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Large deformation analysis of inflated air-spring shell 
made of rubber-textile cord composite 
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Abstract. This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell
(CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An
orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for
the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS
used in vibroisolation of driver’s seat. The parameters of strain energy function of the constitutive model
are fitted to the experimental results by the nonlinear least squares method. The deformation of the
inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the
material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of
orthotropic composite material are incorporated into the finite strain analysis by finite element method
(FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical
results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation
analysis are compared with experimental ones.
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1. Introduction

Nowadays textile composites and inflatable structures are becoming increasingly popular for a

variety of applications in many fields - civil engineering, architecture, vehicle and aerospace

engineering. Typical examples include membrane roofs and covers, sails, inflatable buildings and

pavillions, airships, inflatable furniture, airspace structures, air-springs etc. The composite materials

created of rubber matrix reinforced by textile cords is called rubber-textile cord composites. Air-

springs form an example of layered multiphase flexible composite structures that consist of rubbery

matrix and stiff reinforcement made of textile cords. The high modulus, low elongation cords carry

most of the load, and the low modulus, high elongation rubber matrix preserves the integrity of the

composite and transfers the load. The primary objective of this type composite is to withstand large

deformation and fatigue loading while providing high load carrying capacity. 

Recently, classical phenomenological constitutive equations for rubber-like solids, such as

Mooney-Rivlin, Neo-Hookean (see Beatty 1987, Holzapfel et al. 2000, Bonet and Profit 2000, Guo

2001) or Ogden models (Ogden 2001) are progressively replaced by more physical models based on

† Ph.D., E-mail: thnam-v1@mail.hut.edu.vn
‡ Professor, Ph.D., Corresponding author, E-mail: thinhti@hn.vnn.vn

DOI: http://dx.doi.org/10.12989/sem.2006.24.1.031



32 Tran Huu Nam and Tran Ich Thinh

statistical considerations in various engineering applications. The identification of material

parameters of the constitutive models is often performed using classical homogeneous strain

experiments (uniaxial extension or pure shear tests for example). For biaxial deformation, Verron

and Marckmann (2003) used frequently the bubble inflation technique, that consists in inflating an

initially plane circular thin membrane. In this type of experiments, deformations are not

homogeneous and the analysis of experimental data needs efficient numerical method to solve the

inflation problem. 

Motivated mainly by interest in the numerical simulation of hyperelastic materials are some

orthotropic and transversely hyperelastic constitutive models have been proposed recently. Most of

them are represented by strain energy function formulated as a polynomial (Bonet and Burton 1998)

or an exponential (Ogden et al. 2000, Holzapfel et al. 2000, 2001) or logarithmic function

(Poživilová and Plešek 2002) of orthotropic (or transversely isotropic) strain invariants. However,

the development of the constitutive theory of anisotropic elastic or viscoelastic materials at finite

strains is still far to be complete and the publications in this field are sparse. For the isotropic

hyperelastic materials, the Ogden model with a strain energy function formulated in terms of

principal stretches has been showed to be advantageous in spite of a relatively complicated

numerical realization. This model demonstrates an excellent agreement with experimental results at

large strains and involves many other material laws, for example Mooney-Rivlin and Neo-Hookean

ones as special case. Therefore, the orthotropic generalization of Ogden model enables to consider

various anisotropic hyperelastic materials within a unified concept. 

Using FEM to solve the problems of membrane inflation, such as a simplified approach based on

the use of Biot stresses in governing equations was proposed by Jiang and Haddow (1995). Their

method was successfully applied to the case of initially circular plane membrane. Recently, Shi and

Moita (1996) used the finite element (FE) formulation developed previously by Wriggers and Taylor

(1990) with the arc-length method to overcome limit points and to calculate secondary branches.

Verron and Marckmann (2001) presented network-based hyperelastic constitutive equations in the

context of thin membrane inflation and proposed a new B-spline interpolation model for the free

inflation of axisymmetric rubber-like membrane. The material models are implemented in a

numerical tool that incorporates an efficient B-spline interpolation method and a coupled Newton-

Raphson/arc-length solving algorithm. Reese et al. (2000, 2001) were developed a model describing

the inelastic material behaviour of pneumatic membranes reinforced with roven-woven textile and

modeling by finite element for orthotropic material behaviour in pneumatic membranes. 

The main purpose of this paper is to identify the parameters of the orthotropic hyperelastic

constitutive model and to analysis the large deformation of the inflated CAS made of RCC. The

deformation of the inflated CAS is calculated by solving the system of five first-order ordinary

differential equations and by FEM. A presented orthotropic constitutive model of RCC is

incorporated into the FEM for large deformation analysis of the inflated CAS. The derivation of the

axisymmetric shell element kinematics and of the constitutive matrix is presented. The tangent

stiffness matrix and the external force vector are also formulated. The computation was carried out

in Matlab. Intermediate stages of inflated shell and limit points were computed by the combination

of modified Newton-Raphson method with load increments controled by the iteration count of

previous convergence and by the arc-length method.
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2. Description of structural material and experimental analysis

A CAS (Fig. 1) is usually made up of four layers – the inner and the outer layer of calandered

rubber and the two plies of cord reinforced rubber in which the cords have a specific bias angle to

the other arranged symmetrically with respect to the circumferential direction (Fig. 2). The resulting

material properties are orthotropic in the case of on-axis loading. The cylindrical air-spring is

relatively short – the diameter of the tubular shell is 2R = 82 mm, the height is L = 120 mm and the

wall thickness is H = 2 mm. 

The properties of the material and the angle between cords have to be determined experimentally

in site since the air-spring is assigned for further experiments and it cannot be dissected for usual

material tests. In a 2-D cylindrical polar coordinate system, the components of a0 and b0 in Fig. 2

are in the forms

Fig. 1 Cylindrical air-spring shell 

Fig. 2 Textile cord reinforced circular tube of cylindrical air-spring. Continuum model for the structure of the
orthotropic layer (with double-helically arranged fibers)
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(1)

where γ is the (mean) angles between the fiber reinforced (arranged in symmetrical spirals) and the

circumferential direction in the medium layer.

The experimental tests were carried out at five different positions of the air-spring. First the

mounting plates of the non-loaded air-spring were fixed at the distance by 15, 20, 30, 40 or 50 mm

shorter than the free height of the air-spring. Then the air-spring was loaded and unloaded gradually

by pressurized air step 0.05 MPa in the range 0.1-0.5 MPa. Photographs of the deformed sheet were

recorded by digital camera; the axial force and the inner pressure were measured and stored at every

stage of loading. Digital photographs were processed semi-automatically by means of the Matlab

image processing toolbox. 

The centroids of deformed grid spots were calculated and the coordinates of contour points of the

deformed CAS were recorded. The result of such processing is presented at Fig. 3. The

deformations of CAS are determined from the photographic records of the deformed grid of points

drawn on the surface of CAS through digital image processing techniques. 

3. Deformation of inflated CAS

The main geometric features of the inflated membrane in according with the derivation of the

works (Guo 2001) are determined. The CAS at Fig. 4 has the initial radius of mid-surface R, and

length L. Its initial wall thickness H is assumed to be uniform. The undeformed profile of thin shell

is described by polar coordinate system, (X, Φ, R). The cylindrical thin shell is inflated by the

internal pressure p. 

The deformed cylindrical thin shell is referred to the polar coordinate system (x, φ, r). A material

particle moves during the deformation from the position in the undeformed profile, C(X, Φ, R) to

a0[ ] cosγ  sinγ   0[ ]T= , b0[ ] cosγ   sinγ  – 0[ ]T=

Fig. 3 Deformed shape and grid Fig. 4 Undeformed and deformed profiles of inflated
cylindrical membrane
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the deformed profile, c(x, φ, r), along its quasi-equilibrium path. Assume that the deformation is

axisymmetric, then φ ≡ Φ. The principal stretch in axial and circumferential directions, principal

curvatures and geometric relations are 

(2)

where s is the arc length measured from pole (x = 0) to the particle c (x, φ, r) along the meridian of

the deformed profile. S is the length corresponding to s in the undeformed profile. An auxiliary

variable θ is introduced as the angle of the tangent line. The radius r and the thickness h of the

membrane are with respect to the deformed configuration. The radial stretch λ3 is determined from

the incompressibility constraint 

(3)

4. An orthotropic hyperelastic constitutive model

The formulation of the anisotropic constitutive model has the main advantage that all involved

material parameters may be associated with the material constituents, i.e., matrix materials and the

fibers. The orthotropic hyperelastic materials in this paper are considered incompressible composite

materials with two families of fibers. Let’s assume the isochoric deformation and neglect the

dissipation due to irreversible effects. The free energy of the orthotropic hyperelastic materials is

considered stored in the matrix material and fibers. Thus, a proposed strain energy function is

considered the combination of scalar-value functions corresponding to energy stored in matrix

material and the fibers parts 

Ψ = Ψiso + Ψaniso (4)

where Ψiso is the component of strain energy function for isotropic properties of materials. Ψaniso is

the component of strain energy function for anisotropic properties. 

The isotropic component of strain energy function may be involved by the strain energy function

of Ogden’s model (Ogden 2001) as

(5)

where λ1, λ2, and λ3 are the three principal stretches. The parameters µn and αn (n = 1 ÷ 3) of

Ogden’s model of rubber (Holzapfel 2000) are 

µ1 = 0.63 MPa,  µ2 = 0.0012 MPa,  µ3 = −0.01 MPa,  α1 = 1.3,  α2 = 5,  α3 = −2 

Suppose that the reinforcing fibers are double-helically arranged in the matrix material

symmetrically to the circumferential direction then the component of strain energy function for

anisotropic property is expressed in terms of principal stretches in the form of exponential function
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(6)

where 2γ is the angle of the two families of reinforced fibers, k1 is stress-like material parameter

and k2 is a dimensionless parameter (Holzapfel and Gasser 2001). They are determined from the

experimental results and from the 2D cylindrical membrane approximation. The angle γ of fibers is

supposed to be 48.8o. 

The strain energy function of rubber-textile cord composite of inflated air-spring shell in two

dimensional problem with incompressibility constraint can be supposed in the form 

(7)

In principle the parameters µn and αn (n = 1 ÷ 3) of strain energy function must be determined

from the experimental data. But the influence of matrix constituent of rubber-textile cord composites

since applied load of inflation is unimportant, because rubber matrix only preserves the integrity of

the composite and transfers the load. Furthermore the material parameter k1 and k2 of strain energy

function in which k2 is expressed in the form of exponential function are very important in

computations of rubber-textile cord composites with high anisotropy, because the reinforced textile

cords support most applied loads. On the other hand the determination of these parameters µ
n
, α

n

(n = 1 ÷ 3), k1 and k2 from experimental data is very complex. Therefore the parameters µ
n
 and α

n

(n = 1 ÷ 3) of rubber-like model of Ogden are selected firstly in our study. The parameters k1 and k2

are determined from experimental results and may contain the influences to the final results for all

constituents of rubber-textile cord composites.

5. Identification of material parameters 

Constitutive equations are the stress-strain relationships for the deformed membrane. If the strain

energy function Ψ is an invariant, we may regard Ψ as a function of the principal stretches λ
a
 (a =

1, 2, 3). The principal Cauchy stresses associated with this deformation are given from strain energy

function (Holzapfel 2000)

(8)

where p* is the indeterminate Lagrange multiplier (hydrostatic pressure). 

By regarding inflation two of the stretches as dependent and treating the strain energy as a

function of these through the definition Ψ(λ1, λ2), the constitutive equations are obtained

(9)
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The theory of nonlinear membranes has been presented by Green and Adkins (1965) and applied

to various inflated structures (Guo 2001). The quasi-static equilibrium equations of problem are

 (10)

(11)

where T1 and T2 are the stress resultant forces per unit length of the meridional and circumferential

directions respectively. κ1 and κ2 are principal curvatures for the deformed membrane surface (2).

Suppose that σ1 and σ2 are the principal Cauchy stresses at the particle. According to the

assumptions for the membrane theory (Green and Adkins 1965), the stress resultant forces in the

deformed configuration are

(12)

The experimental series of the inflated cylindrical air-spring with the variable axial force F and

the inner pressure p are effectuated. The Cauchy stress σ1 is determined from the equilibrium in

Fig. 5

(13)

By substituting r = λ2R and h = H/λ1λ2 from (2) and (3) into (13) the stress is obtained as

in which (14)

The stress σ2 can be derived from equilibrium Eqs. (11) and (12). According to the theory of

inflated membrane the stress σ3 is assumed equal – p. 

After the substitution of the Cauchy stresses into Eq. (9) a set of the nonlinear equations for the

two variables k1 and k2 with the strain energy function presented in Eq. (7) is obtained as
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Fig. 5 Force equilibrium model of air-spring shell
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(15)

where C =  .

The experimentally measured values of λ1 and λ2 in several points of the central part of the CAS

were substituted into the Eq. (15). Taking the logarithm of (15) we will get a set of linear equations

for the variables lnk1 and k2. The resulting overdetermined system of linear equations was solved in

Matlab. The result of parameters in our calculated program were k1 = 41.87 MPa and k2 = −23.77.

The function of the Helmholtz energy potential for these parameters is convex. 

6. Large deformation analysis by numerical integration

After the substitution of (2), (3), (8) and (12) into equilibrium equations of (10) and (11) and by

some simplifications the system of five ordinary differential equations for the principal stretches λ1

and λ2, the tangent angle θ, the coordinate x in the deformed configuration and the inner pressure p

with respect to the coordinate X of the undeformed configuration is obtained as

(16)

where 

The set of differential Eq. (16) is solved by the shooting method in Matlab with the boundary

condition for  and  determined from the experiments. The calculated deformed profiles and

stretches of CAS are shown and compared with experimental ones in the following figures. 
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Fig. 6 describes the deformed profiles of cylindrical shell of air-spring under internal pressure

p = 0.5 MPa with shortening length 15, 20, 30, 40 and 50 mm. These results show that the

deformation of material is large. The deformed profiles along the length of cylindrical shell

subjected to different internal pressure are calculated and respond well to experimental results. 

Fig. 7 and Fig. 8 describe the axial and circumferential stretches with shortening length 15 mm

under internal pressure p = 0.4 MPa and 0.5 MPa. The axial stretches in the cylindrical shell are

less than 1 (shortening of the shell due to the inflation) and the circumferential stretches are greater

than 1. The numerical results show that the presented constitutive material model is appropriate for

the deformation analysis of the CAS made from the given composite material. 

Fig. 7 The axial and circumferential stretches with
shortening length 15 mm under internal
pressure p = 0.4 MPa

Fig. 8 The axial and circumferential stretches with
shortening length 15 mm under internal
pressure p = 0.5 MPa

Fig. 6 The deformed profiles with shortening length 15, 20, 30, 40 and 50 mm under internal pressure
p = 0.5 MPa 
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7. Large deformation analysis by FEM

7.1 Basic equations of nonlinear finite element formulation

7.1.1 The axisymmetric shell element

The axisymmetric shell element that has length of L and thickness of H in the reference

configuration and length of l in the current configuration is presented in Fig. 9. This element has

two nodes and the vector of node displacement is u. 

The coordinates in reference and current configuration and displacement vector are interpolated

linearly as the functions of the isoparametric coordinate ξ

(17)

(18)

where N is the matrix of shape functions 

(19)

Green-Lagrange deformation tensor (GL) and second Piola-Kirchhoff strain tensor (PK2) are used

as the conjugate pair in order to express the strain energy in the Lagrangian description.

The axial Green strain can be found from the change of length element (Shi and Moita 1996)

(20)
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Fig. 9 An axisymmetric shell element 
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where

The hoop component of GL is determined from the change of the circumferential length

(21)

The variation δE can be expressed by variation δu in the following form

(22)

where

The components of PK2 can be deduced from strain energy function according to the relation 

(23)

where (24)
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Note that the elasticity tensor is not constant, but depends on the deformations and then must be

updated in every iterative step. 

7.1.2 Principle of virtual work and its linearization

Principle of virtual work in given problem can be written in the following form:

(27)

in which p is the internal pressure, δu stands for a virtual displacement vector, Ω0 is undeformed

volume,  represents the deformed shell surface and n is the normal vector of deformed shell

surface. 

The principle of virtual work can be expressed through introduction of the external load factor λ

as

(28)
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the following form
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In order to solve the nonlinear Eq. (32), the classical tangent stiffness matrix =

 has to be defined (Chevaugeon et al. 2002). The stiffness matrix Kt is expressed in the

following form

(33)

By the derivation of internal force vector (30) with respect to the displacements, it follows that

(34)

in which  is the standard stiffness matrix or initial displacement matrix and  is the

geometric or initial stress stiffness matrix.

Similarly by the derivation of external force vector (31) with respect to the displacements will be

obtained the following matrix

(35)

The total stiffness matrix for one element is determined by the initial displacement matrix ,

the initial stress matrix  and the crucial load tangent stiffness matrix caused deformation

dependent loads (Holzapfel et al. 1996), as:

(36)

7.2 Nonlinear numerical solution

The basic approach to solve the nonlinear responses is the incremental-iterative method or the

continuation method, also called path-following method determining the equilibrium points on the

load (pressure)-displacement paths or equilibrium paths. The incremental-iterative approach described

here is based on a combination of the modified Newton-Raphson iterative method and the arc-

length method. The tangent stiffness matrix and internal force vector and external force vector are

updated not only at the commencement of every iterative cycle, but also at each load step (Fig. 10). 
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7.2.1 Predictor and corrector solutions

Consider a particular equilibrium point at an instant tn on the equilibrium path which is defined by

the nodal displacement un and load factor λn. The purpose of the numerical solution is to find one

new equilibrium point on the path. The new point at subsequent instant tn+1 is defined by

displacement and load factor increments denoted ∆u and ∆λ, respectively, and it satisfies

simultaneously the following equations

(37)

The first equation is the residual equation and the second one is extra equation which is normally

called arc-length constraint associated with path-following procedures. For the more widely used

cylindrical arc-length method, the constraint equation is given in the following form (Crisfield 1997,

De Souza Neto and Feng 1999)

(38)

where ds is arc-length which is the control parameter.

Here the Newton-Raphson iterative method is now examined for solving the previous system (37).

Consider the algorithm at a given iteration, the system to be solved is

(39)
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Fig. 10 The combination of modified Newton-Raphson and arc-length method
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where subscripts k + 1 and k, respectively, are for the current iteration and for the previous iteration.

To solve (39) the displacement vector and incremental displacement are obtained as

(40)

(41)

where  and  are the incremental displacement guesses for the previous and current

iteration, respectively, and δu is the iteractive displacement. The incremental load factor, ∆λ, is

updated according to

(42)

Using the previous definition of the tangent stiffness matrix (33) the system (39) becomes

(43)

The system of nonlinear equations for iterative solutions δu and δλ (the corrector solution) is

derived by simply linearising the residual equation and cylindrical arc-length equation using Taylor

series. The system of Eq. (43) is written as

(44)

where the subscript n + 1 have been abandoned for notational convenience.

When k = 0 (the predictor solution), the forward-Euler tangential predictor solution is adopted

(Verron and Marckmann 2001). The two predicted increments  and  are supposed to satisfy

the first equilibrium equation of (43) with 

(45)

where tangent displacement vector  is given by

(46)

The possible iteractive load factor δλ for the predictor solution is

(47)

and the success of the path-following technique depends crucially on the choice of the appropriate

sign for iterative load factor.

In order to predict the continuation direction, the sign of predictor load factor must be chosen.

From the criterion of Feng et al. (1996) the sign of the predictor load factor is made to coincide
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with the sign of the internal product between the previous converged incremental displacement

, and the current tangential solution 

(48)

7.2.2 Step-length control

For controlling the step length size the arc-length for use in the current increment (n + 1) can be

computed using the arc-length of previous increment (n) by

(49)

in which dsn is arc-length for previous load step n, Jn is actual number of iterations required for

convergence in the previous load step, Jd is a user-defined desired number of iterations for

convergence, typically 3 to 5. The exponent η usually lies in the range 0.5 to 1.0. 

7.2.3 Convergence criteria

A some convergence criterion based on the incremental displacements or energy are presented

(Clarke and Hancock 1990). The residual convergence criteria is introduced here. The Euclidean

norm of residual is compared with some predefined tolerance:

 (50)

where typically εr is in the range 10−2 to 10−5, depending on the desired accuracy and the non-linear

charateristics of the particular problem. 
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Fig. 11 FEM model of inflated cylindrical
shell with free heads

Fig. 12 Equilibrium paths in the case of free heads
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7.3 Numerical results

In this section the inflation of a cylindrical CRC membrane of CAS is examined. The problem 2D

geometry and the boundary condition are shown in Fig. 11. The material of air-spring is considerred

the orthotropic hyperelastic material and modelled by constitutive equations through the strain

energy function (7). The material parameters which were determined previously are used in FEM

computation. Because of symmetrical distribution the half of CAS was discretized by 60 elements.

In the first phase the calculation was implemented by selecting small incremental force and in every

iterative step the iterations were performed until achievement the required tolerance. The

combination of modified Newton-Raphson method and arc-length procedure was used in the next

phase in which the stiffness matrix, internal and external force vector were updated not only in the

beginning of every loading step, but also in every iterative cycle (Fig. 10). 

Fig. 13 Profiles of deformed shell at different stages of
loading

Fig. 14 Deformed shape under internal pressure
p = 0.015 MPa

Fig. 15 The comparison between analytical, FEM and experimental results
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Numerical results are obtained after simulation for the inflation of cylindrical shell by predictor-

corrector method using our program script files written in Matlab. Fig. 12 describes equilibrium

path between radial displacement with internal pressure. The equilibrium path is obtained up to

overcome the limit point and corresponds with the experimental responses.

The profiles of deformed shell at different stages of loading are described in Fig. 13. Firstly the

air-spring was loaded by pressurized air 0.015 MPa with free head of air-spring. Then the mounting

plates of air-spring were fixed meanwhile the internal pressure comes up to 0.035 MPa. Fig. 14

describes the deformed shape of the CAS. Fig. 13 and Fig. 14 show that the ends of examined air-

spring influence greatly its deformation. While these results are difficult to be determined by

experiment.

Finally, the analytical results and FEM’s results are compared with experimental ones in Fig. 15.

It is seen that the radial displacements are in good agreement with the experimental ones. Maximal

error for radial displacements between FE and experimental results is 6,5%. Therefore the presented

constitutive model is suitable for study of mechanical behavior of the thin-walled CAS made of

RCC.

The examined air-spring is relatively short and the ends influence greatly its deformation. It is

evident from the presented figures once the heads of the air-spring approach together the deformed

shapes become curved broadly near the heads of air-spring. These curved parts cannot be measured

directly experimentally as they are not visible at recorded photographs. Thus the difference at these

points between the estimated reality and the numerical simulation is not alarming. Whereas the

accordance of numerically simulated and experimentally measured stretches and shapes is

satisfactory in the central portion of the air-spring.

8. Conclusions

This study was conducted in respect of the mechanical response of a thin-walled cylindrical shell

of air-spring under combined inflation and axial force with reference to fundamental continuum

mechanical principles. The identification of the material parameters was solved through

experimental results. The presented strain energy function was implemented into the calculus of

deformations of the inflated CAS. The deformations were determined by numerical solution of the

system of ordinary differential equations based on the membrane theory. 

The nonlinear FE formulation for the finite strain behaviour has been derived and verified. The

strain energy function (7) was used to set up the constitutive relations in the finite element analysis

using Matlab code. Axisymmetric finite elements for the hyperelastic orthotropic material model

were made up to simulate the deformation of an inflated cylindrical membrane. The highly

nonlinear numerical procedure was mastered. Limit points were detected in the equilibrium

following path by using combination of modified Newton-Raphson and arc-length methods in FE

analysis. The developed finite elements are efficient and, in general, applicable for various materials

in the large strain range. The performance of the both developed software and the accuracy of the

numerical results have been demonstrated for several examples in which obtained numerical results

answered to experimental responses.
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