PB 50×50×3 (ri = 4.5) 50 50 3 4.5 2.5

PB 50×50×3 (ri = 7.5) 50 50 3 7.5 2.5

PB 50×50×4 (ri = 3.5) 50 50 4 3.5 2.5

PB 50×50×4 (ri = 4.5) 50 50 4 4.5 2.5

PB 50×50×4 (ri = 7.5) 50 50 4 7.5 2.5

PB 50×50×5 (ri = 3.5) 50 50 5 3.5 2.5

PB 50×50×5 (ri = 4.5) 50 50 5 4.5 2.5

PB 50×50×5 (ri = 7.5) 50 50 5 7.5 2.5

PB 50×50×6 (ri = 7.5) 50 50 6 7.5 2.5

Hot-rolled equal angles

HR 50×50×3 50 50 3 - 6.0

HR 50×50×5 50 50 5 - 6.0

HR 50×50×6 50 50 6 - 6.0

HR 50×50×10 50 50 10 - 6.0

Cold-rolled SHS/RHS

CR 100×50×2 100 50 2 - 6.0

CR 100×100×2 100 100 2 - 6.0

CR 100×50×3 100 50 3 - 6.0

CR 100×100×3 100 100 3 - 6.0

CR 100×50×4 100 50 4 - 6.0

CR 100×100×4 100 100 4 - 6.0

CR 100×50×6 100 50 6 - 6.0
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subsequently re-heated, or directly through continuous casting. In the continuous casting process,

hot material passes through a series of rolls that gradually shape the required section. The sections

are then cooled and in some cases annealed (softened) to reduce residual stresses. Sections may also

be straightened by gagging or rolling. 

3.2 Experimental technique

Imperfection measurements are commonly taken on short sample lengths due to the size

restrictions imposed by measurement equipment. For example imperfection measurements reported

on carbon steel structural sections have been taken with coordinate measuring machines, as the

general technique adopted by the manufacturers. A more readily available alternative uses a mill

bed to lay the sample on and a differential transformer is moved along the surface of a sample,

taking measurements at intervals. This technique was adopted by Schafer and Peköz (1998). Both

techniques use a flat surface as a reference plane from which measurements are taken. 

Spectral imperfection analyses carried out on carbon sections have indicated that the significant

peaks tend to occur at the lower frequency values (Wheeler and Pircher 2003). Measurements taken

over longer samples therefore allow more detailed information on the low frequency wavelengths,

which relate to the global imperfections present in structural members.

To measure imperfections in samples over longer lengths, a technique of overlapping

measurements was employed in order to identify and remove the imperfections in the test setup

itself, so that the true surface profile of the sample could be mapped. Similar techniques have been

successfully used to measure imperfections in steel silos (Ding et al. 1996), large cylinders

(Wheeler and Pircher 2002).

Fig. 2 Arrangement of the imperfection rig
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The experimental setup employed in the present study comprised a carriage holding an array of

three by five spring-loaded linear voltage displacement transducers located on two vertical guiding

rails. The carriage was driven along the guide rails at a constant speed by a pulley hoist. The

specimen lengths measured up to 5.7 m and were hung adjacent to the guide rails, as shown in Fig. 2.

Data was recorded at one second intervals. This equated to measurements taken at 6.7 mm

intervals along the length of the sample. The fifteen transducers were arranged in five rows and

three columns, as shown in Fig. 3. The transducers operated to an accuracy of ±0.01 mm. This

enabled five overlapping measurements to be made at three locations on the faces of the cross-

sections. The numbering system shown in Fig. 3 identifies the column C and row R of each

transducer respectively. The data was recorded using the Dalite software package and processed in

MatLab.

The overall geometric shape of the two guiding rails was measured using an optical theodolite.

The measurements showed that the guiding rails were within 1 mm of being absolutely straight.

These global deviations of the imperfection rig were directly subtracted from the imperfection

profile of the specimens. Local imperfections in the rig were removed using overlapping readings,

as discussed in the following section. Nylon plastic tips of 10 mm diameter were affixed to the

transducers to minimise friction with the specimens, and to ensure contact was maintained when

taking edge readings on specimens that were imperfect perpendicular to the measurement direction.

The transducers were spring-loaded to maintain contact with the sample. The resulting lateral force

from the springs caused the sample to deflect. In order to eliminate this deflection the readings from

the transducers were combined with measurements taken with a class IEC 825 laser, which had the

accuracy quoted by the manufacturers of ±0.125 mm. This accuracy was however stated for use on

a white surface. The metallic shine of the samples affected the accuracy of the laser and a reduced

Fig. 3 Carriage and transducer arrangement
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accuracy of ±0.3 mm was estimated. Readings were taken in the three positions measured by the

three columns of transducers. For the different types of sections the location of the three sets of

readings on each face varied. The positions of the readings taken are shown in Fig. 4.

3.3 Data processing

In order to compile a profile of accuracy of ±0.01 mm and remove the deflection caused by the

sprung loaded transducers, the measurements taken by the laser and the transducer were combined.

The global shape of the profile was taken from the laser reading and smaller imperfections were

taken from the more sensitive transducer readings. An example of a set of recorded data is shown in

Fig. 4 Location of imperfection measurements for the different types of sections
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Fig. 5. In order to compile a profile for each of the three locations the following procedure was

followed.

A moving average (MA (laserC)) of 30 data points was determined to isolate the global shape, of

the imperfection data from the noise generated below the level of accuracy of the laser. To combine

the transducer measurements with this global shape, moving averages were taken for each

transducer reading (MA (TCR)), again removing any variations below 0.3 mm. Subtracting the

reduced transducer reading from the complete transducer reading yielded the transducer

measurements below the level of accuracy of the laser (TCR − MA(TCR)). Finally, superimposing the

global imperfection shape from the laser and these finer measurements from the transducers gave

five profiles for each measurement location, without the deflection caused by the lateral force of the

transducers. A graphical example of this process is shown in Fig. 6.

Fig. 5 Individual readings for transducers in column 1 (T11 to T15) and the corresponding laser reading laser1

Fig. 6 Moving average of the laser reading MA(laser1), the reduced transducer reading T11− MA(T11) and the
combined profile MA(laser1) + (T11 − MA(T11))
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Each displacement profile PCR (where C and R denote the column and row, respectively of the

transducer) was related to the others by offsetting them according to readings taken at constant

displacement, as given by Eq. (7).

(7)

The five overlapping measurements for each location were used to remove the local imperfections

in the rig itself from the measured readings. Fig. 7 illustrates that the five transducers in a column

sequentially measure the same point whilst obtaining a different reading caused by the imperfect

guiding rails. Due to the orientation of the carriage, the rig imperfections were expected to be the

PCR MA laserC( ) TCR MA TCR( )–( ) offsetCR–+=

Fig. 7 Creation of profile differences due to the imperfections of the guiding rail

Fig. 8 Correlation between profile differences found for the first row of transducers (T11 to T31)
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same for transducers in the same row. Profile differences determined by subtracting the individual

transducers readings from an average of the transducer readings in the same column (Eqs. (8) and

(9)) showed excellent correlation as illustrated in Fig. 8.

(8)

(9)

Making the assumption that, due to the length of the trolley compared to the magnitude of the rig

imperfections, the change in angle between the carriage and the global shape of the guide rails is

small, a small angle approximation is made and the identified profile differences are defined as the

local imperfections of the rig. Since rig imperfections that move the transducers towards the sample

will cause a decrease in any transducer reading and imperfections that move the transducer away

from the sample will give the reverse effect, the average profile differences from the three

transducers in each row were then added to the individual profiles PCR. This process is described by

Eq. (10) to give the corrected profiles fCR(xm), where xm is the location x along the specimen length

at discrete data point m.

(10)

These corrected profiles were averaged to provide a single profile for each of the three

measurement locations on the specimen faces (Eq. (11)).

(11)

P1R P11 P12 P13 P14 P15+ + + +( )/5( )– P2R – P21 P22 P23 P24 P25+ + + +( )/5( )≈

P1R P11 P12 P13 P14 P15+ + + +( )/5( )– P3R – P31 P32 P33 P34 P35+ + + +( )/5( )≈

fCR xm( ) PCR P1R P11 P12 P13 P14 P15+ + + +( )( /5)–(( ) P2R P21 P22 P23 P24 P25+ + + +( )( /5) )–(+ +=

 P3R P31 P32 P33 P34 P35+ + + +( )( /5))–( /3)+

fC xm( ) fC1 xm( ) fC2 xm( ) fC3 xm( ) fC4 xm( ) fC5 xm( )+ + + +( )/5=

Fig. 9 Related profiles f1(xm), f2(xm), and f3(xm) which are located at the corner, centre and edge of the outstand
flange of a press-braked angle section
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The profiles were related to a common datum; resulting profiles for a press-braked sample are

shown in Fig. 9. The profiles for each of the three measurement locations may also be considered

as unrelated on a datum comprising a straight line between the ends of the profiles, as shown in

Fig. 10. For the cold-rolled sections it was observed that each end of the centre profile flared

outwards. This was also observed by Gardner and Nethercot (2004) and is believed to be due to the

release of bending residual stresses that were induced during production. In order for these not to

influence the spectral analysis, 1% of the length was removed at either end of the cold-rolled

specimen profiles.

4. Data analysis 

This section sets out two principal techniques of obtaining spectral information from the collected

imperfection measurements: the classic Fourier transform and the least squared method for half sine

waves. Both techniques were used to analyse the related and the unrelated imperfection data. 

The Fourier theorem states that the sum of odd and even functions in an infinite series can

precisely model any continuous function. Therefore an imperfection function fC(x), where  is a

position along the sample normalised against the sample length, can be expressed as the sum of

cosine and sine functions of different frequencies as given by Eq. (12).

(12)

The frequency of each sinusoidal function is represented by an integer value n, which is the

number of wavelengths within the imperfection function. The coefficients or amplitudes of the

cosine and sine functions are an and bn respectively. 

x

fC x( ) ancos n2π x( ) bnsin n2π x( )
n 0=

∞

∑+

n 0=

∞

∑=

Fig. 10 Unrelated profiles f1(xm), f2(xm), and f3(xm) which are located at the corner, centre and edge of the
outstand flange of a press-braked angle section
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In practical situations with a discrete set of data the frequency spectrum is limited by the Nyquist

frequency N which is half the number of discrete data points. For the discrete case, the inverse of

the Fourier transform still produces an exact model of the imperfection function because the highest

frequency that can be detected (the Nyquist frequency N) is determined by the intervals at which

the readings are taken. The modulus of the real coefficients and the imaginary coefficients are

plotted separately in Figs. 11 and 12 respectively. Fig. 13 shows the combined spectral coefficient.

Fig. 11 Real (cosine) coefficients for f1(xm), f2(xm), and f3(xm) which are located at the corner, centre and edge
of the outstand flange of a press-braked angle section

Fig. 12 Imaginary (sine) coefficients for f1(xm), f2(xm), and f3(xm) which are located at the corner, centre and
edge of the outstand flange of a press-braked angle section
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The least squared approach models the imperfection function as the sum of a linear function and a

series of (n = 1 to n = N) half sine functions as stated by Eq. (13). This approach is summarised

below and has been discussed in more detail by Bernard et al. (1999). Eq. (13) is presented in terms

of a normalised longitudinal position , given in Eq. (14), where xm is the location x along the

specimen length for the discrete data point m, x1 is the location of the initial data point, δ is an

offset value and L is the specimen length. Since the half sine functions are not independent, the

modelling function  will not be exact and will always exhibit a difference from the

experimental imperfection function . A process of minimising the resultant modelling error

{V} of the spectral peaks is carried out by varying the offset value δ of the half sine series from the

origin of the data.

(13)

(14)

Converting the notation to matrices, the design matrix [A] contains the function series and {w}

contains the imperfection readings w1 to wM, as shown in Eqs. (15) and (16), where M is the number

of discrete data points. The spectral coefficients are given as {c}, defined in Eq. (17), and the error

between the experimental imperfection function and the modelling function is given as a vector

{V }, which is defined in Eq. (18).

(15)

xm

fC′ xm( )
fC x m( )

fC′ xm( ) c1 c2 xm cn 2+
nsinπ xm

n 1=

N

∑+ +=

xm

xm x1– δ–

L
-------------------------⎝ ⎠

⎛ ⎞
=

A[ ]

1  x 1  sinπ x 1  …  Nsinπ x 1

1  x 2  sinπ x 2  …  Nsinπ x 2

        

1  xM  sinπ xM  …  Nsinπ xM

= … … … … …

Fig. 13 Combined imaginary and real coefficients for f1(xm), f2(xm), and f3(xm) which are located at the corner,
centre and edge of the outstand flange of a press-braked angle section
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 (16)

(17)

(18)

In order to estimate the variance in the spectral coefficients, the experimental error or the variance

of each individual measurement is introduced in a weighting matrix [G] (Eq. (19)). Since the

experimental error of each data point taken by the transducers was estimated as ±0.01 mm,  to

 have been taken as the same value.

(19)

The vector {c} containing the least squared spectral coefficients is calculated from Eq. (20):

(20)

The variance  associated with the each spectral coefficient in {c} can be calculated from

Eq. (21), where  is the variance factor (Eq. (23)) and Qii are the diagonal values of the

covariance matrix [Q] (Eq. (22)). Employing a normal distribution with a confidence level of 99.5%

the confidence levels for the peaks are found by multiplying  by 2.58. This confidence level

defines a magnitude of the spectral peaks below which it is uncertain whether the peaks relate to the

data or have been generated by experimental and modelling errors.

(21)

(22)

The ratio of the square of the modelling error to the experimental error of each data point is

termed the variance factor  which is calculated by Eq. (23). Using a chi squared distribution with

r degrees of freedom when the variance factor equals one i.e., when the modelling error equals the

experimental error, the model is said to be a good fit to the experimental data. The number of

degrees of freedom r is expressed by Eq. (24).

w{ }

w1

wM⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

…

c{ }

c1

c2

cN 2+⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

= …

V{ } w{ } A[ ] c{ }–=

σ1

2

σM

2

G[ ]

1

σ1

2
-----   

1

σ2

2
-----   

  

1

σM

2
-------

=

…

c{ } A[ ]T G[ ] A[ ]( )
1–

A[ ]T G[ ] w{ }=

σan

2

σ̂
0

2

σan

2

σan

2
σ̂

0

2
Qi i=

Q[ ] A[ ]T G[ ] A[ ]( )
1–

=

σ̂
0

2
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(23)

(24)

In cases where the variance factor is not equal to unity, the assumed experimental error can be

revised until the variance factor does equal unity, providing an estimated experimental error . To

find the best fit, the lowest value of the variance factor was sought whilst varying the offset value

δ . Due to the asymmetrical nature of the half sine wave function the offset value δ was varied from

−1 to 1. A common minimum variance factor was found for the three profiles taken from each

section face. The offset values were found to occur repeatedly around values −1, 0 and 1 due to the

significance of the first half sine wave in the imperfection profiles.

With the introduction of the offset into the analysis both the related and unrelated profiles can

become discontinuous functions if the offset is not equal to −1 or 1. Profile functions with

discontinuities caused large alternating positive and negative least squared coefficients and high

variance values to be observed. These high variance values are also seen in the Gibbs phenomenon,

discussed by Bracewell (1986). The Gibbs phenomenon is observed as ringing close to

discontinuities in a function and it is caused by forming the profile from a truncated Fourier series

thereby removing large amplitude high frequency terms that are required to fully describe the profile

discontinuity. In order to remove the profile discontinuity and thereby reduce the variance of the

imperfection data a method of tapering was employed. Priestley (1992) discusses typical tapering

functions that can be employed. A hermite interpolation curve, described in Prenter (1975), was

employed to generate five data points before the beginning of the profile and five data points

afterwards, to taper the function and ensure the continuity between the beginning and the end of the

imperfection function. An example of a least squared spectrum for three corresponding profiles is

shown in Fig. 14. The prediction error sum of squares or PRESS (Lechner and Pircher 2005) was

determined for least squared half sine wave coefficients to determine the significance of the

individual component coefficients.
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Fig. 14 Least squared coefficients and their confidence levels



Measurement and prediction of geometric imperfections in structural stainless steel members 79

Table 2 Data for press-braked samples

Specimen 
identification

t
(mm)

ri
(mm)

L
(mm)

|a0|
(mm)

|c3|
(mm)

2.54σa3
2

(mm)
δ /L

(mm) (mm)

ω
o

(ζ = 1)
(mm)

ω
o

(ζ = 10)
(mm)

PB1 50×50×2 (ri = 1.7)

Face A 1.99 2.35 1986 0.11 0.04 1.93×10−5
−0.0008 4.61×10−3 0.03 0.60

Face B 1.99 2.35 1993 0.55 0.42 8.92×10−5
−0.0032 2.93×10−3 0.04 0.25

PB2 50×50×2 (ri = 1.7)

Face A 2.00 2.25 1993 0.08 0.03 1.11×10−3 0.0056 4.03×10−3 0.04 0.77

Face B 2.00 2.25 1980 0.12 0.00 1.54×10−5 0.9988 3.73×10−3 0.05 0.23

PB3 50×50×2 (ri = 1.7)

Face A 2.00 2.25 1993 0.11 0.06 1.50×10−5 0.0004 4.33×10−3 0.02 0.75

Face B 2.00 2.25 1986 0.38 0.17 5.06×10−5 0.9976 4.33×10−3 0.03 0.24

PB1 50×50×2 (ri = 3.2)

Face A 1.99 2.35 1986 0.50 0.38 2.03×10−5 0.9984 3.78×10−3 0.03 0.17

Face B 1.99 2.35 1993 0.49 0.35 5.69×10−5
−0.9968 3.14×10−3 0.03 0.14

PB2 50×50×2 (ri = 3.2)

Face A 2.02 4.50 1980 2.07 1.55 4.95×10−3 0.0064 5.70×10−3 0.03 0.14

Face B 2.02 4.50 1993 2.39 1.76 3.36×10−5
−0.9988 5.50×10−3 0.02 0.14

PB 50×50×2 (ri = 3.5)

Face A 1.95 4.33 2468 2.03 1.56 1.31×10−5
−0.0012 3.15×10−3 0.03 0.16

Face B 1.95 4.33 2475 0.06 0.13 3.39×10−3 0.0056 3.59×10−3 0.03 0.20

PB 50×50×2 (ri = 4.5)

Face A 1.98 5.50 2481 3.34 2.50 5.80×10−5 0.0016 5.52×10−3 0.03 0.11

Face B 1.98 5.50 2475 2.89 2.30 2.19×10−5
−0.0012 4.08×10−3 0.02 0.14

PB 50×50×2 (ri = 7.5)

Face A 1.98 8.00 2481 0.07 0.50 1.15×10−4 0.9992 1.08×10−2 0.03 0.23

Face B 1.98 8.00 2488 1.75 1.54 2.72×10−5
−0.0004 5.77×10−3 0.01 0.38

PB1 50×50×3 (ri = 3.2)

Face A 2.98 4.50 1993 1.51 1.17 2.06×10−3 0.0056 5.50×10−3 0.06 0.25

Face B 2.98 4.50 1993 1.17 0.93 2.45×10−3
−0.9944 6.00×10−3 0.06 0.08

PB2 50×50×3 (ri = 3.2)

Face A 2.99 4.50 1986 1.15 0.91 1.90×10−3 0.9992 4.58×10−3 0.02 0.12

Face B 2.99 4.50 1986 1.80 1.37 7.30×10−3
−0.0008 2.84×10−3 0.02 0.13

PB 50×50×3 (ri = 3.5)

Face A 2.98 3.50 2475 2.82 2.22 2.01×10−5 0.9980 2.65×10−3 0.02 0.18

Face B 2.98 3.50 2475 4.00 3.07 4.22×10−5
−0.0012 5.67×10−3 0.02 0.14

PB 50×50×3 (ri = 4.5)

Face A 2.97 4.67 2481 1.98 1.54 1.24×10−5 0.9984 2.56×10−3 0.01 0.12

Face B 2.97 4.67 2475 2.44 1.86 7.91×10−6
−0.0008 2.83×10−3 0.00 0.18

PB 50×50×3 (ri = 7.5)

Face A 2.98 7.50 2488 1.79 1.31 4.74×10−5 0.9984 4.99×10−3 0.03 0.49

Face B 2.98 7.50 2481 1.67 1.22 4.72×10−4
−0.0036 4.83×10−3 0.03 0.34

σ
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Table 2 Continued

Specimen 
identification

t
(mm)

ri
(mm)

L
(mm)

|a0|
(mm)

|c3|
(mm)

2.54σa3
2

(mm)
δ /L

(mm) (mm)

ω
o
 

(ζ = 1)
(mm)

ω
o 

(ζ = 10)
(mm)

PB 50×50×4 (ri = 3.5)

Face A 3.92 3.42 2475 3.22 2.50 4.28×10−6 0.0000 2.37×10−3 0.03 0.28

Face B 3.92 3.42 2481 3.06 2.38 1.75×10−5 0.9980 2.46×10−3 0.04 0.30

PB 50×50×4 (ri = 4.5)

Face A 3.92 4.25 2481 4.47 3.46 8.65×10−5 0.9972 3.42×10−3 0.02 0.25

Face B 3.92 4.25 2481 2.99 2.32 6.94×10−6 0.0004 2.91×10−3 0.02 0.08

PB 50×50×4 (ri = 7.5)

Face A 3.92 7.58 2475 4.12 3.26 2.16×10−5
−0.0012 4.06×10−3 0.02 0.24

Face B 3.92 7.58 2481 3.35 2.62 6.80×10−4 0.0044 3.46×10−3 0.02 0.10

PB 50×50×5 (ri = 3.5)

Face A 4.93 3.17 2488 4.21 3.22 5.71×10−4
−0.0036 5.32×10−3 0.03 0.13

Face B 4.93 3.17 2488 4.69 3.43 1.35×10−2 0.0064 4.14×10−3 0.04 0.39

PB 50×50×5 (ri = 4.5)

Face A 4.89 4.33 2495 4.48 3.41 1.41×10−3
−0.0044 4.91×10−3 0.02 0.19

Face B 4.89 4.33 2495 4.92 3.88 1.07×10−4
−0.0032 2.93×10−3 0.04 0.23

PB 50×50×5 (ri = 7.5)

Face A 4.90 7.50 2488 5.67 4.33 1.76×10−4 0.9968 3.81×10−3 0.05 0.15

Face B 4.90 7.50 2488 4.36 3.41 1.03×10−5
−0.0008 3.23×10−3 0.02 0.12

PB 50×50×6 (ri = 7.5)

Face A 6.03 7.50 2495 6.86 5.24 4.34×10−5 0.9992 6.62×10−3 0.05 0.25

Face B 6.03 7.50 2481 7.98 6.30 1.18×10−4
−0.0020 6.38×10−3 0.03 0.19

σ

Table 3 Data for hot-rolled samples

Specimen 
identification

t
(mm)

ri
(mm)

L
(mm)

|a0|
(mm)

|c3|
(mm)

2.54σa3
2

(mm)
δ/L

(mm) (mm)

ω
o

(ζ = 1)
(mm)

ω
o 

(ζ = 10)
(mm)

HR 50×50×3

Face A 3.00 4.54 5580 4.23 3.14 3.35×10−6
−0.9996 1.80×10−3 0.01 0.13

Face B 3.00 4.54 5593 7.41 5.38 7.57×10−5
−0.0008 5.80×10−3 0.01 0.13

HR 50×50×5

Face A 4.95 4.50 5593 5.34 4.14 2.16×10−5 0.0004 4.57×10−3 0.05 0.42

Face B 4.95 4.50 5588 1.02 0.87 8.84×10−6
−0.0004 2.92×10−3 0.03 0.27

HR 50×50×6

Face A 6.35 4.75 5593 1.87 1.30 8.87×10−6
−0.9996 2.92×10−3 0.01 0.13

Face B 6.35 4.75 5580 5.55 4.49 2.73×10−5
−0.0008 3.49×10−3 0.02 0.20

HR 50×50×10

Face A 9.69 4.50 5593 19.27 15.03 2.06×10−4 0.9992 9.56×10−3 0.03 0.23

Face B 9.69 4.50 5600 22.90 17.56 4.64×10−5
−0.0004 6.68×10−3 0.02 0.16

σ
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5. Results

Results from the Fourier and least squared spectral analyses are presented in Tables 1-3. The most

significant peaks, according to the PRESS analysis for the least squared spectra was the first term of

each series, with few exceptions. Figs. 15 and 16 show the correlation between the modulus of the

first real (cosine) coefficient a0 (which is identical to the first combined coefficient) of the Fourier

transform and the modulus of the first half sine wave amplitude c3 from the least squared technique.

Fig. 16 Relationship between the first Fourier coefficient, ao and the amplitude of the first half sine wave, c3

for the unrelated data

Fig. 15 Relationship between the first Fourier coefficient, ao and the amplitude of the first half sine wave, c3

for the related data
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Both relate to an overall bow in the specimens and are of a similar form to the buckled shape of an

elastic pin-ended column.

By equating the area under a half sine wave with an amplitude of c3 to the areas under a full

cosine curve of amplitude a0 it can be shown that there is a linear dependency, as stated by Eq. (25).

This linear relationship is reflected in Figs. 15 and 16 by considering the slope of the linear

regression curve. The unrelated data (where the three profiles on each face are analysed

independently) shows an excellent correlation, whilst the increased scatter for the related profiles

shows the effect of considering the imperfection profiles with respect to a common (surface) datum.

It is therefore proposed that the first Fourier coefficient from a Fourier transform can be

approximated to the amplitude of the half sine wave with the amplitude c3 through Eq. (25) and this

gives a good estimation of the global imperfection.

(25)

The least squared method of fitting a series of half sine waves to the imperfection function

produces a function that is a very good fit to the experimental data, resulting in low covariance

factors for the spectral peaks. The estimated experimental error is consistently lower than the actual

experimental error, suggesting that the measurements were more accurate than predicted.

The modulus of the coefficient of the first half sine waves normalised against the specimen

lengths L are plotted against their section thickness in Figs. 17 to 19. For the press-braked sections

a clear trend of normalised global imperfections increasing with thickness is observed. A similar

trend is observed for the hot-rolled sections, although more data would be required to confirm this

relationship. The data presented does not however investigate any relationship that might exist

between the global imperfection and the cross-section slenderness, as the width of section is

constant for both press-braked and hot-rolled sections. The global imperfections for the cold-rolled

sections showed no trend with thickness. Therefore, a half sine wave of amplitude c3, presented as a

proportion of the member length L and determined from mean values, is proposed for representing

global geometric imperfections for the three different forming processes (Eqs. (26) to (28)). Figs. 18

c3

πao

4
--------= 0.785a0≈

Fig. 17 Relationship between the normalised first half sine wave amplitude and the thickness of the section
for press-braked sections (unrelated data)
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to 19 show that the global imperfections for cold-rolled sections and hot-rolled sections fall within

their respective codes acceptable tolerances.

Press-braked sections (26)

Hot-rolled sections       (27)

Cold-rolled sections (28)

c3

L
---- 0.00084≈

c3

L
---- 0.0012≈

c3

L
---- 0.00035≈

Fig. 18 Relationship between the first half sine wave amplitude and the thickness of the section for hot-rolled
sections (unrelated data)

Fig. 19 Relationship between the first half sine wave amplitude and the thickness of the section for cold-
rolled sections (unrelated data)
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The amplitudes of the local imperfections have been investigated by considering profile data taken

along the flange tip for the angle sections and along the centreline of the faces of the box sections.

In order to determine representative amplitudes for local imperfections the spectral peaks below a

Table 4 Data for cold-rolled samples 

Specimen 
identification

t
(mm)

ri
(mm)

L
(mm)

|a0|
(mm)

|c3|
(mm)

2.54σa3
2

(mm)
δ /L

(mm) (mm)

ωo

(ζ = 1)
(mm)

ωo 

(ζ = 10)
(mm)

CR 100×50×2

Face A 1.98 2.31 5681 0.72 0.57 1.59×10−2 0.9968 2.96×10−3 0.02 0.30

Face B 1.98 2.31 5688 0.66 0.43 5.98×10−4
−0.9980 3.29×10−3 0.02 0.17

Face C 1.98 2.31 5695 3.76 3.00 1.31×10−5 0.0004 3.56×10−3 0.03 0.32

Face D 1.98 2.31 5681 4.13 3.30 6.35×10−5
−0.0012 3.25×10−3 0.03 0.14

CR 100×100×2

Face A 1.96 2.94 5681 1.06 0.28 3.84×10−2 0.0032 4.65×10−3 0.07 0.54

Face B 1.96 2.94 5675 3.45 2.62 1.72×10−5
−0.0004 4.08×10−3 0.02 0.27

Face C 1.96 2.94 5675 4.97 3.85 6.56×10−4 0.0020 3.46×10−3 0.03 0.22

Face D 1.96 2.94 5675 6.35 5.00 4.10×10−5 0.0008 4.31×10−3 0.03 0.23

CR 100×50×3

Face A 2.86 3.56 5695 0.72 0.57 1.59×10−2 0.9968 2.96×10−3 0.02 0.30

Face B 2.86 3.56 5695 0.66 0.43 5.98×10−4
−0.9980 3.29×10−3 0.03 0.17

Face C 2.86 3.56 5695 3.76 3.00 1.31×10−5 0.0004 3.56×10−3 0.03 0.32

Face D 2.86 3.56 5695 4.13 3.30 6.35×10−5
−0.0012 3.25×10−3 0.03 0.14

CR 100×100×3

Face A 2.43 4.25 5681 1.07 0.95 8.20×10−5 0.0012 3.69×10−3 0.04 0.31

Face B 2.43 4.25 5688 1.47 1.06 4.43×10−4
−0.0016 4.97×10−3 0.05 0.36

Face C 2.43 4.25 5681 1.84 1.49 4.00×10−5
−0.9992 4.24×10−3 0.04 0.31

Face D 2.43 4.25 5681 4.56 3.66 1.78×10−4
−0.9984 3.16×10−3 0.04 0.36

CR 100×50×4

Face A 3.98 1.93 5681 0.29 0.75 1.67×10−1
−0.9964 5.41×10−3 0.07 0.45

Face B 3.98 1.93 5695 1.61 1.18 7.93×10−4
−0.0016 6.62×10−3 0.04 0.09

Face C 3.98 1.93 5688 4.90 3.88 6.05×10−5 0.0012 3.17×10−3 0.02 0.28

Face D 3.98 1.93 5675 4.75 3.77 1.20×10−5 1.0000 3.97×10−3 0.02 0.07

CR 100×100×4

Face A 3.81 2.27 5681 1.22 1.05 6.88×10−4
−0.0024 1.98×10−3 0.02 0.41

Face B 3.81 2.27 5681 1.30 1.16 3.04×10−3 0.0024 4.17×10−3 0.03 0.22

Face C 3.81 2.27 5675 2.08 1.66 3.52×10−6 0.9996 1.85×10−3 0.01 0.34

Face D 3.81 2.27 5688 2.54 2.08 3.38×10−5
−0.0012 2.37×10−3 0.02 0.30

CR 100×50×6

Face A 5.93 4.75 5681 3.38 2.73 5.33×10−5
−0.9988 2.98×10−3 0.02 0.18

Face B 5.93 4.75 5681 0.58 0.37 4.97×10−6 1.0000 2.55×10−3 0.02 0.10

Face C 5.93 4.75 5681 1.33 1.09 3.85×10−6
−0.9996 1.93×10−3 0.01 0.25

Face D 5.93 4.75 5681 3.87 3.07 3.21×10−5 0.0008 3.80×10−3 0.01 0.14

σ
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specified frequency were assumed to relate to global imperfections and were removed. This

frequency was defined in reference to a multiple ζ of the cross-section width; ζ = 1 represents a

half wavelength equal to the cross-section width, whilst ζ = 10 represents a half wavelength of ten

times the cross-section width. The remaining series was reformed as a profile of local imperfections

and the maximum deviation from straightness ωo was obtained. Values of this representative local

imperfection are shown in the Tables 2 to 4, for the two cases of ζ = 1 and ζ = 10.

Figs. 20 to 22 plot the representative local imperfection amplitudes for ζ = 1 and ζ = 10 against

the corresponding 0.2% proof stress (equivalent yield stress) to critical stress ratio (σ0.2/σcr). A

linear regression line passing through the origin has been determined for both sets of data to obtain

values for α, as defined by the Dawson and Walker model of Eq. (2). It can be seen in Fig. 23 that

Fig. 20 Press-braked  local imperfection normalised by thickness plotted against yield strength to critical
stress ratio to determine α

Fig. 21 Hot-rolled local imperfections normalised by thickness plotted against yield strength to critical stress
ratio to determine α
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α increases as ζ increases, which would be expected due to the inclusion of more low frequencies

terms in the local imperfection profile which tend to be of larger amplitudes. Fig. 23 also shows the

relative variation of α between the three production routes. 

For the box sections, where the boundary conditions of the individual plate elements may be

closely approximated as simply-supported, the half wavelength based on the elastic buckling mode

(for practical aspect ratios) is equal to the plate width. This indicates that ζ = 1 would provide the

most suitable basis for determining local imperfection amplitudes. However, for outstand elements

(one longitudinal edge simply-supported and one free), the half wavelength of the elastic buckling

modes is equal to the length of the plate, though the failure mode localises due to post-buckling

Fig. 22 Cold-rolled local imperfections normalised by thickness plotted against yield strength to critical stress
ratio to determine α

Fig. 23 Variation of α with ζ for the three different section types
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behaviour and plasticity. It is therefore less straightforward to determine the most suitable value for

ζ. It is reasonable to assume that the imperfection amplitudes corresponding to ζ = 1 represent

lower bound values whilst those corresponding to ζ = 10 represent upper bound values. A summary

of the proposed values of α to be used in Eq. (2) for the prediction of local imperfection amplitudes

in structural stainless steel members is given in Table 5.

6. Conclusions

Structural stainless steel members are formed from a variety of production routes, which result in

differing material properties, residual stresses and geometric imperfections. As part of a wider study,

the magnitude and distribution of production related imperfections have been examined in this

paper. An accurate method of measuring imperfections over long specimen lengths has been

developed and implemented. Two analysis techniques, the classic Fourier transform and the least

squared method fitting a series of half sine waves, have been employed to investigate the periodicity

in the imperfections, from which the amplitudes of the global and local imperfections have been

extracted. Simple predictive tools for both local and global imperfections have been developed to

enable representative geometric imperfections for the three production processes (hot-rolling, cold-

rolling and press-braking) to be incorporated into numerical models and design methods. 
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Notation

an : cosine (real) Fourier coefficient or amplitude
[A] : design matrix
bn : sine (imaginary) Fourier coefficient or amplitude
b : plate width
{c} : least squared coefficients in vector form
C : column position
d : plate width
fCR(xm) : profile created from located in column C and row R with imperfections from rig removed
fC(xm) : average profile created from column C imperfections from rig removed
[G] : weighting matrix
h : concavity and convexity of internal elements
h’ : out of squareness for outstand elements
L : member length
laserC : laser reading aligned to a column position C
m : location of discrete data point
M : number of discrete data points
MA : moving average
n : Fourier number
N : Nyquist frequency
offsetCR : offset value for transducer located in column C and row R
PCR : profile from column C and row R
[Q] : covariance matrix
r : number of degrees of freedom
ri : internal corner radii of section
R : row position
t : member wall thickness
TCR : transducer reading located in column C and row R
{V} : modelling error
{w} : vector notation of imperfection function
xm : location along specimen length
x1 : location of initial data point

: normalised location along specimen length
α : local imperfection coefficient as defined by Dawson and Walker (1972)
β : local imperfection coefficient as defined by Dawson and Walker (1972)
δ : offset of half sine wave series
ζ : number of cross-section widths equal to half wavelength
σy : yield stress
σ0.2 : 0.2% proof stress
σcr : critical buckling stress
σm

2 : experimental variance in spectral coefficients
σan

2 : variance of least squared coefficients
: variance factor
: estimated experimental error

ωo : amplitude of local imperfections
ω1 : amplitude of local imperfections in internal elements
ω2 : amplitude of local imperfections in outstand elements
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