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Abstract. A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for
plane steel frames with partially restrained connections is presented. The algorithm was incorporated with
the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the
stability functions of beam-column members and material nonlinearity was considered by using the
gradual stiffness degradation model that included the effects of residual stress, moment redistribution by
the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of
members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The
fitness function for the genetic algorithm was expressed as an unconstrained function composed of
objective and penalty functions. The objective and penalty functions were expressed, respectively, as the
weight of steel frames and the constraint functions which account for the requirements of load-carrying
capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present
method, the optimum design results of two plane steel frames with fully and partially restrained
connections were compared.

Keywords: optimum design; genetic algorithm; refined plastic hinge analysis; plane steel frames with
partially restrained connections.

1. Introduction

Recently, research on the optimum design of steel frames by use of genetic algorithm has been

made actively. Kim (1999) and Camp et al. (1998) conducted optimum designs of steel algorithms

in connection with the AISC-LRFD (1994) analysis method, in which the nonlinear effects of steel

frames were considered with the introduction of the moment amplification factors B1 and B2 on the

basis of linear elastic structural analysis. Pezeshk et al. (2000), Schinler (2000), and Yun and Kim
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(2005), in recognition of the problem of using linear elastic analysis results in optimum design, also

conducted discrete optimum designs of plane steel frames incorporating advanced analysis methods

such as geometric nonlinear analysis methods, plastic zone analysis methods, and refined plastic

hinge analysis methods. Since most of the researches conducted until now, however, has been

concerned with steel frames having fully restrained connections (hereinafter, FR-connections), the

optimum design results do not reflect the true behavior of steel frames which have partially

restrained connections (hereinafter, PR-connections). Even though Foley et al. (2001) conducted an

optimum design of steel frames with PR-connections by using a genetic algorithm, the design

incorporated the plastic zone analysis method which is inappropriate for general design purposes

due to the complex numerical analysis process. In addition, there is no design method that has been

clearly proposed in current design specifications for plane steel frames with PR-connections,

although PR-connection affects the moment distribution and displacement of frame members and is

an important factor in terms of the ultimate strength of plane steel frames. 

This research presents a discrete optimum design method for plane steel frames with PR-

connections. The method incorporates a genetic algorithm and a refined plastic hinge analysis

method (Al-Mashary and Chen 1991, Deirelein et al. 1991, Liew et al. 1993, Attala et al. 1994,

King and Chen 1994) by which one can estimate the nonlinear behavior of the whole steel

structural system and members with FR- and/or PR-connections up to the load of ultimate limit

states effectively and accurately. In the genetic algorithm, the micro-GAs (Krishnakumar 1989) in

which the mutation process is not necessary and the single-point crossover probability is 1.0 and a

tournament selection method were employed.

The fitness function for the genetic algorithm was expressed as an unconstrained function

composed of objective and penalty functions. The objective and penalty functions were expressed

respectively, as the weight of steel frames and the constraint functions that account for the

requirements of load-carrying capacity, serviceability, ductility, and construction workability. In the

refined plastic hinge analysis method, geometric nonlinearity was considered by using the stability

functions of beam-column members and material nonlinearity was considered by using the gradual

stiffness degradation model that included the effects of residual stress, moment redistribution by the

occurrence of plastic hinges, PR-connections, and the geometric imperfection of members. To verify

the appropriateness of the present method, the optimum design results of two plane steel frames

with FR- and PR-connections were compared.

2. Refined plastic hinge analysis of steel frames

2.1 Modeling for geometric non-linearity

Beam-columns in steel frames are subject to both axial compression and bending moment. The

bending moment in a beam-column consists of primary and secondary bending moments. The

primary bending moment is caused by the applied end moments and/or transverse loads on the

members. The secondary bending moment is caused by the axial force acting through the lateral

displacement of the member relative to its chord and the axial force acting through the relative

displacement of the ends of the member. The second order effects can be captured by the stability

functions (Chen and Lui 1987). The force-displacement relationship, considering the geometric non-
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linearity of the beam-column member subject to both axial force and bending moment as shown in

Fig. 1, may be written as:

(1)

in which MA, MB, θA and θB are the end moments and the corresponding joint rotations at member

ends A and B, respectively. P and e (positive in tension) are the axial force and displacement in the

longitudinal direction of the member, and A, I, L, and E are the cross-sectional area, the moment of

inertia, the length, and the modulus of elasticity of the member, respectively. S1 and S2 are the

stability functions that account for the axial force effect on the bending stiffness of the member. The

conventional stability functions may be written as:

(2a)

(2b)

(2c)

(2d)

in which , and P is taken as positive in tension.
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Fig. 1 Beam-column member subject to axial force and bending moment at ends
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2.2 Modeling for gradual stiffness degradation

A beam-column member in a steel frame experiences inelastic behavior with a plastic hinge by

bending moment or with buckling by axial force. Therefore, to reflect the inelastic behavior in a

beam-column member, a force-displacement relationship which considers the stiffness degradation

by residual stress, bending and axial force, geometric imperfection, and PR-connection is required.

2.2.1 Residual stress

For a stub column, the stress-strain curve exhibits a smooth transition from elastic to perfectly

plastic due to residual stress in the steel column. In the refined plastic hinge analysis, the stiffness

degradation of a beam-column member for residual stress may be considered by the equation for Et

which is obtained from the Column Research Council (hereinafter CRC; Galambos 1998). The CRC

Et is employed because it is easier to reflect the gradual yielding process (plastification) over the

cross section due to residual stress than to update the modulus of elasticity of the cross-sectional

area of a beam-column member that remains elastic. The CRC Et is given as follows:

        for (3a)

for (3b)

in which P is the second-order axial force and Py is the axial load at full yield.

2.2.2 Plastic hinge

In refined plastic hinge analysis, member stiffness is assumed to degrade parabolically after the

member end forces exceed a specified initial yield function. When plastic strength is reached, the

plastic hinge is modeled as a true hinge with an applied plastic moment. The member tangent

stiffness is then adjusted to account for the presence of the plastic hinge. The incremental force-

displacement relationship, with and without plastic hinges at their ends, may be written as (Liew

et al. 1993a, 1993b):

(4)

in which the terms ηA and ηB are scalar parameters that allow for a gradual inelastic stiffness

reduction of the member associated with plastification at ends A and B, respectively.

The parameter η is equal to 1.0 when the member is elastic and zero when a plastic hinge is

formed at the end. The parameter is assumed to vary according to a prescribed function:

    (5a)

(5b)

in which α is a force-state parameter that measures the magnitude of the axial force P and bending

moment M at the member end. By adopting the cross-sectional strength equations from the AISC-
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LRFD (1986, 1994, 2001), the term α may be expressed as:

(6a)

(6b)

in which Mp is the plastic moment capacity of a beam-column member.

2.2.3 Geometric imperfection

Geometric imperfections result from unavoidable errors during fabrication or erection. For

structural members, the types of geometric imperfections are out-of-straightness and out-of-

plumbness. These imperfections cause additional moments in a column member and further

degradation of its bending stiffness. In the current study, the further reduced tangent modulus

method (Kim 1996) which reduces the CRC Et with a reduction factor 0.85 was employed to

account for further stiffness degradation due to geometric imperfections. The advantage of this

method over other methods is its convenience in design use because it eliminates problem of

explicit imperfection modeling or equivalent notional loads. Another advantage is that it does not

require the determination of the direction of geometric imperfections which are often difficult to

determine in a large system.

2.2.4 PR-connection

The behavior of a connection can be presented in a moment-rotation relationship as shown in Fig. 2.

Numerous moment-rotation relationships of PR-connections were proposed by various experiments,

but herein, the three-parameter power model proposed by Kishi and Chen (1990) is adopted. The

three parameters are the initial stiffness of connection Rki, the ultimate moment capacity of

connection Mu, and the shape parameter n:

(7)

in which m = M/Mu and θ = θr /θ0 (θ0 = Mu /Rki is reference plastic rotation, θr is rotation
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Fig. 2 Moment-rotation behavior of connection
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corresponding to moment M). When a connection is loaded, the tangent stiffness of the connection

Rkt at arbitrary rotation θr can be derived by simply differentiating Eq. (7) as:

(8)

For practical use of the power model, the three parameters for a given connection configuration

must be determined. Herein, the practical procedures for determining the three parameters are

presented for the two types of connections: top- and seat-angle connection (hereinafter, TS-

connection), and top- and seat-angle connection with a double web angle (hereinafter, TS&W-

connection). Rki and Mu of the TS-connection derived from the assumed failure mechanism shown

in Fig. 3 are as follows (Kishi and Chen 1990):

(9)

(10)

in which EI is the bending stiffness of the angle’s leg adjacent to the column face, d1 is the distance

between the centers of the legs of the top- and bottom-angle, tt is the thickness of the top-angle,

 (gt = the distance from the top-angle’s heel to the center of the fastener holes in

the leg adjacent to the column face, D is db if rivets are used as fasteners where db is the diameter

of the fastener and W if bolts are used as fasteners where W is the diameter of the nut), Mos is the

plastic moment capacity at point C of the seat-angle, Mp is the plastic moment capacity at point H2

of the top-angle, Vp is the plastic shear capacity, and  (d = the beam depth, ts = the

thickness of seat-angle, k = the distance from the top-angle’s heel to the toe of the fillet).

Rki and Mu of the TS&W-connection derived from the assumed failure mechanism shown in

Fig. 4 are as follows:
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Fig. 3 Top- and seat-angle connection



Optimum design of plane steel frames with PR-connections 393

(12)

in EIt which EIa and are the bending stiffness of the legs adjacent to the column faces of the top-

angle and web angle respectively,  (gc = the distance from the web

angle’s heel to the center of fastener holes, ta = the thickness of top-angle), Mpt is the ultimate

moment capacity for the top-angle, Vpt is the shear force acting on the plastic hinge locations H1

and H2, Vpa is the resultant plastic shear force, and 

(da = the height of the web angle, Vpu = the shear force acting on the upper edge of the web angle,

Voa = the shear force acting on the lower edge of the web angle, li = distance from the web angle’s

bottom to the compression flange of the beam). Finally, the shape parameter n is obtained from the

equations suggested by Kishi and Chen (1990). The equations are given in Table 1.

The incremental force-displacement relationship of the beam-column member, taking into

consideration the effects of PR-connections, can be written from Eq. (4) as:

(13)

where

(14a)

(14b)

(14c)

(14d)

in which RktA and RktB are the tangent stiffness of connections A and B respectively, and Sii, Sij, and

Sjj are the coefficients defined in Eq. (4) that relate the incremental moments and rotations of beam-

column member ends. 
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Table 1 Empirical equations for shape parameter n

Connection type n

TS&W
2.003log10θ0 + 6.070 for log10θ0 > −2.880
0.302 for log10θ0 < −2.880

TS
1.398log10θ0 + 4.631 for log10θ0 > −2.721
0.827 for log10θ0 < −2.721

TS&W: Top- and Seat-Angle Connection with Double Web Angle;
TS : Top- and Seat-Angle Connection
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3. Genetic algorithm and formation of optimum design problem

3.1 Genetic algorithm 

Genetic algorithm is an optimization algorithm that is based on the principle of ‘survival-of-the-

fittest theory’ and natural selection, the theory of natural evolution proposed by Darwin that only

individuals well adapted to the surrounding environment and having excellent character would

survive. A genetic algorithm generally forms the next generation with individuals having higher

fitness than the generation’s individuals (binary codes) through a searching process of reproduction,

crossover, and mutation, and this process is repeatedly performed until the completion conditions

are satisfied, i.e., selecting an individual having highest fitness for the whole search boundary. In the

current study, the micro-genetic algorithm (Krishnakumar 1989) in which the mutation process is

not necessary and the single-point crossover probability is 1.0 in a simple genetic algorithm

developed by Holland (1975) is employed.

The optimum design process of the present study that the refined plastic hinge analysis is

incorporated with the genetic algorithm, as shown in Fig. 5, is as follows.

① Select parameters to control a genetic algorithm suitable for a given problem, such as the

dimension of the group, the number of design variables, and crossover probability. When

applying the micro-genetic algorithm, the mutation process is not required and the crossover is

fixed as the single-point crossover.

② Generate binary coded individuals by producing random numbers, and then make the

individual populations (initial and next generations) as one desires. Because 256(= 28) AISC

WF- shape database numbered with decimal digit is used, the chromosome of an individual is

composed of n × 8 bits (n = the number of discrete design variables).

③ Convert each individual coded as a binary digit, that is, the number of design variable, into

decimal digit, and then make an input database for the refined plastic hinge analysis from WF-

shape database.

④ Conduct the refined plastic hinge analysis in the service and factored load states, and examine the

constraint conditions concerning load-carrying capacity, serviceability, ductility, and construction

Fig. 4 Top- and seat-angle connection with double web angle
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workability on the basis of the analytical results.

⑤ Calculate the fitness of each individual using a fitness function consisting of an objective

function and penalty functions expressed as the constraint condition equations.

⑥ Select an individual having the maximum fitness, and confirm whether it satisfies the stop

conditions or not. If not, generate a next generation through reproduction and mutation, and

return to step ②. A fixed number of generations was used as a convergence criterion in this

study. 

3.2 Formation of optimum design problem

3.2.1 Fitness function

A fitness function is used to determine how the member combination is suitable for a given

condition in the optimum design with a genetic algorithm. This study uses the fitness function

suggested by Camp et al. (1998), and the fitness function of i individual suggested by them can be

expressed as follows: 

Fig. 5 Optimum design process of genetic algorithm incorporating refined plastic hinge analysis
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(15)

in which Pmax and Pmin are respectively the maximum and minimum values of a nonconstraint

function in current generation, and ξ (= 1.01) is a modification parameter. Also, Pi is the value of a

nonconstraint function of i individual, and can be expressed as follows:

(16)

in which C is a constant, and m is the total number of constraint conditions. The penalty function υt

proposed by Pezeshk et al. (2000) and the objective function OBJ are expressed respectively as

follows:

(17)

(18)

in which Ne is the total number of member, Li, Ai and ρi are the length, the cross-sectional area, and

the unit weight, of member respectively, and g(t) is the equation of the constraint condition.

3.2.2 Constraint conditions

In this study, four kinds of constraint conditions, that is, the load-carrying capacity, serviceability,

ductility, and construction workability, of steel frames were considered. To express the penalty

function as a non-dimensional value, the following equation pattern for constraint conditions was

taken. 

(19)
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value. Because AISC-LRFD (USCS unit, 2001) have included many factors in design equations,

they are marked without unit conversion.

1) Load-carrying capacity

As constraint conditions of load-carrying capacity, the conditions of ultimate load and shear

strength were considered. Since the failure of a steel frame should occur under a load state more

than design load, this condition can be expressed as:

(20)
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column member is modeled as the member subjected to axial force and moments only, it is

necessary to examine the shear strength of each beam-column member. The equation for the

constraint condition of shear strength is expressed as:

(21)

in which Vu and φv (= 0.85) are the ultimate shear load and the shear strength reduction factor,

respectively, and Vn, as the nominal shear strength, is given as:

(22a)

   (22b)

       (22c)

in which Fy and E are the yield strength and elastic modulus of WF-shaped steel, and Aw, tw and h

are the cross-sectional area, thickness of a web, and height of a web respectively.

2) Ductility

For the section of a member to reach the stage of plastic moment, a proper rotational capacity in

the member section is required. For that, the member must be properly braced laterally so that lateral-

torsional buckling does not occur and the member section should be compact so that local buckling

does not occur. It is assumed the in refined plastic hinge analysis, a member section may be

subjected to plastic moment until a failure mechanism is formed due to several plastic hinges.

Therefore, when selecting steel frame members, one should select members that avoid local buckling

and lateral torsional buckling. The constraint conditions of compact section are expressed as follows: 

(23)

(24)

in which bf, tf, h, and tw are respectively the flange width, flange thickness, web height, and web

thickness of WF-shaped steel. In addition, the limit value of the ratio of the flange width to

thickness, , and the limit value of the ratio of the web height to thickness, , are
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(25c)

in which Pu and Py are the required axial strength and the yield axial strength respectively, and Fy

E, and φb (= 0.9) are respectively the yield stress of WF-shaped steel, the elastic modulus, and the

strength reduction factor for bending. 

The constraint condition of lateral-torsional buckling is expressed as:

(26)

in which L is the member length, and  is the unbraced length of member, Lpd, in plastic design.

For Lpd, when the compression flange is equal to or larger than tension flange and is bent about

primary axis of WF-shaped section, the following equation is used:

(27)

in which  is positive when the moment causes double curvature, and is negative when it

causes single curvature. γy (= ) is the radius of gyration about the minor axis. In the refined

plastic hinge analysis, it is assumed that out-of-plane deflection is braced in the modeling of the

beam-column member. Thus, the constraint condition to prevent out-of-plane axial buckling is

expressed as:

(28)

in which Pu and φc (= 0.85) are the ultimate axial load and the axial strength reduction factor,

respectively, and Pny is the nominal axial strength expressed as:
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(29b)
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3) Serviceability

The limit value  (= L/360, L = beam length in cm) of the deflection of a beam by live load,

and the limit value  (h/360, h = height of story in cm) of the inter-story drift of column δh by

wind load, all suggested by ASCE Ad Hoc Committee (1986) and Ellingwood (1989), were used as

the constraint conditions of displacement, which can be expressed as: 

(31)

(32)

Additionally, AISC-LRFD proposes that we not generate a plastic hinge under a service load state

when using the plastic hinge concept. The equation of the constraint condition is expressed as:

(33)

in which  is the value obtained by dividing the load when the first hinge is generated by the

service load.

4) Construction workability

In this study, since all column members were less than 28 cm in depth, dc, and the beam flange

widths, dbf, were less than column flange width, dcf, at the joints of beam and column in the

constraint conditions used in the earlier study (Pezeshk et al. 2001, Yun and Kim 2005) the

following constraint conditions of construction workability were added for comparison of design

results. 

(34)

(35)

4. Design examples

This study proposes a discrete optimum design method for plane steel frames with PR-

connections, in which a refined plastic hinge analysis method and a genetic algorithm are

incorporated. The optimum design results of the plane steel frames with PR-connections were

compared with the earlier results of a study (Yun and Kim 2005) in which the same plane steel

frames with FR-connections were optimized by using the same genetic algorithm and refined plastic

hinge analysis method. The steel members used for the design exercises were 256 WF-shaped

members of A36 AISC-LRFD. The magnitude of the incremental load was set at 1/20 of the design

load, the size of the design population was 50, and the crossover probability was 1.0. Since the

design results may differ depending on random numbers generated in a GA-based optimum design,

the optimum design was performed three times by generating three sets of random numbers.
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4.1 Three-story two-bay steel frame

The structure, shown in Fig. 6, is a model selected to evaluate the effects of connection conditions

on the optimum design results. The equivalent incremental factored loads imposed on the steel

frame are shown in Fig. 6(b), a model for the refined plastic hinge analysis in Fig. 6(c), and a

design model indicating the connection and member types in Fig. 6(d). In the optimum design, the

TS- and TS&W-connections (Figs. 3 and 4, respectively) were considered. The optimization

program was coded so that the connection configurations were changed according to the discrete

beams and columns selected from 256 WF-shaped members. To simplify the connection design, tt
and ts were taken as the thickness of the beam flange, lt and ls as the width of the beam flange, kt

Fig. 6 Three-story two-bay steel frame

Fig. 7 Details of top- and seat-angle connection with double web angle



Optimum design of plane steel frames with PR-connections 401

and ks as 2kt, gt, gs and ga as, 2kt, la as 0.6d, and W as 3.81 cm (Fig. 7). The yield stress and

modulus of the elasticity of the connection material were taken as Fy = 248.1 MPa and E =

200.1 × 103 MPa, respectively. In an earlier study, it was assumed that all beams were stiffened

every 1/6 point of the span, and because the loads considered in the optimum design were factored

loads, the constraint conditions of ductility (lateral torsional buckling, out-of-plane buckling) were

applied to the column members only and the constraint conditions of serviceability were excluded in

this study. 

Fig. 8 Optimum design results of three-story two-bay steel frame with top- and seat-angle connections

Table 2 Optimum design results of three-story two-bay steel frame

Connection type

Comparisons

Yun & Kim (2005) Current study

FR TS&W TS

Column Group ① W10 × 54 W10 × 54 W10 × 54

Beam Group ② W21 × 48 W24 × 55 W21 × 68

Optimum Weight (kN) 67.7 74.8 86.9

Critical Load Factor (λ) 1.074 1.036 1.010
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The optimum design results of the three-story two-bay steel frame with TS-connections are shown

in Fig. 8. Figs. 8(a) and (b) show that the optimum weight and fitness decreases and increases,

respectively, as the number of generations increases. The optimum weight was obtained at the third

run. In the case of the TS-connection, the total weight of the steel frame increased 28.0% compared

with the case of the FR-connection (Table 2). Fig. 8(c), indicating the numbers of individuals

violating constraint conditions in each generation, shows that the constraint conditions of the

ultimate load g(1) and of the construction workability g(11) and g(12) have the most significant

effects on the selection of the member sections. 

The trench of the optimum design results of the steel frame with TS&W-connections is similar to

the case of the steel frame with TS-connections. Since the rotational stiffness of the TS&W-

connections, however, is stronger than that of the TS-connections and weaker than that of the FR-

Fig. 9 Optimum design results of three-story two-bay steel frame with FR- and PR-connections

Table 3 Optimum design results of connection in three-story two-bay steel frame

Connection type

Design elements
TS&W TS

lt (= ls) (cm) 17.80 21.00

tt (= ts) (cm) 1.28 1.75

kt (= ks) (cm) 2.56 3.51

d (cm) 59.94 53.59

gt (= gs) (cm) 7.65 8.58

la (cm) 17.81 -

ta (cm) 1.28 -

ka (cm) 2.56 -

ga (cm) 7.65 -

Mu (kN · m) 302.5 89.5

Rki (MN · m/rad) 109.3 50.6

n 1.055 0.557

The diameter of nut W was fixed as 3.81 cm.; The subscripts ‘t’, ‘s’ and ‘a’ mean top
angle, seat angle and web angle respectively.
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connections, the value of the objective function (total weight of the steel frame) is between those of

the TS-connections and the FR-connections. Since the critical load factor is greater than 1.0 (Table 2),

the optimized steel frame with TS- and TS&W-connections can carry its design load without failure.

Fig. 9(a) shows the relationship between the number of generations and the total weight of the steel

frame with TS-, TS&W-, and FR-connections. Fig. 9(b) shows the relationship between the design

load and the horizontal displacement of Node 4 of the optimized steel frame, indicating that the

horizontal displacement of the steel frame with PR-connections is greater than that of the steel

frame with FR-connections. The optimum design results regarding member sections and connection

configurations are shown in Tables 2 and 3. Fig. 10 shows the sequence of plastic hinge formation

in the steel frame with FR- and PR-connections, indicating that the sequence is different according

to the connection type. 

4.2 Two-story three-bay steel frame

A two-story three-bay steel frame with different types of connections, shown in Fig. 11(a), was

optimized. The equivalent incremental factored and service loads imposed on the steel frame are

shown in Figs. 11(b) and 11(c), respectively. A model for the refined plastic hinge analysis is shown

in Fig. 11(d), as is a design model indicating connection and member types in Fig. 11(e). The

constraint conditions of serviceability, g(8) and g(9), were included in this example. The

optimization process of the fitness and total weight of the steel frame with different types of

connections are shown in Figs. 12(a) and 12(b). The relationship between the design load and the

vertical deflection of Node 15 of the optimized steel frame, indicating that the vertical deflection of

the steel frame with PR-connections is greater than that of the steel frame with FR-connections

regardless of heavier beam and column sizes, is shown in Fig. 12(c). The optimum design results

regarding member sections and connection configurations are shown in Tables 4 and 5. The total

Fig. 10 Sequence of plastic hinge formation in three-story two-bay steel frame
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weight of the steel frame with TS- and TS&W-connections is 28% and 10.5% greater than that of

the steel frame with FR-connections, respectively. The increasing rate of the beam size rather than

that of the column size has more effect on the increase of the weight of frames. This indicates that

the decrease of the moment redistribution capacity of beams due to PR-connections, inducing the

increase of bending moment in beams, requires heavier beams.

5. Conclusions

In this study, a discrete optimum design method for plane steel frames with PR-connections was

developed. A genetic algorithm and a refined plastic hinge analysis method, one of the second-order

inelastic analysis methods of plane steel frames, were incorporated in the present method. The

objective function was expressed as the weight of the steel frame and the constraint functions

Fig. 11 Two-story three-bay steel frame
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accounting for the requirements of load-carrying capacity, serviceability, ductility, and construction

workability were employed. The present method, capable of considering the geometric and material

nonlinearity of the plane steel frames with different types of connections, can be effectively utilized

in design practice. 

Fig. 12 Optimum design results of two-story three-bay steel frame with FR- and PR-connections

Table 4 Optimum design results of two-story three-bay steel frame

        Connection type

Comparison

Yun & Kim (2005) Current study

FR TS&W TS

Column Group ① W8× 31 W14× 30 W14× 34

Column Group ② W8× 31 W5× 16 W10× 22

Column Group ③ W12× 40 W12× 35 W14× 30

Column Group ④ W8× 28 W5× 16 W12× 26

Beam Group ⑤ W16× 26 W18× 35 W16× 36

Beam Group ⑥ W12× 19 W16× 26 W14× 30

Optimum Weight (kN) 27.91 28.46 31.35

Critical Load Factor (λ) 1.136 1.345 1.186



406 Young Mook Yun, Moon Myung Kang and Mal Suk Lee

Since an emphasis in this study has been put on developing an efficient and practical discrete

optimum design method for plane steel frames with different types of connections rather than on the

development of genetic algorithm techniques, there may be an ineffective aspect concerning the

optimization time and local optimization technique in the genetic algorithm compared with recent

genetic algorithm techniques. Therefore, genetic algorithm techniques need to be further studied. 
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