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Abstract. A simply supported hybrid plate consisting of top and bottom functionally graded elastic
layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an
elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer
model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two
functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness
direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on
the static bending and free vibration of the smart plate is discussed in the numerical examples.
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1. Introduction

Research on embedded piezoelectric sensors/actuators has shown great advantages over the
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traditional surface-bounded ones. The most prominent feature is that damages of surface bonded

sensors/actuators due to contact with surrounding objects can be avoided in the embedded case (Vel

and Batra 2001, Ali et al. 2004, Batra and Liang 1997). Saravanos and Heyliger (1995) employed a

layerwise linear theory to analyze composite beams with embedded piezoelectric sensors. Based on

a high order displacement field and a layerwise linear electric potential, Chee et al. (2001, 2002)

developed a finite element method and investigated the static shape control of adaptive composite

plates. Roh and Kim (2003) incorporated the finite element method with the first-order shear

deformation theory of plates to study the dynamic response and adaptability of hybrid smart

composite plates under low velocity impact.

In the works mentioned above, the interfacial bonding was assumed to be perfect, which is not

always the case in practice. During the process of fabrication or the service life, some interfacial

imperfections may be induced. To prevent laminates from shear failure, weak bonding is artificially

introduced, hereby reducing the concentration of transverse shear stresses. Thus, studies on

laminates with imperfect interfaces have gained more and more attentions. Cheng and Batra (2001)

investigated thermal effects on imperfectly bonded laminated composite shells. Rokhlin et al. (2004)

developed an ultrasonic experimental method to evaluate imperfect interfaces and adhesive bonds.

To model the interfacial imperfection, a linear interface model suggested by Aboudi (1987) has been

widely employed since it can simply and effectively describe the important features of weak

interfaces (Meguid and Wang 1999, Cheng and Kitipornchai 2000, Icardi et al. 2000, Chen and Lee

2004a, Chen et al. 2004a, Cai et al. 2004).

In the present paper, a general linear spring-layer model (Chen et al. 2003a, Chen and Lee 2004b,

Chen et al. 2004b,c,d) is employed to characterize the imperfect behavior of interfaces in a smart

structure consisting of two functional graded elastic layers weekly bond with the top and bottom

surfaces of a piezoelectric plate, which acts as either sensor or actuator. Functional graded materials

(FGMs) are a kind of inhomogeneous materials whose volume fractions of the constituents and thus

the mechanical properties vary continuously over a macroscale geometrical dimension. Differing

from the conventional laminated materials, FGMs do not possess discernible internal phase

boundaries, which directly results to slight stress concentration caused by kinds of external loads (Li

and Weng 2002). So FGMs are widely applied in various engineering including electron, chemistry,

optics, biomedicine, etc. (Koizumi 1997). As an important member of adaptive structures, FGMs

bonded with piezoelectric actuators or sensors have abstracted much attention recently (He et al.

2001, Liew et al. 2001, 2003, Yang et al. 2004, Shen and Liew 2004). Among these literatures,

some conventional simplified assumptions on the mechanical displacements and electric potential

were introduced, which should be carefully clarified by three dimensional analyses. Ootao and

Tanigawa (2000) studied an FGM rectangular plate bonded to a piezoelectric plate in a thermal

environment. They employed a three dimensional method similar to Pagano (1969) incorporated

with a laminated model to approximate the FGM plate. Such a method, however, will become time-

consuming when the divided number of laminated model increases for results of high accuracy (Cai

et al. 2004, Chen and Lee 2004b, Noor and Burton 1990).

In this paper, another three-dimensional method, i.e., the state space method (SSM), is employed.

Since the scale of final solving equations is independent of layers involved in laminates, the SSM

possesses superiority in analyzing laminated structures (Bahar 1975, Lee and Jiang 1996, Chen et al.

2003b, 2004e, Deu and Benjeddou 2005). Recently, Chen and Lee (2004a,b), Chen et al. (2003a,

2004a,b,c,d) applied the SSM to obtain benchmark solutions of laminated beams, plates and

cylindrical panels with imperfect interfaces. These solutions construct a solid base for clarifying
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one-dimensional beam theories and two-dimensional plate/shell theories as well as numerical

methods such as FEM and BEM. As an extension of these works, the present paper deals with the

static bending and free vibration of a smart hybrid FGM plate. The effects of some parameters

including the gradient index of FGMs and compliance coefficients of weak interfaces are discussed

in the numerical examples. It is noted that a thorough understanding of the effect of bonding

imperfection can not only help us to predict correctly the health condition of a host structure from

the measured signals, but also extend the service lifetime of the actuators/sensors if the bonding

property is well characterized.

2. State space method

We consider a smart plate in Fig. 1. The two FGM elastic layers, FGM I and FGM II, are

connected with an intermediate actuating or sensing piezoelectric layer, which is homogeneous.

2.1 Formulations for piezoelectric layer

The basic equations of orthotropic piezoelectric materials polarized in the z direction (Ding and

Chen 2001) are

Generalized constitutive relations:
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Fig. 1 Geometry and coordinates of a smart plate
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Governing equations:

(2)

The state equations can be directly derived from Eqs. (1) and (2) by choosing the state vector as

(3)

where the operator matrix M is given in Appendix A. In addition, we have

(4)

where  is the deduced vector, and N is also an operator matrix

presented in Appendix A.

The simply supported conditions for a piezoelectric plate (Ding and Chen 2001) are

(5)

To satisfy these boundary conditions, the following Fourier expansions are applied

(6)

where the superscript 0 denotes quantities at .

The substitution of Eq. (6) into Eq. (3) yields

(7)

where  denotes the nondimensional state vector for

piezoelectric layers, and the coefficient matrix Mp is expressed in Appendix A.
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The solution to Eq. (7) can be obtained as

(8)

where  and . Hence, we can establish the following relation

(9)

where  is the transfer matrix of the sensor or actuator piezoelectric layers,

which can be calculated by the built-in exponential matrix functions of some commercial algebraic

manipulation codes such as Mathematica and Matlab.

2.2 Formulations for FGM layers

In a similar way, the state equation for the FGM layers can be derived as:

(10)

where  is the corresponding nondimensional state vector. Deleting

the fourth and eighth rows and columns of the forenamed coefficient matrix Mp, one can obtain the

sixth-order square matrix Mf, which can be different for FGM I and FGM II. On the other hand, the

Mf varies with the variable ζ resulted from the inhomogeneity of FGMs, which imposes the

mathematical difficulty to obtain solution to Eq. (10) analytically. Hence an approximate laminate

model (Lee and Jiang 1996) is employed here. That is to say, the FGM layers are divided into Ni

(i = 1, 2) equal thin fictitious layers, so that the Mf can be assumed constant within each layer and

its value is taken at each mid-plane, i.e.,
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Jiang 1996, Chen et al. 2003b, Liu et al. 2003).
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Setting  in Eq. (13) as well as employing the continuity conditions of the state vectors at

each fictitious interface yields the following transfer relation between state vectors at the top and

bottom surfaces of the FGM layers

(14)

where  and  are the transfer matrices

of FGM I and FGM II, respectively; and both are a sixth-order square matrix.

3. Spring-layer model of weak interfaces

The weekly bonding adhesive between the piezoelectric layer and FGM layers is modeled as a

linear spring layer (Chen et al. 2003a, Chen and Lee 2004b, Chen et al. 2004b,c,d). Hence, the

mechanical conditions at the two interfaces between the two FGM layers and the piezoelectric

actuator or sensor layer are

at 
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(17)

Obviously, the interfacial transfer matrix will be an identity matrix if the interface is perfect.

4. Boundary conditions of piezoelectric layer and the final governing equation

4.1 Electric boundary conditions

When the piezoelectric layer is used for an actuator, then the electric boundary conditions (Ray

et al. 1992, 1998) are

(18)

where ω is the angular frequency of the imposed electric potential which varies harmonically in

time. In terms of the Fourier series, one can expand the amplitudes of the applied electric potentials

as
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in which .

If the piezoelectric layer is used for a sensor, then the electric boundary conditions are Ray et al.

(1992, 1998), 

(23)

In a similar manner, we can derived the following formulas 

(24)

Finally, the global elastic transfer relation can be derived from Eqs. (14), (16) (21) or (24)

(25)
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piezoelectric sensor.
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, can be determined by the virtue of Eqs. (9), (14), (16) (21) or (24). Finally, each state

vector is solved from Eq. (8) or Eq. (13).

If the free vibration is considered, we have  in Eq. (26). If the piezoelectric layer is used

for an actuator, then  in Eq. (19). The requirement of nontrivial solutions to Eq. (29) yields

the following frequency equation

(30)

5. Numerical examples

For numerical calculating, a hybrid plate consisting of one piezoelectric layer bonded with top and

bottom surface FGM laminates is investigated, whose thickness ratio is h1:h2:h3 = 4:2:4, and total

thickness-to-span ratio is . The through-thickness inhomogeneity of FGM layers is

expressed as an exponential model (Fuchiyama and Noda 1995), i.e.,

(31)

where  and  represents an arbitrary material constant of FGM I and FGM II,

respectively, while P0 and P1 refer to two homogeneous materials (PI equals P0 at ζ = 0, and PII

equals P1 at ζ = 1). In the following numerical examples, they are hypothetical and are listed in

Table 1. κI and κII are named as gradient indexes of FGM I and FGM II, respectively. For the sake

of brief, we choose  in the following numerical examples. Table 2 lists the material

constants (Ba2NaNb5O15 (Ding and Chen 2001)) of the piezoelectric actuator or sensor. Within these

tables, the units of  and ρ are 1010 N/m2, 10−11 F/m, C/m2 and 103 kg/m3, respectively.

In the following numerical examples, the compliance coefficients  and  are assumed both to

be zeros to avoid the phenomenon of material penetration at two interfaces (Cheng et al. 1996).
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Table 2 Material constants of piezoelectric actuator or sensor

Property c11 c12 c13 c22 c23 c33 c44 c55 c66

Piezoelectric layer 23.9 10.4 5.0 24.7 5.2 13.5 6.5 6.6 7.6

Property e15 e24 e31 e32 e33 ε11 ε22 ε33 ρ

Piezoelectric layer 2.8 3.4 −0.4 -0.3 4.3 196 201 28 5.3

Table 1 Material constants of FGM plate

Property c11 c12 c13 c22 c23 c33 c44 c55 c66 ρ

P0 65.53 41.74 2.13 36.66 2.05 7.39 2.24 2.59 42.88 2.3

P1 7.39 2.32 1.87 173.66 2.32 7.39 3.45 1.38 3.45 1.6
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Besides, we suppose  and  for brevity. Two dimensionless parameters are further

introduced as  and .

First the variation of material constants in the z direction is investigated. Fig. 2 displays the

through-thickness distribution of  for several values of gradient index k, from which we can

see the effect of k on  is significant.

Next we study the static bending (i.e., , time-invariant) of the smart plate. Then a

mechanical load, , and electric potentials,  and =

, are applied.

Fig. 3 illustrates the effects of compliance coefficients on the through-thickness distribution of

some non-dimensional field variables, in which the piezoelectric layer is used for an actuator and

. The gradient index  and the data shown in parentheses in these figures

correspond to  and , respectively. Each FGM layer is divided into 20 fictitious layers, and the

relative errors are less than 0.4% as compared with the results of 18 fictitious layers. As we can

find from these figures that the lateral displacement  (and also ) is discontinuous across the

two bonding interfaces when interfacial imperfection is present. On the other hand, the discontinuity

of  at the FGM I-actuator interface is more significant than that at the FGM II-actuator interface,

which can be explained by the larger shear stress induced at the upper interface, as shown in

Fig. 3(c). Fig. 3(b) presents the deflection improves with the compliance coefficients, which

indicates the reduction of the global stiffness of the hybrid plate due to interfacial imperfection.

Because an electric potential is imposed on the top surface of the piezoelectric actuator layer, the

deflection of piezoelectric actuator layer varies significantly in the thickness direction.

Fig. 4 demonstrates the effects of gradient index on the through-thickness distribution of these

non-dimensional field variables. Unlike in Fig. 3, the piezoelectric layer is now used for a sensor.

The compliance coefficients are supposed to be , and each FGM layer is also

divided into 20 fictitious layers. From these figures, we find the gradient index k can also affect the

distributions of these field variables.
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I
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II
= Rx

II
Ry

II
=

RI Rx
I c44

0 /H= RII Rx
IIc44

0 /H=

c44/c44
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c44/c44
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ω 0=

q x y,( ) c44

0
sin πξ( )sin πη( )= φ2 0= φ1 x y,( )

H c44

0 /ε33 f11
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1( )

2= k 0.2=

R I R II

ux u y

ux

R I R II 0.2= =

Fig. 2 Variation of elastic constant  through thicknessc44/c44
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Fig. 3 Effect of bonding imperfection on through-thickness distribution
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Fig. 4 Effect of gradient index on through-thickness distribution
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Finally, the free vibration of the present smart plate is investigated. Table 3 lists the first 10 lowest

frequencies  with different compliance coefficients, where the two compliance

coefficients are also supposed to equal, i.e., . Besides, the gradient index k = 0.5, the

wave numbers  and each FGM layer is divided into 20 fictitious layers. From these

presented data, we can see the natural frequency decreases with the compliance coefficient, which

indicates once more the growth of the compliance coefficient will reduce the overall stiffness of the

hybrid plate. On the other hand, natural frequencies of actuator and those of sensor are different, the

former are little lower than the latter, which should be paid attention in practice.

6. Conclusions

In this paper, the state space method is employed to investigate the static and dynamic problems

of a simply supported smart FGM plate. A general linear spring-layer model is introduced to feature

the weak interfaces between the piezoelectric laminate and its top and bottom surface FGM layers.

With different values of the compliance coefficients in the present model, the interfaces can be from

completely perfect to completely debonded. As illustrated in this paper, the treatment of interfacial

conditions is very straightforward.

Through the numerical examples, we find the global stiffness of the integrated plate will reduce

with the growth of interfacial imperfection, as implied by the increase of deflection and the decrease

of natural frequency. On the other hand, there is a little difference of natural frequencies between

the cases of piezoelectric sensor and piezoelectric actuator. In a word, the presence of bonding

imperfection changes the behavior of the integrated structure, which should be paid much attention

to in practice.

Although the SSM is only applicable to plates with some particular configurations and material

properties such as those studied in this paper and in Cai et al. (2004), Chen et al. (2003a), Chen

and Lee (2004a,b), Chen et al. (2004a,b,c,d), the analytical solutions obtained can be used as

benchmarks for clarifying any simplified plate theories and numerical methods for the smart

laminates.

Ω ωH ρ0/c44

0
=( )

R I R II R= =

m n 1= =

Table 3 The effects of imperfect interfaces on the dimensionless natural frequency

First
order

Second
order

Third
order

Fourth
order

Fifth
order

Sixth
order

Seven
order

Eighth
order

Ninth
order

Tenth
order

R = 0
actuator 0.8109 2.1784 3.8258 5.2827 5.8405 7.0711 8.2476 10.0457 10.6126 11.2750

sensor 0.8110 2.1811 3.8317 5.3308 5.8414 7.3426 8.2481 10.0481 10.6204 11.2936

R = 0.1
actuator 0.7538 1.9407 3.3023 4.7335 5.0547 7.0124 7.7653 9.2989 9.6415 10.1222

sensor 0.7539 1.9425 3.3098 4.7716 5.0554 7.2914 7.7688 9.2992 9.6417 10.1231

R = 0.3
actuator 0.6898 1.7611 2.8131 3.9034 4.1432 6.9334 7.4193 8.7222 8.8313 9.0092

sensor 0.6898 1.7622 2.8210 3.9222 4.1579 7.1877 7.4519 8.7263 8.8316 9.0097

R = 0.5
actuator 0.6552 1.6830 2.5807 3.4023 3.6871 6.8857 7.3054 8.3755 8.6574 8.7201

sensor 0.6552 1.6837 2.5878 3.4134 3.7094 7.1063 7.3701 8.3836 8.6575 8.7215

Ω ωH ρ0/c44

0
=
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Notation

σij : stress components
ui : displacement components
φ : electric potential
Di : electric displacement components
x, y, z : Cartesian coordinates
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h1, h2, h3 : thickness of FGM I, piezoelectric layer and FGM II, respectively
H, a, b : total thickness, length and width of integrated plate
ξ, η, ζ : dimensionless coordinates, ,  and 
cij, eij, εij : elastic, piezoelectric and dielectric constants
ρ : mass density
m, n : half wave numbers
ω : circular frequency
Ω : dimensionless frequency, 

: compliance coefficients of bonding adhesive, 

Appendix

The operator matrix M and N are defined by

(A.1)
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where

(A.2)

The nondimensional coefficient matrix Mp is

(A.3)

where  and .
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