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Abstract. In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is
investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and
electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically
permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is
reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of
numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors
are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show
the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic
fracture behaviors of the crack tips.

Keywords: piezoelectric layer; penny-shaped crack; dynamic energy release rate; dynamic stress
intensity factor; axis symmetry. 

1. Introduction

Because of their coupled mechanical and electrical properties, piezoelectric ceramics have recently

attracted significant attention for their potential application as sensors for monitoring. For example,

they can be used in active vibration and noise suppression of sensors in space structures, rockets,

weapon systems, smart skin systems of submarines, and so on. The reliability of these structures

depends on the knowledge of applied mechanical and electrical disturbance. 

Due to the disadvantage of their brittleness, piezoelectric materials have a tendency to develop

critical cracks during the manufacturing and poling process. The existence of these defects will

greatly affect the mechanical integrity and electromechanical behaviors of this class of material.

Since the pioneering studies of Parton (1976) and Deeg (1980) on fracture mechanics of

piezoelectric materials, a considerable number of researching works on the electroelastic behaviors

of piezoelectric ceramics with defects have been made in past years, and most of these contributions

are concentrated on antiplane problems and plane problems. For general 3D crack problem of
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piezoelectric materials, due to the complexity of the mathematical treatment, only a few

achievements were reported (Chen and Shioya 1999, 2000). Comparatively speaking, axisymmetrical

penny-shaped crack problem as a special kind of 3D problem, great progress has been made. For

example, the field intensity factors of a penny-shaped crack for several different loading cases were

respectively given (Kogan et al. 1996, Karapetian et al. 2000, Chen et al. 2000, Yang 2004).

Eriksson (2002) obtained the energy release rate (ERR) for a penny-shaped crack in a linear

piezoelectric solid. Lin et al. (2003) derived the stress intensity factor (SIF), ERR and energy

density factor (EDF) for the exact and impermeable crack models under mode I loading. Yang and

Lee (2003a, 2003b) analyzed the problem of a penny-shaped crack in a piezoelectric cylinder and in

a piezoelectric cylinder surrounded by an elastic medium, respectively. Wang et al. (2001) studied

and numerically calculated the field intensity factors of a penny-shaped crack in a piezoelectric

medium of finite thickness. Li and Lee (2004) investigated the effects of electrical loads on crack

growth of penny-shaped dielectric cracks in a piezoelectric layer.

On the other hand, piezoelectric materials are often subjected to dynamic loads in practical

applications. It is, therefore, of great importance to investigate the dynamic response of cracked

piezoelectric materials, and great progress in this area has been made as well. For example, Dascalu

and Maugin (1995) investigated the dynamic fracture of piezoelectric materials by the

quasielectrostatic approximation. Li and Mataga (1996a, 1996b) studied a pair of concentrated

longitudinal shear loads that suddenly act on the crack surfaces and move at a constant velocity

along the crack surfaces far away from the crack tips, and derived the dependence of the field

intensity factors and the ERR on the moving velocity for an electrode crack and a vacuum crack,

respectively. Chen and Karihaloo (1999) and Chen and Yu (1999) investigated an impermeable

finite crack situated in a piezoelectric medium and two coplanar cracks situated in a piezoelectric

strip subjected to impact loads, where numerical stress intensity factors have been determined by the

numerical solution of a Fredholm integral equation. Wang and Yu (2000) studied the mode-III

problem of a crack in piezoelectric strip subjected to the mechanical and electrical impacts by

solving numerically resulting Cauchy integral equations. Wang et al. (2000) investigated the

multiple impermeable crack problems for multilayered piezoelectric materials. Kwon and Lee

(2000) analyzed the transient response of a rectangular piezoelectric body with a center crack. Li

(2001) and Li and Fan (2002) investigated the transient response of a piezoelectric material with a

semi-infinite impermeable mode-III crack under impact loads and the problem of a through

permeable crack situated in the mid-plane of a piezoelectric strip under anti-plane impact loads,

respectively. Feng et al. (2004) studied the transient response of multiple electric permeable

coplanar interface cracks between dissimilar piezoelectric materials. Ing and Wang (2004)

investigated the transient response of a semi-infinite propagating crack subjected to dynamic anti-

plane concentrated loading in a piezoelectric medium. Wang and Yu (2001) studied the transient

response of mode-I crack in a piezoelectric strip under the in-plane mechanical and electrical

impacts. Gu et al. (2002a, 2002b) respectively investigated the mode-I problems of an interface

crack between two dissimilar piezoelectric layers for electrically impermeable and electrically

permeable crack surface conditions. Chen et al. (2003) analyzed the mode-I problem of a crack in a

functionally graded piezoelectric medium. However, to the best of our knowledge, to date, the

analysis on dynamic behaviors of a penny-shaped crack in a piezoelectric material has not been

reported. 

In this paper, the problem of a penny-shaped crack in a piezoelectric layer of finite thickness

under electromechanical impacts is investigated. Both structure and loads applied are axisymmetrical.
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Two kinds of crack surface conditions are considered. Using integral transform technique, the

problem considered is reduced to a Fredholm integral equation of the second kind in the Laplace

transform domain. The Laplace inversion is carried out to obtain the dynamic stress intensity factor

(DSIF) and dynamic energy release rate (DERR). Numerical results are plotted and discussed finally.

2. Description of the problem

As shown in Fig. 1, a penny-shaped crack with radius a is situated in a piezoelectric layer, the

thickness of which is h. The layer contains two parts, the thicknesses of which are h1 and h2,

respectively. The piezoelectric material is transversely isotropic and polarized along the z-axis

perpendicular to the crack plane. Assume that the boundaries of piezoelectric layer are subjected to

mechanical and electric impacts simultaneously and both the mechanical loadings and electrical

loadings are axisymmetrical. For this case, all the field variables are the functions of r and z only.

The governing equations for displacements and electric potential of the present problem are

(1a)

(1b)

(1c)

where  and  are displacements in r and z directions, respectively; 

is the electric potential; cij, eij, εii, and ρ are elastic constant, piezoelectric constant, dielectric
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Fig. 1 A penny-shaped crack in a piezoelectric layer
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permittivity, and mass density, respectively. Subscripts i = 1 and i = 2 are attached to the lower and

upper parts of the piezoelectric layer, respectively.

Constitutive equations are

(2a)

(2b)

where  and  are stress and electric displacement, respectively.

For electrically impermeable crack, the boundary conditions and interface continuity conditions

are

(3a)

(3b)
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(3e)

For electrically permeable crack, the boundary conditions and interface continuity conditions are
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(5c)

and  and  are the known loads applied on the surfaces of the piezoelectric

layer, respectively.  is an unknown function to be determined.

3. Solution of the problem

We proceed with the electrically impermeable case. Introducing the Laplace transform and

defining

(6)

Eq. (1) can be converted into

(7a)

(7b)

(7c)

The solution to Eq. (7) is of the form

(8)
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Six roots for  in Eq. (9) can been found, which are expressed as . In terms

of these eigenvalues and eigenvectors, a general expression for the displacements and electric

potential can be rewritten as

(10)

where
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Hankel transform to Eq. (14) (Wang et al. 2001). The result is
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where

(24)

The singularity of crack tip fields is duo to the asymptotic behavior of  as s tends to

infinity. By introducing 

we can obtain from Eq. (23)
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From the Laplace inversion

(32)

where Br denotes the Bromwich path of integration, the DSIF and DEDIF in the time domain can

be obtained as 

(33)

The Laplace inversion in Eq. (33) can be carried out by the numerical method given by Miller

and Guy (1966).

As well known, for electrically impermeable cracks, the DERR as a fracture parameter is more

appropriate than the DSIF. For the present problem, the DERR  can be finally evaluated by the

crack closure integral technique. The result is

(34)

For electrically permeable case, the singular integral equation can be derived by a similar method

as 

 (35)

where

(36a)

(36b)

(36c)

(36d)

(36e)

(36f)

And  can be obtained as

(37)

The DSIF and DERR in the time domain can be finally obtained as
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(38)

 (39)

Eqs. (38) and (39) show that both the DSIF and DERR are independent of electrical loadings.

Eq. (39) also implies that the DERR as a fracture parameter is equivalent to the DSIF in the view

of fracture mechanics for electrically permeable cracks.

4. Numerical example and discussion

In this section, the fracture properties of piezoelectric ceramics with cracks are investigated. The

piezoelectric material is taken as PZT-5H, the material constants of which are respectively

c11 = 12.6 × 1010 N/m2, c13 = 5.3 × 1010 N/m2, c33 = 11.7 × 1010 N/m2, c44 = 3.53 × 1010 N/m2, e31 =

−6.5 C/m2, e33 = 23.3 C/m2, e15 =17.0 C/m2, ε11 = 151 × 10−10C/Vm, ε33 = 130 × 10−10 C/Vm,

ρ = 7500 kg/m3. Firstly calculated are the DERR and DSIF for electrically impermeable cracks. For

simplicity, we directly set , where  is the

Heaviside unit step function. In all our numerical procedure σ0 is taken as 4.2 × 106 N/m2, and D0 is

determined by the load combination parameter λ, which is defined as .

Numerical results are plotted in Figs. 2-5, where the DERR is normalized by G0, i.e., the static

ERR for infinite piezoelectric material without electric displacement loadings, the DSIF is

normalized by , and the normalized time is taken as . From these figures, it is

easy to know that both the DERR and DSIF rise quickly to reach the peak values, then drop slowly,

and finally approach to the corresponding static values, and that the peak values appear at

. As shown in Figs. 2 and 3, both the DERR and DSIF tend to decrease

with the increasing of h/a. The peak values of the DERR are higher than the corresponding static

K t( ){ } 2a

π
------ Ω[ ] 1

2πi
-------- g a p,( ){ }e

pt
pd

Br

 

∫–=

G t( ) 1

a a
---------- KII t( )   KI t( ){ }T Ω[ ] 1–

KII t( )  KI t( ){ }=

t1 r t,( ){ } t2 r t,( ){ } 0  σ0H t( )  D0H t( ){ }T
= = H t( )

λ D0c33/ σ0e33( )=

σ0a
1/2

c33/ρ( )1/2
t/a

c33/ρ( )1/2
t/a 0.5~1.0=

Fig. 2 Normalized DERR versus normalized time
for different values of h/a for electrically
impermeable crack

Fig. 3 Normalized DSIF versus normalized time
for different values of h/a for electrically
impermeable crack
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values by about 30%, 20%, and 10% for h/a = 1.0, h/a = 2.0, and h/a = 4.0, respectively. However,

for different ratios of the thickness of the layer to the length of the crack, the peak values of the

DSIF are higher than the corresponding static values by about 10%. Fig. 4 indicates that for

electrically impermeable cracks, positive electric displacement loadings can increase the DERR,

while negative electric displacement loadings can decrease the DERR. This means that the negative

electric displacement loadings can be properly applied to inhibit crack growth. Fig. 5 implies that

the DSIF is independent of electric displacement loadings. In fact, this phenomenon has been

observed for static case.

Finally, the DERR and DSIF for electrically permeable cracks are evaluated. Noting that electric

displacement loadings have no effects on the fracture behaviors of the crack, we directly set

. Numerical results are plotted in Figs. 6 and 7. Comparingt1 r t,( ){ } t2 r t,( ){ } 0  σ0H t( )  0{ }T
= =

Fig. 4 Normalized DERR versus normalized time
for different values of λ for electrically
impermeable crack

Fig. 5 Normalized DSIF versus normalized time
for different values of λ for electrically
impermeable crack

Fig. 6 Normalized DERR versus normalized time
for different values of h/a for electrically
permeable crack

Fig. 7 Normalized DSIF versus normalized time
for different values of h/a for electrically
permeable crack
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Fig. 6 with Fig. 2 and/or Fig. 7 with Fig. 3, we can see that the results of electrically permeable

cracks haven’t obvious differences with the corresponding results of the electrically impermeable

cracks under only mechanical loadings.

5. Conclusions

In this paper, a penny-shaped crack in a piezoelectric layer under electromechanical impacts is

investigated. Two kinds of crack surface conditions are adopted. From the numerical results, the

following conclusions can be drawn. 

(1) In the loading process, the peak values of the DSIF or DERR usually occur at  =

.

(2) With the decreasing of h/a, the dynamic loadings have more significant influences on the peak

value of the DERR. 

(3) For electrically impermeable cracks, electric displacement loadings have no influences on the

DSIF. However, they have obvious influences on the DERR. And positive electric

displacement loadings can enhance crack propagation and growth, while negative electric

displacement loadings can inhibit crack growth.

(4) For electrically permeable cracks, electric displacement loadings have no influences on the

DERR and DSIF.
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