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Abstract. Buckling capacity of compression members may change due to inadvertent changes in the
member section dimensions or material properties. This may be the result of repair, modification of
section properties or degradation of the material properties. In some occasions, enhancement of buckling
capacity of compression members may be achieved through splicing of plates or utilization of composite
materials. It is very important for a designer to predict the buckling resistance of the compression member
and the important parameters that affect its buckling strength once changes in section and/or material
properties took place. This paper presents an analytical approach for determining the buckling capacity of
a compression member whose geometric and/or material properties has been altered resulting in a multi-
step non-uniform section. This analytical solution accommodates the changes and modifications to the
material and/or section properties of the compression member due to the factors mentioned. The analytical
solution provides adequate information and a methodology that is useful during the design stage as well
as the repair stage of compression members. Three case studies are presented to show that the proposed
analytical solution is an efficient method for predicting the buckling strength of compression members that
their section and/or material properties have been altered due to splicing, coping, notching, ducting and
corrosion.
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1. Introduction

The optimal buckling load design of a compression member may be defined as finding the

maximum value of a critical load for a given structural weight, or alternatively, minimizing the

structural weight that satisfies a prescribed buckling load. In general, maximizing the buckling load

capacity is an essential parameter for enhancing the structural stability. In a typical steel structural

system several members may be subjected to axial forces and buckling is likely to be one of the

failure modes. Besides columns, there are several other structural members or assemblies that will

be subjected to compressive axial forces that may result in buckling failure. Such compression

members include bracing elements, main chord of trusses, and compression flange of rolled and

built-up beam-columns, air conditioning duct system, and web stiffeners of plate girders. The high
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strength to weight ratio of steel as a building material usually results in slender columns that are

very susceptible to buckling. The uniformity of the cross section of a steel column is usually

interrupted by splices, holes, copes, notches, connection seats, connection plates and haunches. Such

change in column cross section may be a result of mechanical, structural or architectural

requirements. In a harsh environment steel members need to be protected from corrosion. The non-

uniform protection may result in an uneven distribution of corrosion and therefore different material

and section properties will exist within a single column. This indicates that columns with non-

uniform cross section are very common in structural systems and therefore their behavior need to be

investigated to understand their performance. Buckling is a major design concern for steel as well as

other structures. Although buckling of columns could be initiated by local, torsional or lateral

buckling of the column components, however this paper is mainly concerned with flexural buckling

of a column as a whole and therefore the interaction of buckling modes of various column

components are not addressed.

The issue of stability of non-uniform columns under various loading has been widely discussed in

the literature (Timoshenko and Gere 1961, Ku 1979, Eisenberger and Reich 1989, Arbabi and Li

1991, Lake and Mikulas 1991, Siginer 1992, Dube et al. 1996, Elishakoff and Rollot 1999, Gadalla

and Abdalla 2004, Ermopoulos 1999, Barbero et al. 2000, Elishakoff 2001, Li 2001, 2002, 2003,

Raftoyiannis and Ermopoulos 2005). Arbabi and Li (1991) presented a semi-analytical procedure for

buckling of elastic columns with continuous or discontinuous step-varying profiles. They showed

that formulas for buckling loads for members with variable profiles and different boundary

conditions can be obtained in terms of the section and profile parameters. Analytical solution of

buckling of a simply supported column with a piecewise constant cross section was investigated by

Lake and Mikulas (1991). Parametric structural efficiency analyses were carried to determine the

optimum ratio (0.7) between lengths of stiffened center section and the entire column in the

buckling resistance of the column. It is concluded such column will result in material saving up to

12% relative to uniform column having the same buckling load. Siginer (1992) presented an

analytical approach for buckling of column with continuous monotonic change in its flexural

rigidity using Airy function. He concluded that the buckling load for any mode is less than the

critical load corresponding to a column of the same length and of constant flexural rigidity whose

value is the minimum along the column of variable flexural rigidity. Dube et al. (1996) investigated

bucking of beam-columns stiffened by rings and subjected to centroidal axial conservative and

follower loads. They concluded that the presence of rings does not always increase the critical

bucking load of the column. Elishakoff and Rollot (1999) and Elishakoff (2001) presented new

closed-form solutions for buckling of columns with variable stiffness and different boundary

conditions. They demonstrated that the buckling load is dependent upon a single stiffness

coefficient. Ermopoulos (1999) formulated the non-linear equilibrium equations for non-uniform

columns under stepped axial loads and solved them using iterative techniques. He obtained the

equivalent buckling length co-efficient and the corresponding critical loads. Barbero et al. (2000)

studied and verified experimentally the interaction of buckling modes between local flange and

global (Euler) flexural buckling for intermediate length pultruded composite columns. Li (2001,

2002, 2003) analytically solved the buckling of a multi-step non-uniform column with arbitrary

distribution of flexural stiffness and also with axial load distribution. The selected functions he used

seem to describe the distribution of flexural stiffness and axial forces in a typical high rise structure.

Raftoyiannis and Ermopoulos (2005) studied the elastic stability of eccentrically loaded steel

columns with tapered and stepped cross-section and with initial imperfection. Their study was based
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on the exact solution of the governing equation for buckling of columns with variable cross-section.

A plasticity criterion was used to determine the material failure in the buckled configuration. The

presented results can be used for the design of steel columns with tapered or stepped cross-sections. 

It is not uncommon to structurally modify an installed column in order to accommodate

expediently and/or correctively added piping or revised wiring. Such modifications may take many

forms; among the most common are: welding brackets onto the side of a column, cutting a hole in

the web of a column, or notching the flange of the column. These modifications in addition to

splicing of column and stiffness degradation resulting from corrosion are very important in

engineering practice.

Cope, blocks and cuts are usually needed sometimes to have uniform levels and facilitate

connections. Coping and cutting may cause notches in members and therefore result in variation in

stiffness. Connection seats mounted to columns and connection brackets that are welded to columns

will increase the column stiffness and result in stiffness variation.

Clearly, any such modifications will affect the characteristics of the column, the most important

characteristics affected is its resistance to buckling. To this end, one may wish to know how these

inadvertent changes will influence the buckling capacity of the member, and, equally significantly,

whether these changes are acceptable to, or anticipated by, the designer. This paper addresses these

issues and presents an analytical solution for predicting the buckling strength of compression

members that their section and/or material properties have been altered due to splicing, coping,

notching, ducting or corrosion.

2. General formulation of buckling of multi-segment compression members

To determine the exact critical buckling load of a real column made of any number of segments

of different cross sectional areas, length and material properties, as shown in Fig. 1.

 (1)

where x denotes the axial coordinate, y transverse deflection, P applied axial force, E young

modulus and I moment of inertia. 

The boundary conditions for the above equations are: 

  (2)

EkIk yk″ Pyk+ 0= 0 x l k 1 2 … N, , ,=,≤ ≤

y1 0( ) 0 yN l( ), 0= =

Fig. 1 A general layout of a multi-segments compression member
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 (3)

 (4)

The general solution of N + 1 equation is given by:

 (5)

where:

Eq. (5) can be expanded as follows:

…..

…..

…..

…..

Let:

3. Special case

Consider a pivot ended, slender column, consisting of two uniform sections of different material

properties and dimensions (E1, I1, L1, E2, I2, L2) and loaded axially as shown in Fig. 2.

The axial load P which will cause the column to buckle elastically, according to Euler:

 (6)

 (7)
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For less extreme cases, i.e., 0 < n < 1, the bucketing load P of the column may be analyzed by

setting up the differential equations for each of the two sections of the column:

  (8)

 (9)

 

With the dimensionless constants, and for k = 2, Eqs. (5) become: 

 (10)

 (11)

 (12)

These equations have a non-trivial solution if their determinant vanishes, i.e., 

  (13)

This equation yields:

  (14)

E1I1y1″ Py1+ 0,  for  0 x nL≤ ≤=

E2I2y2″ Py2+ 0,  for  nl x L≤ ≤=

0 C3cosrγ C4sinrγ+ + 0=

C2sinnγ C3rcosnrγ– C4sinnrγ– 0=

C2cosnγ C3rsinnrγ C4rcosnrγ–+ 0=

0  cosrγ  sinrγ

sinnγ  cosnγ  – sinnrγ–

cosnγ  rsinnrγ  rcosnγ–

0=

0  1  tanrγ

tannγ  1  – tannrγ–

1  rtannrγ  r–

0=

Fig. 2 Two-steps compression member with piecewise constant cross section (0 ≤ n ≤ 1)
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Expanding and simplifying of Eq. (14), one obtains a single relationship among the column

parameters a1, a2, n

 (15)

Where, for convenience 

(16)

In a sense, Eq. (15) represents a surface γ = f (r, n) in a (r, n, γ) space, rγ being the dimensionless

buckling load. It is quite clear that: 

 (17)

in review of Eqs. (1) and (2).

Eqs. (15) degenerate on putting 

 (18)

 (19)

  (20)

Table 1 shows values of rγ for several arrays of, r and n, the combination of which is subjected to

rule of practicality or common source. For instance, r = 0 should accompany n = 0; least a portion

of the column be devoid of strength, i.e., as thin as a thread; when r = 1 and n = 0 (or n = 1) the

uniform column will have a buckling load P
cr1 = P

cr2. 

Figs. 2(a) and 2(b) show the dimensionless buckling load for different values of n and r. In Fig. 3

rtannγ tan 1 n–( )rγ+ 0=

r
a2

a1

-----
E1E1

E2I2
-----------, γ

2
a1L( )2 PL

2

E1I1
---------- , rγ( )2 a2L( )2 PL

2

E2I2
----------= == = = =

f 1 0,( ) f 1 1,( ) π= =

r n,( ) 1 1,( ) or 1 0,( )=

tannγ tan 1 n–( )γ+ 0=
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2
nγ 0 for n 1= =

tanγ 0  γ iπ,  i 1 2 3 …, , ,= = =

Table 1 rγ for several r and n combinations

n/r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159

0.1 1.44982 2.82266 3.06011 3.07981 3.10845 3.12264 3.13073 3.13578 3.13919 3.14159

0.2 0.84680 1.69721 2.35572 2.70012 2.87530 2.99148 3.05697 3.0971 3.12341 3.14159

0.3 0.59755 1.17037 1.74956 2.19890 2.58117 2.77877 2.89458 3.00835 3.08642 3.14159

0.4 0.47485 0.93876 1.35642 1.78548 2.14465 2.42096 2.67053 2.87956 3.03080 3.14159

0.5 0.40484 0.80416 1.18935 1.56298 1.91063 2.22856 2.51257 2.74875 2.96800 3.14159

0.6 0.36199 0.72126 1.08445 1.42037 1.75419 2.07326 2.37421 2.65432 2.91060 3.14159

0.7 0.33583 0.67045 1.00263 1.33110 1.65450 1.97138 2.28027 2.57930 2.86708 3.14159

0.8 0.32124 0.64206 0.96497 1.28091 1.59805 1.90128 2.22545 2.53477 2.84034 3.14159

0.9 0.32124 0.63021 0.94517 1.25996 1.58411 1.88878 2.20268 2.51616 2.82916 3.14159

1.0 0.31416 0.62832 0.94248 1.25664 1.57080 1.88496 2.19911 2.51327 2.82743 3.14159



Modeling and prediction of buckling behavior of compression members 637

shows a buckling surface over a region . The dimensionless buckling load is

denoted by . It is seen that as , rγ gradually decreases from π to near

zero. In general, rγ seems to increase with increasing r, though not linearly. As expected, when n = 1,

rγ = rπ, or γ = π. Needless to say, the buckling capacity of the column (0, 1) is of interest to none

other than a rope-trickier.

0 r 1≤ ≤ 0 n 1≤ ≤,( )

rγ
P

E2I2
----------L= r 0, and n 1→→

Fig. 3(a) Dimensionless buckling load over a region
(0 < r ≤ 1, 0 ≤ n ≤ 1) for different values
of stiffness ratio

Fig. 3(b) Dimensionless buckling load over a region
(0 < r ≤ 1, 0 ≤ n ≤ 1) for different values
of length ratio

Fig. 4 The buckling surface over a region (0 < r ≤ 1, 0 ≤ n ≤ 1)
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4. Degenerated stability and analysis

It has been shown in Table 1 and Fig. 4 that a column with a reduced section (E1I1) has a

buckling strength 

 (21)

and its maximum being  a re-examination of Eq. (14), however,

reveals that if:

(22)

Eq. (14) degenerates to: 

(23)

and the fundamental root of which is 

(24)

or

(25)

Eq. (23) clearly indicates that a column where parameters r and n satisfy Eq. (22) will have a

buckling strength greater than P
cr2; in other words, the buckling surface  depicted in

Fig. 4 has jurisdiction over all values of  except at points along a line where coordinates are
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Fig. 5 Directly welded column splice
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5. Applications of multi-step columns

5.1 Case study 1: Spliced column 

Bearing piles (HP-shape), Wide flanges (W-shape), tubular or box-shaped columns are commonly

used in multistory steel buildings as compression members. The sizes of these columns usually

change every two stories for economical reasons or when the height of the building exceeds the

available column length. The change of column size usually requires splicing of two columns of

different web or flange width, depth or thickness. 

There are several types of column splices used in practice, the most common ones are: (1) flange-

plated column splices; (2) directly welded flange column splices; and (3) butt-plated column splices.

Example of a directly welded column splice is shown in Fig. 5. The upper column and the lower

column will have different section properties (I1 and I2) and may be of different material properties

(E1 and E2) resulting in a stiffness ratio (r = E1I1 /E2I2). It is assumed that the end of the columns in

the common splice are finished by milling, sawing or other suitable means to guarantee full contact

bearing and transfer of axial forces between the two spliced columns AISC (2001), Gaylord (1979)

and McCormac (2003).

Example of spliced wide flange columns in a typical industrial building is shown in Fig. 6. A

typical hot-rolled wide flange column section is usually 20 feet in length and it needs to be spliced

to provide the necessary clearance in industrial hangers of 30 feet height or more, say 33 feet.

Therefore the ratio of upper column length to the total column length, in this case, is about 0.6. As

an illustrative example, take the column at the ground level to be W18X311 and a column with a

smaller size will be spliced on top of it. Table 2 shows different columns used in such an industrial

building. Assume that the columns are made of A572 steel with modulus of elasticity E = 29000 ksi

(200 GPa). The lowest column is W18X311 and the upper columns are shown in Table 2. For

simplicity, the web depth of the two spliced columns is kept the same.

Fig. 7 shows stiffness, weight and critical load ratios for different spliced columns. It is observed

that as the size of the upper column decreases, the critical buckling load ratio of the multi-segment

column decreases as well. However, the critical buckling load ratio decent more rapidly than the

Fig. 6 A spliced column as part of an industrial building
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stiffness ratio of the multi-segment compression member and the weight ratio decent more slowly

than the stiffness ratio.

5.2 Case study 2: Mechanical ducts in columns

Mechanical and service ducts sometimes require making holes and opening in columns which will

result in column with different stiffness. The duct dimensions are D1 and L1. For practical reasons

the duct length is made at most 10% of column height, i.e., n = 0.1. An idealized duct of a typical

rectangular section column is shown in Fig. 8. Table 3 shows the properties of the multi-segment

compression member with different sizes of mechanical ducts.

Fig. 9 shows stiffness, weight and critical load ratios for different sizes of mechanical ducts on the

top of the compression member. It is observed that as the size of the mechanical duct increases the

critical buckling load ratio decreases. However, the decrease in the buckling ratio is very small and

negligible until the size of the mechanical duct exceeds 85% of the original compression member

Table 2 Buckling of spliced W-shape column about weak axis (n = 0.6)

Column 
designation

Iyy
(in4)

Length 
ratio (n)

ryyγ
Stiffness 
ratio (ryy)

Weight 
ratio

Buckling 
ratio

W18X311 795 0.0 3.141590 1.000 1.0000 1

W18X283 704 0.6 3.008716 0.941 0.9460 0.917216

W18X258 628 0.6 2.883452 0.889 0.8977 0.842432

W18X234 558 0.6 2.754545 0.838 0.8514 0.768792

W18X211 493 0.6 2.619153 0.787 0.8071 0.695074

W18X192 440 0.6 2.499881 0.744 0.7704 0.633211

W18X175 391 0.6 2.376849 0.701 0.7376 0.572417

W18X158 347 0.6 2.256250 0.660 0.7048 0.515803

W18X143 311 0.6 2.150125 0.625 0.6788 0.468421

W18X130 278 0.6 2.048340 0.592 0.6508 0.425122

Fig. 7 Stiffness, weight and buckling load ratios of spliced W-shaped column (n = 0.6)
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cross section. When the size of the duct exceeds 85% of the member cross section the decent in the

critical buckling load ratio is very rapid. The stiffness changes non-linearly with the mechanical

duct ratio while the weight ratio changes linearly with the mechanical duct ratio as expected.

Fig. 8 Compression member with a service duct

Table 3 Buckling of a column with service duct (n = 0.1)

Case
Length 
ratio (n)

Duct ratio 
D1/D2

rγ
Stiffness 
ratio (r)

Weight 
ratio

Buckling 
ratio

C1 0.0 0 3.14159 1 1 1.000

C2 0.1 0.05 3.141587 0.99988 0.95 1.000

C3 0.1 0.10 3.141568 0.999 0.90 1.000

C4 0.1 0.15 3.141516 0.99663 0.85 1.000

C5 0.1 0.20 3.141414 0.992 0.80 1.000

C6 0.1 0.25 3.141246 0.98438 0.75 1.000

C7 0.1 0.30 3.140996 0.973 0.70 1.000

C8 0.1 0.35 3.140647 0.95713 0.65 0.999

C9 0.1 0.40 3.140126 0.936 0.60 0.999

C10 0.1 0.45 3.139462 0.90888 0.55 0.999

C11 0.1 0.50 3.1386 0.875 0.50 0.998

C12 0.1 0.55 3.137293 0.83363 0.45 0.997

C13 0.1 0.60 3.135434 0.784 0.40 0.996

C14 0.1 0.65 3.132527 0.72538 0.35 0.994

C16 0.1 0.70 3.127827 0.657 0.30 0.991

C17 0.1 0.75 3.121106 0.57813 0.25 0.987

C18 0.1 0.80 3.109836 0.488 0.20 0.980

C19 0.1 0.85 3.086724 0.38588 0.15 0.965

C20 0.1 0.90 2.942252 0.271 0.10 0.877

C21 0.1 0.95 1.396348 0.14263 0.05 0.198

C22 0.1 1 0 0 0 0.000
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5.3 Case study 3: Corroded holding frame

Holding frames of bulk carriers such as pipelines are usually under compression and they are

susceptible to corrosion due to the harshness of the environment on which they exit. To extend the

service life of corroded holding frames of bulk carriers a repair method using the same or different

materials may need to be employed in order to regain or reinforce the buckling strength of these

holding frames. In case of pitting, the buckling capacity of the holding frames will be severely

affected with the increase in the degree of corrosion. Such corrosion will in turn change the

uniformity of the cross section of the frame and may result in significant degradation in the

buckling capacity of the column due to material and cross section variability. The main objective of

this case study is to examine the common practices that are associated with repair methods of such

compression members with variability in material and/or section properties. The characteristics of

the repaired holding frame element should be examined to predict the viability of the repair

methods on the buckling characteristics of the repaired pitted holding frame element subjected to

the same axial loading condition using the proposed approach. It is assumed in this case study that

pitting corrosion is regularly distributed in the upper portion (slim section) of the holding frame

element that consists of two different cross section and/or material properties. For practical

applications, the corroded parts were taken to be equal to 40% of the holding frame height, i.e., n =

0.4. Table 4 shows the properties of the multi-segment holding frame that originally has the same

material before repair (E1/E2 = 1) and repaired with different materials (modulus of elasticity ratio

ranges from 1 to 2) and different section properties (I1/I2 = 0.3, 0.4, 0.5). As shown in Table 4, the

stiffness ratio ranges from 0.54772 and 1 and the buckling ratio ranges from 2.27651 to 3.14159.

Fig. 10 shows the variability in stiffness ratio and buckling ratio with material modulus of

elasticity ratio for different sizes of repaired sections that are located on the top portion of the

holding frame. In order to repair the top 40% of a holding frame having moment of inertia ratio

I1/I2 = 0.5 and retain the same buckling ratio, a material with a modulus of elasticity of 25% higher

than the original material and a moment of inertia of 20% lower is needed as indicated by the arrow

in Fig. 10. Again, in order to repair the top 40% of a holding frame having moment of inertia ratio

Fig. 9 Stiffness, weight and buckling load ratios of a column with service duct ( n = 0.1)
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of I1/I2 = 0.4, and retain the same buckling ratio, a material with a modulus of elasticity of 33.4%

higher than the original material and a cross sectional moment of inertia of 25% lower is needed as

indicated by the arrow in Fig. 10. Clearly, there are many alternatives for enhancing the buckling

capacity of a holding frame during repair using different combination of material properties

(modulus of elasticity ratios) and section properties (moment of inertia ratios). Generalization of

Fig. 10 gives the designer a tool for quickly figuring out the desired combination and the trade off

between the material and cross section variability during the repairing stage. Such tool helps the

designer in making an informed and quick decision depending on the material availability and the

space constraints.

Table 4 Buckling of a repaired holding frame with variation in material and cross section properties ( n = 0.4)

Case E1/E2 I1/I2 Stiffness ratio (r) Buckling ratio

no corrosion 1 0.3 0.54772 2.27651

repaired 1.1 0.3 0.57446 2.35039

repaired 1.2 0.3 0.6 2.42096

repaired 1.3 0.3 0.62450 2.48210

repaired 1.4 0.3 0.64807 2.54093

repaired 1.5 0.3 0.67082 2.59771

repaired 1.6 0.3 0.69282 2.65261

repaired 1.7 0.3 0.71414 2.7008

repaired 1.8 0.3 0.73485 2.74338

repaired 1.9 0.3 0.75498 2.78545

repaired 2 0.3 0.77460 2.82647

no corrosion 1 0.4 0.63256 2.50222

repaired 1.1 0.4 0.66332 2.5790

repaired 1.2 0.4 0.69282 2.65261

repaired 1.3 0.4 0.72111 2.71466

repaired 1.4 0.4 0.74833 2.7716

repaired 1.5 0.4 0.77460 2.8265

repaired 1.6 0.4 0.80000 2.87956

repaired 1.7 0.4 0.82462 2.91680

repaired 1.8 0.4 0.84853 2.9530

repaired 1.9 0.4 0.87178 2.98812

no corrosion 1 0.5 0.70711 2.6854

repaired 1.1 0.5 0.74162 2.75753

repaired 1.2 0.5 0.7746 2.82647

repaired 1.3 0.5 0.80623 2.8890

repaired 1.4 0.5 0.83666 2.9350

repaired 1.5 0.5 0.86603 2.97942

repaired 1.6 0.5 0.89443 3.0224

repaired 1.7 0.5 0.92195 3.05512

repaired 1.8 0.5 0.94868 3.08473

repaired 1.9 0.5 0.97468 3.11354

repaired 2 0.5 1.00000 3.14159
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6. Conclusions

Analytical modeling and solution for buckling of non-uniform compression members under

different configurations is developed. The derived analytical solution represents a class of closed

form solution for buckling of non-uniform multi-step compression members. From the derived

analytical solution and the case studies presented, it is concluded that:

1. The buckling capacity of the modified compression member is not linearly related to the change

in section or material properties. 

2. The buckling strength of the stepped column sometime surpasses the Eulerian buckling load of

comparable compression member value. However, this seeming enhancement in buckling

capability of the compression member of certain special configurations may be just a fleeting

phenomenon between stable modes of equilibrium and its practicability may be illusive. 

3. The buckling capacity of compression members that their section and/or material have been

altered due modification, maintenance or repairing can differ drastically from the original

buckling load of the compression member.

4. The degenerated compression members after modification in their section/material properties

are immune to the fundamental buckling load.

5. The result can be used by designers and analyst to assess the buckling strength of columns with

changes in their cross section and/or material properties.

6. A tool for quickly figuring out the desired combination and the trade off between the material

and cross section variability during the repairing stage of corroded columns was developed. 
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