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1. Introduction 

The literature relating to the vibration analysis of the non-uniform beams without any attachments

(or the unconstrained non-uniform beams) is plenty (Abrate 1995, Laura et al. 1996, Datta and Sil

1996, Hoffmann and Wertheimer 2000), however, the information regarding the dynamic behaviors

of the non-uniform beams carrying multiple various concentrated elements (or the constrained non-

uniform beams) are relatively fewer (Auciello 1996, De Rosa and Auciello 1996, Auciello and Nole

1998, Auciello and Maurizi 1997, Wu and Hsieh 2000).

For the natural frequencies and mode shapes of the non-uniform (constrained) beams carrying

concentrated attachments at either end or both ends (Auciello 1996, De Rosa and Auciello 1996,

Auciello and Nole 1998), the solution procedures are exactly the same as those for the non-uniform

unconstrained beams (Abrate 1995, Laura et al. 1996, Datta and Sil 1996, Hoffmann and

Wertheimer 2000). The only difference is to change the boundary conditions for the non-uniform

unconstrained beams to accommodate the effects of the attachments at either end or both ends of

the constrained beams, such as the restoring force due to translational spring, restoring bending

moment due to rotational spring, inertial force due to lumped mass and/or inertia mass moment due

to concentrated mass moment of inertia. Because the problem becomes much complicated and

intractable if the attachments are located at the arbitrary positions along the length of the beam

(Auciello and Maurizi 1997, Wu and Hsieh 2000), the literature in this aspect is fewer particularly

for the cases with more than two intermediate attachments.

In 1990, Wu and Lin determined the natural frequencies and mode shapes of an Euler-Bernoulli

beam carrying any number of concentrated masses located at arbitrary points along the beam with the

analytical-and-numerical-combined method (ANCM). The purpose of this paper is to use the last

method to perform the free and forced vibration analyses of a tapered cantilever beam carrying any

number of point masses located at arbitrary points along the beam and subjected to external load. To

validate the numerical results of the ANCM, the traditional finite element method (FEM) was also

used to solve the same problem and good agreement between the corresponding results was achieved.
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2. Natural frequencies and normal mode shapes of an unconstrained tapered beam

For the unconstrained tapered Euler-Bernoulli beam as shown in Fig. 1, its equation of motion is

given by Goel (1976)

(1)

where x is the axial coordinate, y is the transverse deflection, E is the Young’s modulus, ρ is the

mass density of material, A(x) is the cross-sectional area of beam, I(x) is the moment of inertia of

A(x), and t is time.

The solution of Eq. (1) is given by Karman and Biot (1940)

(2)

with

(3)

where L1 is the length of the tapered beam from the sharp end (i.e., the origin of the axial

coordinate x) to the large end, and 

(4a,b)

are respectively the cross-sectional area and moment of inertia of the beam at the large end (cf.

Fig. 1). In Eq. (2), J1 and Y1 are the 1st order Bessel functions of first kind and second kind, while

I1 and K1 are the 1st order modified Bessel functions of first kind and second kind, respectively,

ci ~c4 are integration constants determined by the boundary conditions, and

(5)

with

(6)

For the tapered cantilever beam shown in Fig. 1, one has the following boundary conditions:
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Fig. 1 Sketch for the tapered beam studied: (a) top view, (b) front view, (c) left side view
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(7a,b)

 (8a,b)

The substitution of Eq. (2) into Eqs. (7a,b) and (8a,b) gives

(9a)

(9b)

(9c)

(9d)

where

(10)

Non-trivial solution of Eq. (9) requires that

(11)

From the last equation one may obtain the values of β = βr (r = 1, 2, 3, ...) using the half-interval

technique (Faires and Burden 1993), and the associated values of ω = ωr obtained from Eq. (6) will

be the corresponding natural frequencies, i.e., 

(12)

The corresponding mode shapes may be obtained from Eq. (2), i.e.,

(13)

where

(14)

The normal mode shapes  is given by

(15)
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(16)

(17)
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3. Equation of motion and eigenvalue equation of the constrained beam

For the tapered Euler-Bernoulli beam carrying P point masses with magnitudes mj ( j = 1~P)

located at xj ( j = 1~P)  and subjected to an external concentrated force  at the

free end, as shown in Fig. 2, its equation of motion is given by

 (18)

where  and Ωp are the amplitude and exciting frequency of the external load, respectively, δ (·) is

the Dirac delta function and the meanings of the other symbols are exactly the same as those

appearing in Eq. (1).

According to the expansion theorem (Meirovitch 1967), we set

(19)

where  is the s-th normal mode shape of the unconstrained beam obtained in the last section,

 is the associated generalized coordinate, and  is the total number of mode considered (or

superposed). 

By means of the procedures of the ANCM given by Wu and Lin (1990), one obtains

(20)

where ωr is the r-th natural frequency of the unconstrained beam.

Rewriting Eq. (20) in matrix form gives

(21)

where
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Fig. 2 A tapered cantilever beam carrying P point masses mj located at ξj = xj /L1 (j = 1~P) and subjected to
an external concentrated force  at the free end: (a) top view, (b) front viewPf t( ) Pf sin ΩPt( )=
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 (22c)

(22d)

(22e)

(22f)

(22g)

Eq. (21) is the equations of motion of an undamped vibration system. By using the Newmark direct

integration method (Bathe 1996), one may obtain the generalized co-ordinates , r = 1~ , and

substituting the values of  into Eq. (19) will determine the forced vibration response of the

constrained tapered cantilever beam, the vertical displacements . In the above equations, the

symbols 「 」,  [ ] and { } represent the diagonal matrix, square matrix and column vector,

respectively.

For free vibration of the constrained beam, one has

(23)

where  is the amplitude of  and  is the natural frequency of the constrained beam. 

From Eqs. (21) and (23), by letting the external load , one obtains the eigenvalue

equation of the constrained beam to be

 (24)

and the associated mode shapes to be

(25)

4. Numerical results and discussions

The physical properties and dimensions of the tapered cantilever beam studied are (cf. Fig. 1):

Young’s modulus E = 2.051 × 1011 N/m2, mass density ρ = 7850 kg/m3, beam width b1 = b0 = 0.1 m,

beam depth at large end h1 = 0.4 m, distance from origin to large end of beam L1 = 2.0 m, distance

from origin to small end of beam L0 = 0.4 m. The numerical results of this paper are based on the

total number of beam elements Ne = 80 for FEM and the total number of modes superposed = 6

for ANCM.

4.1 Natural frequencies and mode shapes of the tapered cantilever beam

To show the effectiveness of the presented theory, the tapered cantilever beam shown in Fig. 2

with P = 0 (no attachment), P = 1 (one point mass attached) and P = 5 (five point masses attached)

are investigated. The magnitudes and locations of the point masses are shown in Table 1. From
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Table 1 one finds that the lowest five natural frequencies obtained from FEM are very close to the

corresponding ones obtained from ANCM. The percentage differences shown in Table 1 are

calculated with the formula: Difference =  for i = 1~5, where

 and  denote the i-th natural frequencies obtained from the ANCM and the FEM,

respectively. Although the magnitude of the single point mass for the case of P = 1 is only one fifth

of the total point masses for the case of P = 5, the lowest two natural frequencies of the cantilever

beam carrying a tip mass are lower than the corresponding ones of the same beam carrying five

uniformly distributed point masses. This means that the effect of distribution of the attached point

masses along the beam length must be considered in addition to the effect of the magnitudes of the

point masses. From the final column of Table 1 one also finds that the CPU times required by the

ANCM are much less than those required by the FEM.

4.2 Forced vibration responses

For the forced vibration system shown in Fig. 2, all physical properties for the cantilever beam

carrying five point masses (P = 5) are the same as those shown in Table 1. The exciting force

located at the free end (x = L0 = 0.4 m) is Pf (t) = 5.0 × 104 sin(ΩPt) N. The time interval is

Δt = 0.0035 sec, and the initial conditions are . Besides, the two

parameters required by the Newmark integration method are: δ = 0.5 and α = 0.25.

(i) Time histories: The time histories of the vertical displacements at the free end, , are

shown in Fig. 3(a) for the case of exciting frequency ΩP = 5.0 rad/sec and in Fig. 3(b) for the case

of ΩP = 10.0 rad/sec. From the two figures one finds that the time histories obtained from the

ANCM (represented by the dashed lines) are in good agreement with those obtained from the FEM

(represented by the solid lines). The CPU time required by the ANCM is 0.28 sec and that required

by the FEM is 3.2 sec.

ωi ANCM, ωi FEM,–( ) 100%/ωi ANCM,×
ωi ANCM, ωi FEM,

y x 0,( ) y· x 0,( ) y·· x 0,( ) 0= = =

y L0 t,( )

Table 1 Comparison between the lowest five natural frequencies obtained from ANCM and FEM ( m1 =
mb/5 = 60.288 kg located at ξ1 = x1/L1 = L0/L1 = 0.2 for P = 1; mj = mb/5 = 60.288 kg located at ξj =
xj /L1 = 0.3, 0.45, 0.6, 0.75, 0.9, j = 1~5, for P = 5)

Number 
of point 
masses

P

Methods

Natural frequencies, ωi or  (rad/sec)
CPU 
time
(sec)ω1 or ω2 or ω3 or ω4 or ω5 or 

0

ANCM 989.6626 3629.5821 8503.9741 15704.6849 25267.5120 0.218

FEM 989.5017 3628.6311 8501.3310 15699.4691 25258.8597 3.141

*Difference 0.016% 0.026% 0.031% 0.033% 0.034% -

1

ANCM 569.6273 2508.8947 6743.2318 13408.5313 22570.1693 0.355

FEM 569.3039 2503.2976 6709.0487 13286.4974 22236.4917 3.203

*Difference 0.057% 0.223% 0.507% 0.910% 1.478% -

5

ANCM 613.2201 2525.5381 6366.4999 12184.0282 16089.9494 0.422

FEM 613.1226 2524.3389 6353.4962 12105.9359 15885.0965 2.937

*Difference 0.016% 0.047% 0.204% 0.641% 1.273% -

*Difference =  or Difference = 

ω i

ω
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ω
2

ω
3

ω
4

ω
5

ω i ANCM,
ω i FEM,

–( ) 100%/ω i ANCM,
× ω i ANCM,

ω i FEM,
–( ) 100%/ω i ANCM,

×
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(ii) Frequency-response curves: Fig. 4 shows the frequency-response curves for the free end of the

constrained beam, where the ordinate represents the maximum vertical displacements of the free

end, , and the abscissa the exciting frequencies ΩP of the external load. It is noted that

the values of ΩP corresponding to the first and second humps of each curve are approximately equal

to the first and second natural frequencies of the constrained tapered cantilever beam,

= 613.2201 rad/sec and = 2525.5381 rad/sec respectively. The CPU time required by ANCM

is 840 sec and that required by the FEM is 9600 sec.

y L0 t,( )
max

ω1 ω2

Fig. 3 Time histories of vertical displacements at the free end for the tapered cantilever beam carrying five
point masses (P = 5) subjected to a tip concentrated force Pf (t) = 5.0 × 104 sin(ΩPt) N: (a) ΩP = 5.0 rad/
sec: (b) ΩP = 10.0 rad/sec; , by FEM; , by ANCM ........

Fig. 4 The frequency-response curves for the tapered cantilever beam carrying five point masses (P = 5)
subjected to a tip concentrated force Pf (t) = 5.0 × 104 sin(ΩPt) N as shown in Fig. 2 
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5. Conclusions

Although the finite element analysis has become one of the most popular and general numerical

methods of structural analysis, the use of large finite element programs which are capable of

handling virtually to any degree of complexity, is cumbersome, costly, and time consuming. It is

preferable to use continuum methods, if closed-form solution methods for such a system are

possible. Therefore, the ANCM introduced in this paper can provide not only a check against the

computer finite element model, but also a means by which the effect of a parameter change on a

system can be readily gauged, which is useful in the design process.
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