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Abstract. The axisymmetric free vibrations of transversely isotropic magnetoelectroelastic laminated
circular plates are studied. Based on the three-dimensional governing equations of magnetoelectroelastic
medium, the state space equations of laminated circular plates are obtained. By using the finite Hankel
transform and rendering the free terms left by the transform in terms of the boundary quantities, the
solutions of the state space equations are given for two kinds of boundary conditions. The frequency
equations of the free vibration are derived using the propagator matrix method and the boundary
conditions at top and bottom surfaces. By virtue of the inverse Hankel transform, the mode shapes are
also determined. Since the solutions strictly satisfy the governing equations in the region and the boundary
conditions at the edges, they are the three-dimensionally exact. Finally, the natural frequencies of such
plates are tabulated and compared with those of the piezoelectric and elastic plates in the numerical
example.
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1. Introduction

As smart material, the magnetoelectroelastic medium had been paid more attentions by many
researchers because of their characteristics of magnetic field coupled with electricity field and
mechanics field. The state space method is widely used to investigate the behavior of those
structures made by magnetoelectroelastic medium since they are usually in laminated forms (Pan
2001, Pan and Heyliger 2002, 2003, Chen and Lee 2003, Chen et al. 2005, Wang et al. 2003).
Some interesting solutions are derived in the Cartesian coordinate system for the simply
supported rectangular plates and the rectangular plates in cylindrical bending. Unfortunately, their
methods cannot be applied in the cylindrical coordinate systems and are not suitable for circular
plates.

The classical plate theory is widely used to investigate the static and dynamic behavior of thin
isotropic circular plates. However, it has well-known limits in the case of anisotropic material, or
laminated structure, or high-order vibration because of the assumption of planar section. Mindlin
(1951) proposed a plate theory which considered the effects of shear deformation and rotating
inertia and obtained the solutions of axisymmetric flexural vibration, symmetric flexural vibration
and high-frequency extensional vibration of circular plates (Mindlin 1951a, 1951b, Mindlin and
Deresiewicz 1954, Deresiewicz and Mindlin 1955, Dersiewice 1956, Kane and Mindlin 1956).
These works are more exactly than the classic plate theory but they still are not exact solutions.

In the early of 1951, Timoshenko and Goodier (1951) gave an analytical solution of a simply
supported isotropic circular plate, but it was not an exactly solution since the Saint-Venant principle
was used in the boundary. Celep (1978, 1980) made three-dimensional investigation on the
axisymmetric free vibration of circular plates using the method of initial functions. In order to
overcome the difficulty of mathematics in solving equations in cylindrical coordinates, some
assumption should be introduced. So the really exact solution of the anisotropic circular plate is few.
Rao and Das (1977) introduced the state space method into three-dimensional elastic dynamics
problem. Ding et al. (1999) first obtained the exact solutions of the axisymmetric free vibration of
transversely isotropic piezoelectric circular plate by use of the state space method with the finite
Hankel transform. Chen ef al. (2003a) presented the solutions of stress field, electricity filed and
magnetic field of simply supported magnetoelectroelastic circular plate under uniform loading. The
three-dimensional analysis of rotating annular plate of magnetoelectroelastic medium is also given
(Chen et al. 2003b).

In this paper, the state space equations of axisymmetric free vibration of laminated circular plates
are obtained from the three-dimensional governing equations of the magnetoelectroelastic medium.
By use of finite Hankel transform and let the free terms derived from the transform be zero, two
boundary conditions, named as generalized elastic simply supported (GESS) and generalized rigid
slipping supported (GRSS) are obtained. Based on the solutions of the state equations, the frequency
equations are derived using the propagator matrix method and the boundary conditions on the
bottom and top surfaces of the plates. The inverse Hankel transform is then used to determine the
corresponding mode shapes. Since the solutions strictly satisfy the governing equations in the region
and the boundary conditions at the edges, they are the three-dimensionally exact solutions of the
free vibration of the magnetoelectroelastic circular plates.
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Fig. 1 The coordinate system of the laminated circular plates

2. State space equations and its solutions

Consider a p-ply laminated magnetoelectroelastic circular plate of radius a, thickness 4. The
cylindrical coordinate system (7, @, z) is employed with z-axis being along the symmetry axis of the
circular laminates (Fig. 1). The origin of the coordinates is the center of the top surface. The
positive direction of the z-axis points the bottom surface from the top surface. Each layer may have
its own constants of material. For the axisymmetric free vibration, without the body forces, free
charges and magnetic inductions, the governing equations of the jth layer are given by
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where the common factor ¢’

are defined as

has been removed and the dimensionless coordinates and parameters

E=rla, {=z/h, oy=0,/c\), u,=ulh, Di=DJJ&c)
= .o, = [y, 5 (M, .a — 1
B = B/ #(33)0(11); =0 5%3)/0(11)/}1, Y=Y #(33)/0(11)/h; Ciy = CU/C(M)
= Mm% m 1 = a1 - I (1)
e = eij/’\lcll &3, dij= dy/A/Cu M3z, &= 5,,/533 8ij = gu/ &33 Ha3

iy = iy p=plp", Q=whdpVic, ty=hla, d=hih, (a)
and
zi=z—=(h+hy+...+h_) (8b)

is the local coordinate in z-direction of the jth layer; /; is the thickness of the jth layer; o, u, D,
and B; are the components of stresses, displacements, electric displacements and magnetic
inductions, respectively, @ and ¥ are the electric potential and magnetic potential, respectively, c;;,
e;, dy, &, gy and y; are elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic and
magnetic constants, respectively, p is the density of the material, ® denotes the circular frequency, ¢
is the time; c(lll) , 5%) , ,ug;) and p D represent the material constants of the first layer, and ¢, is the
ratio of thickness-to-radius. B B
If u,u.,® ¥, 5., 0..,D- and B. are selected as the state variables, &,,, 6, D, and B, as the
derived variables, the state space equations can be obtained from Egs. (1)-(7) as follows
Z_Yg = MY, Cc[0,d],(=1,2,..,p) )

X =NY (10)
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Also the following relations can be obtained,
eisfy = dish, fo=Futes fo = Fulos f5 = ~Fistor fs =ity (17)
Define the finite Hankel transform as
SIS D] = jolff(f, O kSdS, e [0,d] (18)

where J, (k&) is the uth order Bessel function of the first kind. The following transform of the
state variables are introduced,

u(k, &) = Jilu (& O, wk, &) = Ji[6:.(& )]
o(k, &) = Jo[0..(& O, Dk, &) = Jo[D:(& O], Bk, &) = Jo[B-(& )]

w(k, &) = Jolu(& )1, Bk, ) = JID(E O], Wk &) = L[P( O] (19)

Applying the Hankel transform (19) to Eq. (9) yields
T = MYk O+ QK 0. £=10.d) 0)

where
M,() = { 0 M'f(")} Y/(k &) = {Y”("’ 9} (21a)
sz(k) 0 Yzj(k, $)
f ki, —kf  —kfi)
M, () = kty, —pQ’ 0 0

—kf, 0 —kf, —kf:
ks 0 Kfs —Kf
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If let Q;(k, &) be zero, it can be easily observed that the following two boundary conditions, named
as the generalized elastic simply supported (GESS) and generalized rigid slipping supported
(GRSS), will be obtained.

(1) GESS conditions

7.(1,9) = 0, "240,(1,8) +5,(1,$) =0, B(1,O) =0, ¥(1,H=0  (22a)
cn
Jo(k) = 0 (22b)
(2) GRSS conditions
u (1,0 =0, o.,(1,5)=0, DA1,£)=0, B(1,$) =0 (23a)
Jy(k) =0 (23b)

Thus Eq. (20) becomes homogeneous and the solution is

Y(k, &) = T)(k, OY,(k,0), ¢€[0,d] e

By virtue of the Cayley-Hamilton theorem, the matrix T,(k, {) can be written as
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T,(k, ©) = exp[M(K)C] = ao(HT+ ia,(@M,(k)' (25

i=1

in which I is an identity matrix of the eight-order, the matrix M, (k) is defined in Eqs. (21) and the
coefficients a,({)(i =0, 1, ..., 7) are determined by
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where 7,(i=1,2,...,8) are the distinct eigenvalues of the matrix M(k). Eq. (26) will have other
forms when multiple equal eigenvalues are occurred.
Setting £'= d; in Eq. (24) yields

Yk, d) = Tk, d)Y,(k,0), (G=1,2,..p) @7

Eq. (27) establishes the relation between the state variables of the jth layer at upper and lower
surfaces by the transfer matrix T,(k, d,) . o B B

Using of the continuity conditions of the state variables u,, u., ®, ¥, &,,, .., D: and B. at each
interface, i.e.,

Y, (k0) = Y, (kd), (G=1,2..,p-1) (28)

yields
Y, (k d) = F(k)Y,(k 0) (29)

where
F(k)y = [Ful = f[T,-(k, d) (30)

3. Frequency equations and mode shapes

For the free vibration problem, the mechanical boundary conditions at the top and bottom surfaces
of the laminated circular plates are vanishing of the normal and shear stresses, namely,
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5.(&0)=0,5.(5d,) =0,5..(£50) = 0,5..(&d,) = 0 31

Furthermore, the electric boundary conditions are given by

D-(£0) =0, D(&d) =0 (32a)
or D:(£0)=0, ®(&d) =0 (32b)
or D(& 0) =0, D:(&d,) =0 (32c¢)
or D(& 0) =0, (& d,) =0 (32d)

and the magnetoelectric conditions are

BA(&0)=0, B(&d) =0 (33a)
or B(£0)=0, ¥(&d,) =0 (33b)
or ¥(&0)=0, B(Ed) =0 (33¢)
or ¥(&E0)=0, P(&d,) =0 (33d)

Thus the Eqgs. (31)-(33) have 16 combinations of boundary condition on the bottom and top
surfaces. For example, the case 1 is defined as

o(k, 0) = o(k,d,) = (k, 0) = 7(k,d,) = 0
D(k, 0) = D(k,d,) = 0, B(k,0) = B(k,d,) = 0 (34)

Substituting Egs. (34) into (29), yields

Fy Fys Fy Fyg || u(k, 0)
F3| F36 F37 F38 W(k, 0) =0 (35)
Fy Fy Fiy Fig || Dk 0)
Fs Fsq Fs; Fsg? \Y(k,0)

The corresponding frequency equation can be obtained from Eq. (35) because of the requirement of
non-trivial solution

=0 (36)
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The frequency equation is transcendental with respect to (,, and gives infinite number of
frequencies for each k.

For the GESS conditions, the parameter £ must satisfy Eq. (22b) and a series of roots ,,(m =1,
2, ...) can be obtained. Substitution of k,,(m =1, 2, ...) one by one into Eq. (36) determines a series
of the non-dimensional frequencies Q,,,(m =1, 2, ...). Substituting €2, and the corresponding £,
into Eq. (35) yields the ratios of u(k,, 0), w(k,, 0), ®(k,, 0) and Y(k,, 0), respectively. Consider the
boundary conditions Eqgs. (34) and using Eq. (24) along with Eq. (28), u(k,., &), w(k,, &), @k, £),
Yk &), ok, &), T(kis &), D(ky, &) and B(k,, &) can readily be determined. By virtue of the
inverse Hankel transform (Sneddon 1970), the corresponding mode shapes can finally be derived as

u (gg é/) 2u(km, éV) Jl(kmé) = (é éV) 2w (km: éV) JO(kmé)
l(km)] l(km)]

5.5 O) = 20(k,, L2 E0S) | 5 (2 0y =21k, ) L1 EnE)
[JI (km)] [JI (km)]

B(E O = 20(k,, HLP0S) B (& o) = 2Dk, o) LolEns)
[Jl(km)] [Jl(km)]

B(& ) =29k, OL%0S) B (£ o) = 28k, o Ln) 37)
[Jl (km)] [Jl (km)]

Substituting Eq. (37) into Eq. (10), the corresponding variables in the X can be determined.

For the GRSS conditions, the parameter k£ must satisfy Eq. (23b) and a series of roots k,,(m =1, 2,
...) can be obtained. The non-dimensional frequency Q,,(n = 1, 2, ...) and the corresponding mode
shapes and the components of the vector X in Eq. (10) can be determined In a similar manner, the
mode shapes for the above-mentioned GESS conditions is given by

7,06 ) = 2ulk, O g (& o) = 2wk, o Lons)
‘]O(km)] [JO(km)]
5.5 0 = 2a(k,,,,@‘]°("mf)2, 5.5 ) = 2(k,,,,¢)‘]'(""’f)2
JO(km)] JO(km)]
B(E O = 20(k,, HL2P0S) B (e oy = 2Dk, o LoEns)
JO(km)] [JO(km)]
B(& O = 2%k, 20 B £ o) = 28k, ) L0En) (38)
JO(km)] JO(km)]

For the other cases of the conditions different from the case 1, the corresponding frequency and
mode shapes can be derived using the same method. It also should be noted that the presented
method can be reduced to for the corresponding cases of the axisymmetric piezoelectric or pure
elastic circular plates.
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Table 1 Dimensionless frequencies of the magnetoelectroelastic plate for GESS of case 1
ki =2.40483 k, = 5.52008 ks = 8.65373
Q Q Qs Q Q Q; Q Q Q;
0.1 0.01811 0.22914 1.47748 0.08892 0.51993 1.57973 0.19723 0.80227 1.73981
0.2 0.06885 0.45589 1.55052 0.29428 1.00410 1.88564 0.57653 1.45422 2.30724
0.3 0.14406 0.67486 1.66074 0.54169 1.40799 225361 0.99204 1.84660 2.85683
04 0.23538 0.88549 1.79696 0.80334 1.69864 2.62267 1.42580 2.12940 3.28808
0.5 0.33658 1.08321 1.94950 1.07280 1.90173 2.94806 1.87859 2.44855 3.63150
0.6 0.44370 1.26432 2.11079 134956 2.07991 322180 2.34891 2.83238 3.95243
0.7 0.55442 142517 227497 1.63404 227017 3.45443 2.83040 327401 4.29191
0.8 0.66750 1.56344 243749 1.92632 248511 3.66470 3.30864 3.75729 4.66959
0.9 0.78232 1.67964 2.59485 222567 2.72689 3.86871 3.77626 426536 5.09741
1.0 0.89858 1.77769 2.74447 2.53049 2.99362 4.07701 4.22046 4.77772 5.57189

Iy

Table 2 Dimensionless frequencies of the magnetoelectroelastic plate for GRSS of case 1
ki =3.83171 ky = 7.01559 ks = 10.17350
Q Q Qs Q Q Q; Q Q Q;
0.1 0.04475 036395 1.51569 0.13712 0.65696 1.65049 0.25800 0.93233  1.83097
0.2 0.16010 0.71500 1.68452 0.42568 1.23567 2.08378 0.72023 1.61957 2.57472
0.3 031370 1.04101 191496 0.75369 1.65270 2.55644 1.21827 1.99596 3.09900
04 048470 132691 2.17202 1.09568 1.91685 2.97292 1.74188 2.34699 3.53428
0.5 0.66371 1.55920 2.43215 1.44953 2.14500 3.30805 2.29081 2.78224 3.91289
0.6 0.84726 173643 2.67973 1.81599 240147 3.58744 2.85641 329910 4.31115
0.7 1.03437 1.87588 2.90533 2.19439 2.70065 3.84752 3.41778 3.87246 4.76337
0.8 1.22495 2.00023 3.10554 2.58188 3.04046 4.11333 3.95914 4.47342 5.28446
0.9 1.41916 2.12506 3.28244 297417 341391 439966 4.46716 5.06980 5.86344
1.0 1.61715 225839 3.44160 3.35972 3.81090 4.71304 4.94565 5.63574 6.46737

ty

4. Numerical examples

Consider a three-layered transversely isotropic magnetoelectroelastic circular plate. The first and
third layer material are CoFe,O, and the core layer is BaTiOs;. The material constants show in Li
(2000). The thickness ratio of the plate is A, : hp: i3 =1:2: 1.

The first three dimensionless frequencies and the corresponding ki, k, and k; for boundary
conditions GESS and GRSS of cases 1 with different thickness-to-radius ratios f#, are shown in
Tables 1-2. It shows that the dimensionless frequency increase with the thickness-to-radius ratios ¢,
both for the boundary conditions GESS and GRSS. Tables 3 shows the lowest dimensionless
frequencies of the magnetoelectroelastic plate for the boundary conditions GESS and GRSS of cases
1 as well as those of the piezoelectric and elastic plate. It is shown that the lowest dimensionless
frequencies of three mediums increase with the thickness-to-radius ratio . Furthermore, the
dimensionless frequency of the magnetoelectroelastic plate is the largest and one of the elastic plates
is the smallest for same #,. It is readily observed that magnetoelectric effects lead to the increase of
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Table 3 The lowest dimensionless frequency of three kinds of materials for GESS and GRSS conditions of

case 1
GESS (k; = 2.40483) GRSS (k, = 3.83171)

l Magneto- Piezo- . Magneto- Piezo- .

electroelastic electric Elastic electroelastic electric Elastic
0.1 0.01811 0.01804 0.01293 0.04475 0.04459 0.03219
0.2 0.06885 0.06861 0.04984 0.16010 0.15964 0.11849
0.3 0.14406 0.14363 0.10623 0.31370 0.31306 0.23904
0.4 0.23538 0.23481 0.17691 0.48470 0.48400 0.37799
0.5 0.33658 0.33592 0.25740 0.66371 0.66306 0.52602
0.6 0.44370 0.44300 0.34436 0.84726 0.84670 0.67820
0.7 0.55442 0.55373 0.43547 1.03437 1.03390 0.83200
0.8 0.66750 0.66685 0.52917 1.22495 1.22456 0.98617
0.9 0.78232 0.78172 0.62443 1.41916 1.41883 1.14013
1.0 0.89858 0.89805 0.72057 1.61715 1.61686 1.29361

the frequency of free vibration. However, this influence of the frequency is not significant for the
material in the numerical example.

5. Conclusions

1. For the axisymmetric free vibration problem, the state space equations of laminated transversely
isotropy circular plates are obtained from the three-dimensional governing equations of
magnetoelectroelastic medium. The frequencies equations of two different boundary conditions
are then derived as well as the corresponding mode shapes.

2. The frequencies increase with the ratios of thickness to radius.

3. The present method can be applied in the corresponding cases of the axisymmetric piezoelectric
or pure elastic circular plates.

4. The calculating results show the magnetoelectric effects increase the dimensionless frequencies,
i.e., the magnitude of the frequency of the magnetoelectroelastic medium is the biggest and one
of the elastic mediums is the smallest for same ¢, and %.
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