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Effective length factor for columns in braced frames 
considering axial forces on restraining members 
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Abstract. The effective length factor is a familiar concept for practicing engineers and has long been
an approach for column stability evaluations. Neglecting the effects of axial force in the restraining
members, in the case of sway prevented frames, is one of the simplifying assumptions which the
Alignment Charts, the conventional nomographs for K-Factor determination, are based on. A survey on
the problem reveals that the K-Factor of the columns may be significantly affected when the differences
in axial forces are taken into account. In this paper a new iterative approach, with high convergence rate,
based on the general principles of structural mechanics is developed and the patterns for detection of the
critical member are presented and discussed in details. Such facilities are not available in the previously
presented methods. A constructive methodology is outlined and the usefulness of the proposed algorithm
is illustrated by numerical examples.
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1. Introduction

The concept of Effective Length Factor, K-Factor, which has been widely used by practicing

Engineers, is an old subject which goes back to the Euler era, when column buckling was first

formulated. Theoretically the K-Factor may be carried out from a stability analysis of the structure

as a whole but it is preferred to use the Alignment Charts (hereafter AC) method (Hu et al. 1993).

The method is developed in 1956 by Julian and Lawrence and is adopted by various design codes

such as AISC (2005), ACI (2005), AASHTO (1998), etc.

This method is based on some basic simplifying assumptions which are hardly maintained by

actual structural systems and results in nonrealistic design in some cases. The major drawback of

the AC is that the stability index  is assumed to be the same for all columns in a

typical story and the other is neglecting the axial forces in the beams (restraining members).

Bridge and Fraser (1987) considered the effects of axial forces in restraining members for the
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braced systems and obtained K-Factor values greater than unity, contradicting the value anticipated

by AC. They explained this phenomena as the effects of negative restraining and proposed an

iterative method, so called “Improved G-Factor”, to eliminate this discrepancy, which throughout a

large number of curves and tabulated values and simplified functions are to be used simultaneously. 

As will be shown later, the Improved G-Factor method is very sensitive to the initial guess. Also

lack of an appropriate criterion on selection of the critical member, increases the error and

difficulties of the before mentioned method.

Hereafter, the goal is to present a method which does not include such intricacies.

2. Theory

The effective length KL of a compression member with restrained ends is the distance between

two adjacent inflection points of the member in it’s buckled configuration (Duan and Chen 1997).

To examine the truth of this conclusion, consider the braced 3-span prismatic column shown in

Fig. 1, which was originally investigated by Bridge and Fraser (1987).

The stability analysis of the structure yields the following numerical values for K-Factors (Bridge

and Fraser 1987)

KAB = KCD = 1.4

KBC = 0.7

It is clear from the figure that the points A and D are external inflection points and B' and C' are

the internal ones which will lie on B and C, respectively, if the stability indices of all members

become the same. Accepting the effective length as the length between two adjacent inflection

points, the following relations should hold:

So, it seems that the sum of the effective lengths of all members should be equal to the total

lengths of the continuous column, but:

KAB LAB× LAB ′=

KBC LBC× LB ′C ′=

KCD LCD× LC ′D=

KABLAB KBCLBC KCDLCD+ +  =

2 1.4 L/4( )× 0.7 L/2( )+  =

1.05L L≠

Fig. 1 Continuous 3-span column (Bridge and Fraser 1987)
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In the first view it seems that the computational errors have caused the above disparity, but by

computing the K-Factors up to 5 decimal digits, the obtained total length, 1.05L, only decreases to

1.0487L and even for more accuracy this will never converge to L! 

Originally, the values of the K-Factors which satisfy the above relation would be obtained without

any major problem and requirement to stability analysis. It is just necessary to let KAB = KCD = 2KBC

= 2K, which is clear from buckling behavior of a continuous system. Afterwards, by applying the

concept mentioned before about the effective length, we get:

Which results in:

How can this difference be explained?

This implies that the inflection points should be selected from the pure buckled shape of the

single member, not those appearing on the whole structure buckled shape. But what is important

here, is the possibility of K-Factor determination for a braced frame without any requirement of

stability analysis (at least for such a non-practical structure, the K-Factors have been determined

with great simplicity and an error of less than 5 percent). So, this concept can set a new approach in

K-Factor evaluation for columns in braced frames.

It becomes clear that the effective length of a column slightly differs from the length between two

adjacent inflection points when the latter is selected on the buckled shape of the structure. So, in the

process of forming the total length of the system, the effective length KL of each column enters

some error into the total length expression. On the other hand, it rarely occurs that we are

encountered with a problem which consists of just three columns with hinged end supports.

Accordingly, it would be better to select a piece of structure containing the main column, which is

hereafter called “critical member” and its adjacent beams and columns instead of handling the

whole structure.

3. Structural modeling

To construct the structural model there are two basic steps. First, finding an equivalent hinged far-

end member for a member with fixed or rigid connection at far end and next, condensing a series of

concurrent hinged far-end members to a single one.

Since the adjacent members affect the main column through their stiffness, in above substitutions,

it is reasonable to equalize the stiffness in each case.

Considering hinged, rigidly connected and fixed far end conditions in sequence for a member of

length L, axial force P, moment of inertia I, and modulus of elasticity E, and using the second order

analysis by following the slope-deflection method (Chen and Lui 1991), the rotational stiffness can

be easily derived as tabulated in Table 1, where C and S are stability functions defined in almost all

stability books, (Chen and Lui 1991) and  is known as stability index and may be

expressed in terms of the K-Factor of the member, K, using u = π /K .

2K L/4( ) K L/2( ) 2K L/4( )+ + L=

K
2

3
--- 0.67≈ 0.70≠=

u PL2/EI=
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As shown in Table 1, the flexural bending of the member with rigid far end condition is assumed

in symmetric single curvature, which is a simplifying assumption.

To equalize the rotational stiffness of a rigidly connected far end member with that of a hinged far

end member, some equivalent maker constants γR and ηR are to be determined such that:

(1)

From a numerical curve-fitting process, the best values of the before mentioned constants will be

obtained as γR = 0.974 and ηR = 0.600.

In the case of a member with fixed far end, we are concerned with the best values for γF and ηF

throughout an equation of the form:

(2)

Using the same curve fitting process as before, yields γF = 0.700 and ηR = 1.331. These equivalent

maker coefficients are arranged in Table 2. 

Accordingly, each member with non-hinged far end condition, of length L, elasticity modulus E,

moment of inertia I, and axial force P, could be replaced by a hinged far end member with equivalent

length , equivalent moment of inertia  and the same axial force and

elasticity modulus, which was our goal in the first step. The equivalent length and moment of inertia

Leq and Ieq, are obtained through simultaneous solution of the equations  and

.

To derive a K-Factor formula for the case of a continuous column, as stated before, the critical

member and its adjacent members shall be selected to construct a model consisting of the same

critical member and only two substituted hinged far end restraining members.

RH ηREI/L γRu,( ) RR EI/L u,( )=

RH ηFEI/L γFu,( ) RF EI/L u,( )=

Leq γ
2
ηL= Ieq γ 2η2I=

ηEI/L EIeq/Leq=

γ PL2/EI PLeq
2 /EIeq=

Table 1 Rotational stiffness of members with several far end condition

Far end con. Rotational stiffness function Buckled shape

Hinged

Rigid

Fixed

RH EI/L u,( )
EI

L
------

C
2

u( ) S
2

u( )–

C u( )
---------------------------------=

 

RR EI/L u,( )
EI

L
------ C u( ) S u( )–( )=

 

RF EI/L u,( )
EI

L
------C u( )=

 

Table 2 Equivalent maker coefficients

Coefficient\Far End Hinged Rigid Fixed

γ 1 0.974 0.700

η 1 0.600 1.331
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Shown in Fig. 2(a) is the selected part of the structure and the presented αi and βi parameters are

the relative stability index and relative flexural stiffness of each member, respectively, which are

defined using the relative length, axial force, moment of inertia, and the elasticity modulus as

follows:

(3a)

(3b)

In the above formulas the index i adopts t and b for the top and bottom joints, respectively. Also

P, L, I, and E are the conventional axial force, length, moment of inertia, and elasticity modulus of

the problem if any. 

In the Fig. 2(b), restraining members with non-hinged far end are replaced by some hinged far

end members A'B and CD', which, with the same axial force Pc as the critical member and modified

length  and moments of inertia , produce the same rotational

stiffness as that of the original members AB and CD. Consequently, the α and β parameters of the

primary members may be modified as  and . 

Letting Kc for the effective length factor of the critical member, and defining normalized

properties of the restraining members in the model as

(4a)

(4b)

αi

PiLi

2
/EiIi

PL
2
/EI

-------------------------=

βi

EiIi/Li

EI/L
---------------=

Leq
i

γi
2
ηiLiPi/Pc= Ieq

i

γi
2
ηi

2
IiPi/Pc=

αeq( )i γiαi= βeq( )i ηiβi=

αi
′ αeq

αc

-------=

βi
′ βeq

βc

-------=

Fig.  2 (a) Isolated part of the structure, (b) Structural model
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the K-Factor of the other members in the model, , may be expressed in terms of Kc as follows:

(5)

It must be kept in mind that the K-Factor of the equivalent hinged far end members in the model

is not necessarily the same as those of the related members in the original structure. 

According to the accepted concept, an approximation to the effective length factor of the critical

member may be achieved by solving the below equation for Kc:

(6)

which lead us to:

(7)

Using the defined parameters, it can be easily shown that:

(8)

which simplifies the K-Factor formula into the form: 

 (9)

Ki′

Ki′
Kc

αi′
-----=

KcLc

Kc

αi′
-----Leq

i

i t b,=

∑+ Lc Leq
i

i t b,=

∑+=

Kc

1 Leq
i

i t b,=

∑ /Lc+

1
Leq

i

/Lc

αi′
----------------

i t b,=

∑+

------------------------------------=

Leq
i

Lc

-------- αi

  2′ βi
′=

Kc

1 αi

  2′ βi
′

i t b,=

∑+

1 αi

  ′βi
′

i t b,=

∑+

-----------------------------------=

Fig.  3 (a) Isolated part of structure, (b) Equivalent restraining members (model)
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For the other members in the main structure, the K-Factor may be determined through the relation:

(10)

which is based on the frame stability principles.

It should be noted that in the presented K-Factor formula, the critical member is not to be an end

one and in such cases the approach will be presented later.

It is time to consider a critical column restrained by more than one member, with several end

conditions, Fig. 3(a). 

Using γ and η equivalent maker coefficients determined earlier, all restraining members, for

example in the top joint, could be replaced by equivalent hinged far end ones, Fig. 3(b). The

mathematical expression for rotational stiffness of a hinged far-end restraining member with flexural

stiffness EI/L, and stability index u, as used in the previous step, is of the form

(11)

which, by substituting the trigonometric expressions for C(u) and S(u), could be simplified in a

more conventional form as: 

(12)

The behavior of such a mathematical function may be approximated by a more simple rational

form:

(13)

where a and b are curve fitting constants and u is replaced in terms of effective length factor K,

using the relation u = π/K.

The best values of a and b could be easily determined through a curve fitting process but their

magnitudes would not be required.

The condensation of several hinged far end members into a single one may be achieved by

equating the sum of their stiffness to the stiffness of a single equivalent member. The properties of

such a substituted member, i.e., relative stability index  and flexural stiffness , are those

satisfying the relation

(14)

where nt is the number of restraining members at the top joint t of the model and the K-Factor for

all of them being replaced in terms of the effective length factor Kc of the critical member.

Unifying the coefficients a and b in both sides of Eq. (14), the required properties for the

condensed member will be obtained as follows:

(15a)

Ki

αc

αi

-----Kc=

RH EI/L u,( ) EI

L
------

C
2

u( ) S
2

u( )–

C u( )
---------------------------------=

RH EI/L u,( ) EI

L
------

u
2
tanu

tanu u–

-------------------=

RH EI/L u,( ) EI

L
------ a

b

2K
2

1–

------------------+⎝ ⎠
⎛ ⎞

=

α t β t

βj′( )t a
b

2 Kc/ αj′( )t( )2
1–

----------------------------------------+⎝ ⎠
⎛ ⎞

j 1=

n
t

∑ β t a
b

2 Kc/αt( )2
1–

--------------------------------+⎝ ⎠
⎛ ⎞

=

β t βj′( )t
j 1=

n
t

∑=
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(15b)

which are applicable to the bottom joint by replacing t with b.

To estimate the effective length of the critical member, a more general form of the K-Factor

formula may be presented as:

(16)

It is clear that when no condensation is required,  and  may be replaced by  and ,

respectively. Also, regarding the obtained formula for the , it is concluded that in such cases the

solution will be carried out through an iterative process, considering an initial guess for the effective

length factor of the critical member.

When the critical member is an end one, the rotational stiffness provided by all members in the

junction node may be estimated through the relation (14), wherein all members become condensed

into a single hinged far end member with the properties  and . Referring to (12), the rotational

stiffness of the substituted member could be written as:

(17)

According to the stability concepts, buckling occurs as soon as the above stiffness vanishes, which

happens for  or, in other words, buckling takes place when  and Kc become the same

in magnitude. This indicates that in such cases the effective length factor may be determined

through the iteration:

(18)

where j counts the critical member as well as the restraining ones.

4. Selection of critical member

Selection of the critical member, which has been left unsaid, is the key to the solution of such

problems. In the Improved G-Factor method, presented by Bridge and Fraser (1987), the lack of

such a criterion increases the difficulties of the method. They recommend to carry out the

α t

αj′( )t
2

βj′( )t
2Kc

2
αj′( )t

2
–

-----------------------------
j 1=

n
t

∑

βj′( )t
2Kc

2
αj′( )t

2
–

-----------------------------
j 1=

n
t

∑

-------------------------------------=

Kc

1 α i

2
β i

i t b,=

∑+

1 αiβ i

i t b,=

∑+

--------------------------------=

αi β i αi′ βi′
αt

α β

RH β EI/L πα /Kc,( ) β
EI

L
------

πα /Kc( )2
tan πα /Kc( )

tan πα /Kc( ) πα /Kc( )–

-------------------------------------------------------=

πα /Kc π= α

Kc

αj′
2βj′

2Kc

2
αj′

2
–

------------------------
j 1=

n

∑

βj′

2Kc

2
αj′

2
–

------------------------
j 1=

n

∑

---------------------------------=
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calculations several times by taking each member as critical in sequence and then accept the largest

set of the resulted K-Factors as the most accurate one.

Herein, according to the basic concepts of the proposed method, the selection of the critical

member shall be performed considering two criteria demonstrated below:

1- The critical member must be chosen such that the isolated part of the frame shall behave like

the model as closely as possible. This could be controlled by considering the far end condition of

the restraining members in the isolated part of the frame parallel to the contribution of the members

in the model.

It is clear that the conditions for such a selection may not be available in all structures, but

selecting the critical member through this criterion leads us to more accurate solutions.

2- Selection of the member with the largest stability index as the critical one will decrease the

amount of the errors. This can be proved through an error analysis and will be declared with

examples. 

5. Proposed algorithm

1- Calculate the relative stability indexes using the formula (3a).

2- Select the critical member following these two patterns:

- Member which enters no error due to the modification of far end condition of its adjacent

members.

- Member with the largest value of stability index when the previous criterion doesn’t work.

3- For the members which contribute to the model (adjacent to the critical member), calculate the

relative flexural stiffness using the formula (3b). 

a- If the critical member is not an end one:

 a-1- Determine the equivalent maker coefficients γi and ηi for the restraining members

considering their far end condition from Table 2, and then evaluate the parameters 

and  using the formulas (4a) and (4b).

 a-2- If there exist just two restraining members, a direct use of the K-Factor formula (16)

yields the effective length of the critical member. Else, assume an initial value for the

effective length factor of the critical member and calculate  and  in the joints with

more than one restraining members and then use Eq. (16) to get a better approximation

for K-Factor and repeat it until a desirable convergence is achieved.

b- If the critical member is an end one:

 b-1- Determine the coefficients γi and ηi for the critical member as well as the restraining ones,

considering their far end condition and using Table 2. Then, evaluate the parameters 

and  according to the formulas (4a) and (4b).

 b-2- Assume an initial value for the K-Factor of the critical member and explore for its more

accurate value, using iteration (18) and considering a desirable convergence.

4- Determine the K-Factor for the other members in the structure, through the formula (10).

6. Numerical examples

Example 1- The continuous braced column is a common occurrence in buildings where the beams

αi′
βi′

α i β i

αi′
βi′
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are simply connected to the columns and the structure is erected in a manner known as simple

framing. What is shown in Fig. 4 is a five span continuous column studied by Bridge and Fraser

(1987). Examination of the proposed method and comparing it with what has been offered by them,

is considered herein.

Solution- Using the problem data, the relative stability indexes αi for each segment are evaluated

and displayed on the figure.

As it is impossible to select the critical member using the first criteria, the member CD, with the

largest stability index is selected as the critical one following the second pattern. Through this

selection it’ll become obvious that just two restraining members BC and DE contribute to the

model. So, using the properties and considering the far end condition of the before mentioned

members, relative flexural stiffness, equivalent maker coefficients, normalized relative stability

index, and normalized flexural stiffness are determined for them. The results are tabulated in Table 3.

Fig. 4 Tied continuous column (Bridge and Fraser 1987)

Table 3 The required parameters for example 1

Member αi βi γi ηi αi' βi'

BC 3.16 1.00 0.974 0.600 0.736 1.500

DE 3.16 0.40 0.974 0.600 0.736 0.600
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Because there are just two restraining members, a direct use of the K-Factor formula (9) yields

the effective length factor of the member CD, without any requirement for iteration as follows:

The results are tabulated besides the K-Factors obtained from AC, Improved G-Factor Method,

and those obtained through a stability analysis in Table 4.

A glance at the results, indicates the excellent agreement between the K-Factors resulting from the

proposed method and the accurate ones. Furthermore, the results of the proposed method, which

could be called more accurate than those of the Improved G-Factor method, have been obtained

without any iteration and requirements to reduplication of the process for other members.

Example 2- Shown in Fig. 5 is also a continuous column, but with two segments. This column

has been selected from Duan and Chen (1997) where it has been solved by the method of Improved

G-Factors which resulted in KAB = 0.93. Here, we try to solve it using the proposed method.

Solution- The relative stability index αi for each segment is evaluated and displayed in the figure.

As shown in Fig. 5, the system contains only two members, so either can be selected as the critical

member and throughout all members will contribute to the model; no error will arise due to

KCD
1 0.736

2
+ 1.500× 0.736

2
+ 0.600×

1 0.736+ 1.500× 0.736+ 0.600×
-------------------------------------------------------------------------------------- 0.84= =

Table 4 Comparison between the resulting K-Factors in example 1

Column\Method AC
Improved  
G-Factors

Stability 
analysis

Proposed

AB 1.00 1.02 0.97 0.97

BC 1.00 1.17 1.11 1.11

CD 1.00 0.88 0.84 0.84

DE 1.00 1.17 1.11 1.11

EF 1.00 1.73 1.72 1.72

Fig. 5 Braced columns (Duan and Chen 1997)
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predicting the behavior of the far end of the restraining member, and anyhow, the critical member

will be an end one. So, the member AB is selected as the critical. Since the critical member is an

end one, the relative flexural stiffness, equivalent maker coefficients, normalized relative stability

index, and normalized relative flexural stiffness are to be determined for both critical and restraining

members, AB and BC respectively. The results are summarized in Table 5.

 Using the formula 18, a fixed point iteration of the form 

may be created. Assuming , the value of K-Factor will be improved as follows:

Using the obtained K-Factor, the effective length factor of the other member may be determined

as .

From a stability analysis the correct value of the effective length factor for member AB is

determined to be 0.922, which indicates an error less than 0.5 percent on the conservative side.

KAB

k 1+ 3.00 KAB

k( )
2

1.10–

3.67 KAB

k( )
2

1.43–

-------------------------------------------=

KAB

0
1.00=

KAB

1
0.921= KAB

2⇒ 0.926 KAB

3⇒ 0.926= =

KBC 1.20=

Table 5 The required parameters for example 2 

Member αi βi γi ηi αi' βi'

AB 1.29 1.20 1 1 1 1

BC 1.00 1.00 1 1 0.775 0.833

Fig. 6 Wharf structure
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Example 3- The final example is a sway-prevented wharf structure shown in Fig. 6. This problem

has been studied by Bridge and Fraser (1987), and they enumerate it as a structure wherein that it is

not obvious which member is the most critical. Now, let us verify if the proposed method is capable

of handling this problem without inconvenience.

Solution- The relative stability indexes, are calculated and displayed in figure. As shown, member

AB has the largest stability index among the others, but if member BC is selected as the critical one,

all members will contribute to our calculations and there wouldn’t be any error due to predicting the

buckled shape of any restraining member. However, the above-mentioned error is not significant.

To demonstrate the preference of the critical member selecting criteria, we solve this problem in

two cases.

a- AB is the critical member: 

In this case the critical member is an end one and all required parameters are determined and

arranged in Table 6.

Substituting the values of  and  into (18) and starting with , the iteration will

converges after three tries, as follows:

For the design purposes, convergence up to two decimal digits is sufficient, which is almost

achieved after two iterations, but more digits are considered to indicate the rate and type of

convergence for the proposed method. Generally, unlike the Improved G-Factor method, high

convergence rate and least sensitivity to the initial guess are among the features of the proposed

method.

For example, by using a far-off initial guess , the iteration converges after just as many

tries as before:

while the Improved G-Factor method for the same critical member and  results in:

 

which shows the lower convergence rate in the Improved G-Factor method as well as its high

sensitivity to the initial guess.

b- BC is the critical member

In this case, the critical member is restrained in its both ends and the parameters are to be

determined only for the restraining members. The results are listed in Table 7.

αi′ βi′ KAB

0
1=

KAB

1
0.640= KAB

2⇒ 0.646 KAB

3⇒ 0.646= =

KAB

0
10=

KAB

1
0.639= KAB

2⇒ 0.646 KAB

3⇒ 0.646= =

KAB

0
1=

KAB

1
0.57= KAB

2⇒ 0.95 KAB

3⇒ 0.58  ⇒= =

KAB

4
0.83= KAB

5⇒ 0.59 … KAB

?
0.65= =

Table 6 The required parameters for example 3 (AB is selected as critical)

Member αi βi γi ηi αi' βi'

AB 2.08 0.83 0.700 1.331 0.700 1.331

BC 1.22 1.00 0.974 0.600 0.574 0.720

BE 1.84 1.33 0.700 1.331 0.619 2.130
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Since there is just one restraining member at the top joint, there would not be any requirement for

condensation. So,  and . But at the bottom joint, where there exist more

than one restraining member, appropriate values of  and  should be determined using the

relations (15a) and (15b) which result in:

and 

It is clear that  could not be evaluated without any KBC 

in hand. Assuming  results in

= 1.120 and then a better estimation of KBC could be obtained using the K-Factor formula (16),

which would be . For more accurate effective length factor, above process should be

repeated. More iteration steps could be found in Table 8.

To give another reason for the high convergence rate of the proposed method, let us start with

 which throughout the iteration converges after just one try more than before:

α t 1.225= β t 1.333=

αb β b

β b 1.775 1.109+ 2.884= =

αb

7.044KBC

2
4.487–

5.768KBC

2
3.728–

------------------------------------------=

αb KBC

0
1=

αb

KBC

1
1.129=

KBC

0
10=

KBC

1
1.121= KBC

2⇒ 1.125 KBC

3⇒ 1.125= =

Table 7 The required parameters for example 3 (BC is selected as critical) 

Joint Mem. αi βi γi ηi αi' βi'

Top CD 1.50 1.33 1 1 1.225 1.333

Bot
BE 1.84 1.33 0.70 1.331 1.050 1.775

AB 2.08 0.83 0.70 1.331 1.188 1.109

Table 9 Comparison between the resulting K-Factors in example 3

Mem. AC Improved G-Factor
Proposed method

Stability analysis
AB as critical BC as critical

AB 0.61 0.66 0.65 0.66 0.67

BC 0.71 1.12 1.10 1.13 1.13

BE 0.59 0.75 0.73 0.75 0.76

CD 0.88 0.92 0.90 0.92 0.93

Table 8 Iteration process in example 3 (BC is selected as critical)

Iteration k

0 1 1.120 1.129

1 1.129 1.113 1.125

2 1.125 1.113 1.125

KBC

k
αb

k
KBC

k 1+
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The K-Factor of the other members may be determined using the obtained values for the critical

ones in the cases “a” and “b”. The results are tabulated in Table 9 to be compared with those

obtained from Alignment Charts (AC), Improved G-Factor method, and exact stability analysis.

The results obtained in this example also show the efficiency of the proposed method. It is seen

that selecting BC as the critical member, which is a selection based on the first criterion, results in a

more accurate solution, and this reveals the advantage of the first criterion for the selection of the

critical member. However, the resulting K-Factors by following the second pattern will even contain

a small and satisfactory amount of error.

7. Conclusions

The value of K-Factor which gives the magnitude of the critical buckling load of columns

obtained from Alignment Charts, may be significantly improved by taking into account the axial

force of restraining members and the variation of stability index of adjacent columns.

The main published research concerning the sources of these inaccuracies, is that followed by a

method called Improved G-Factor, an iterative method based on linearized stability functions which

necessitate the use of a table containing several coefficients and functions and a family of curves. In

addition to the difficulties of using a variety of coefficients and functions, other problems such as

low rate of convergence, high sensitivity to the initial guess and lack of a criterion for selection of

the critical member, increase the difficulties involved in this method.

Herein, by phrasing the effective length of a compressive member as the length between two

adjacent inflection points, an iterative procedure has been presented. Using the curve-fitting

principles, the explicit form of the stability functions are replaced by more simple rational forms

and also throughout the same process, members with non-hinged far end condition are converted to

equivalent hinged far end ones, considering the rotational stiffness in each case.

Numerical examples have been presented to illustrate the proposed method and show its high

convergence rate, effectiveness and straightforwardness which are all problems faced when using

the Improved G-Factor method.
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Notation

The following symbols are used in this paper:
a, b : Curve-fitting constants;
C : Stiffness stability function;
E : Young’s modulus of material;
e : Lengths ratio;
Er : Relative error;
I : Second moment of area;
K : Effective length factor;
L : length of members;
P : axial load;
S : Stability function;
u : Stability index;
x : length variable;
y(x) : Buckled shape;
α : Relative stability index;
β : Relative flexural stiffness;
α ' : Normalized relative stability index w.r.t. the relative stability index of the critical member;
β ' : Normalized relative flexural stiffness w.r.t. the relative flexural stiffness of the critical member;

: Condensed relative stability index; 
: Condensed relative flexural stiffness;

Δ : total difference between the location of the single member’s inflection point and that of the system in
the model;

δ : difference between the location of the single member’s inflection point and that of the system;
γ : stability index equivalent maker coefficient;
η : flexural stiffness equivalent maker coefficient.

α
β




