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Abstract. In this paper a recently developed scaled boundary finite element method (SBFEM) is
applied to simulate stress concentration for two-dimensional structures. In addition, a simple and
independent formulation for evaluating the coefficients, not only of the singular term but also higher order
non-singular terms, of the stress fields near crack-tip is presented. The formulation is formed by
comparing the displacement along the radial points ahead of the crack-tip with that of standard Williams’
eigenfunction solution for the crack-tip. The validity of the formulation is examined by numerical
examples with different geometries for a range of crack sizes. The results show good agreement with
available solutions in literatures. Based on the results of the study, it is conformed that the proposed
numerical method can be applied to simulate stress concentrations in both cracked and uncracked structure
components more easily with relatively coarse and simple model than other computational methods. 

Keywords: stress concentration; scaled boundary finite element method; stress intensity factor; T-stress;
higher order terms. 

1. Introduction 

Failure of a structure is often a result of a complex process of crack initiation, growth and fracture

pattern formation. Because of this, the failure prediction can be divided into two different methods.

The first method examines the stress concentrations at notches, corners, holes etc. of uncracked

engineering components because cracks are likely to initiate at that region under the action of

fatigue loading due to the stress concentration. The second method examines the stress

concentration near a crack-tip of the cracked structure components using fracture mechanics because

the stress and displacement fields near a crack-tip govern fracture process that takes place at the

crack-tip. In both of these methods, understanding and accurate modeling of the stress

concentrations in conjunction with a crack growth condition are vital to implement simulation

essential for failure prediction due to the fact that most structure components fail from the stress

concentration. 

The finite element method (FEM) and the boundary element method (BEM) are most widely used

computational methods to perform numerical simulation for failure prediction. Although the
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traditional FEM is very versatile, the method has some serious limitations in solving certain

problems: stress concentration and crack propagation. For such problems, the use of FEM requires a

large number of discretization which reduces its efficiency. On the other hand, the BEM has certain

advantages over the domain type method, like FEM, because it only needs boundary discretization

of the studied problems. But BEM needs a lot of mathematical skills because in numerical

implementation, one needs fundamental solution, which is not always available, or it can be very

complicated even if it exits, and also needs an advanced mathematical knowledge to deal with

various singular integrals. Besides, the standard FEM and BEM are based on assumed piecewise

smooth functions, which do not resemble the exact solution near the singular point (Oh and

Babuska 1992).

In this paper, a recently developed computational method called scaled boundary finite element

method (SBFEM), which is emerging as an alternative approach in order to overcome the

deficiencies of FEM and BEM, is proposed as an efficient and comparatively accurate numerical

method for modeling stress concentrations of failure components. The method has some unique

properties that provide distinct advantages for its application in stress concentration and crack

problem. The main advantages of SBFEM over the traditional methods are that analytical solutions

are obtained in one dimension without fundamental solution, and removes the necessity to discretize

certain free and fixed boundaries when the so called ‘scaling center’ lies on the interested point. In

addition, SBFEM is mathematically simple and straightforward, making it a versatile tool compared

to conventional BEM although it requires eigenvalue solution in its implementation. As will be

discussed later, SBFEM has a unique capacity to more accurately compute stress and displacement

field of singularities region at the interested region without any a priori assumption.

Since SBFEM is a new method, its application has not been fully explored in many fields of

engineering mechanics, especially in the stress concentration and fracture problems. In these

regards, Deeks and Wolf (2002a-c) have demonstrated that the SBFEM out-performs the FEM in

situations involving stress concentrations or unbounded domains, reducing significantly the program

run-time for the same accuracy. Song and Wolf (2002), Deeks (2002) have applied SBFEM to

determine stress intensity factors (SIFs) in two-dimensional problems. Recently, Song (2004)

applied SBFEM to determine dynamic SIFs by using super elements. In addition, in the linear

elastic fracture mechanics, recent studies show that not only a single parameter – SIFs but also

other parameters - constant (T-stress) and higher order non-singular terms of stress field are of great

relevance in characterizing the fracture behaviors (Du and Hancock 1991, Dyskin 1997, Jeon and

Im 2001, Karihaloo and Xiao 2001, Larsson and Carlsson 1973, Yang et al. 1993); and the

determination of these coefficients has drawn significant attention over the last few years (Karihaloo

and Xiao 2001). 

Thus, the main purpose of this paper is to demonstrate the efficiency and effectiveness of the

method to model the stress concentration; and also to extend the application of SBFEM for

computing more than one fracture parameters for two-dimensional linear-elastic cracked structures.

To compute the fracture parameters, a simple and direct technique is presented by comparing the

displacement along the radial points ahead of the crack-tip with that of standard Williams’

eigenfunction expansion of the linear elastic displacement field at the crack-tip. The technique

presented in this paper can be applied directly as well as independently to evaluate coefficients of

the stress fields and has more advantages than other methods because of its simplicity in expression

and less computational efforts in implementation. Recently, Song (2005), Chidgzey and Deeks

(2005) have also applied SBFEM to compute these coefficients. 
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2. Scaled boundary finite element method

The scaled boundary finite element method is a semi-analytical fundamental solution-less BEM

based on FEM (Wolf 2003). It is semi-analytical in the sense that it transforms the partial

differential equation of a variety of linear problems into ordinary differential equations. These

ordinary differential equations are solved analytically in radial direction and the coefficients of these

equations are determined by the finite element approximation in the circumferential directions. The

virtual work derivations of the stress and displacement fields in the method are presented in detail

in Deeks and Wolf (2002c) but are summarized here for convenience as follows.

2.1 Governing equations of elastostatics

For two-dimensional elastostatic problems, the strains {ε (x, y)} are related to the displacement

{u(x, y)} by 

(1)

where, [L] is linear differential operator, and 

the stresses {σ (x, y)} = [σx, σy, τxy]
T are given by 

(2)

In no body load case, the internal equilibrium in elastostatics leads to the differential equation 

 (3)

which must be satisfied at every point within the domain. 

2.2 Scaled boundary coordinate system

The SBFEM coordinate system consists of a radial direction ξ and a local circumferential

direction η (Fig. 1). The radial coordinate is defined to be zero at ‘scaling center’, and have unit

value on the boundary. The circumferential coordinate measures the distance anticlockwise around

the boundary. The coordinate system is termed the scaled boundary coordinate system, and is

related to Cartesian coordinate by 

(4a)

(4b)

where, x(η) and y(η) are the functions describing the variation of the boundary in x and y directions

as functions of η.

Applying standard procedures to transform the geometry from Cartesian co-ordinates to the scaled
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boundary co-ordinates defined in Eq. (4), the linear operator in Eq. (3) can be written in the co-

ordinate ξ, η  as 

(5)

where, [b1(η)] and [b2(η)] depend only on the geometry of the boundary. 

2.3 Displacement function

The displacements at any point in the domain defined by scaled boundary coordinates (ξ, η) can

be expressed in the form:

(6)

which represents a discretization of boundary only. 
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Fig. 1 Scaled boundary coordinate system 
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Substituting Eqs. (5) and (6) in Eq. (2) leads to the approximate stresses in the co-ordinate ξ, η as

(7)

where, 

(8a)

(8b)

These results can be used in the virtual work equation to solve for the radial displacements. 

2.4 Scaled boundary finite element equation

The virtual work statement is applied to introduce the equilibrium. When the domain is subjected

to a set of boundary tractions {t}, the virtual work statement is 

(9)

Performing integrals over the domain and then a series of mathematical manipulations, the virtual

work statement is satisfied for all virtual displacements {δu(ξ )} when 

(10)

where, the coefficient matrices 

(11a)

(11b)

(11c)

are independent of ξ. Eq. (10) is a standard ordinary differential equation for the displacements u(ξ )

with the dimensionless radial coordinate ξ as the independent variable. 

2.5 Solution procedures

By inspection, solution to the set of Euler-Cauchy differential equation represented by Eq. (10)

must be of the form 
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where, the exponents λi and vectors {φi} are interpreted as a radial scaling factor and a

displacement mode shapes, respectively. Substituting this solution into Eq. (10) yields the quadratic

eigenproblem. 

(13)

This eigenproblem can be solved using standard techniques, yielding 2n displacement modes,

where n is the number of nodes used in boundary discretization, and hence is also the size of the

coefficient matrices.

Bounded problems can be represented conveniently by taking 0 ≤ ξ ≤ 1. For such problems, only

n modes with negative real component of λ lead to finite displacements at scaling center. This

subset of n nodes is denoted by [Φ1]. For any set of boundary node displacements, u, the integration

constants are 

(14)

The displacement fields can be obtained using 

(15)

and the stress field is

(16)

Eqs. (15) and (16) are the semi-analytical solutions for displacement and stress fields inside the

domain, respectively.

3. SBFEM formulation for fracture parameters 

Williams’ eigenfunction expansion (Williams 1957) for crack-tip displacement field in any linear

elastic body is given by a series of the form
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where (r, θ ) are the local polar coordinates with the origin at the crack-tip, as shown in Fig. 2;

μ = E/(2(1 + ν)) is the shear modulus; the Kolosov constant κ = 3 − 4ν for plane strain or

κ = (3 – ν)/(1 + ν) for plane stress; E and ν are Young’s modulus and Poisson’s ratio, respectively.

KI is the SIF for mode I, T is the elastic T-stress, and An is the higher order coefficient term. The

first term consisting of the singular component is referred to as the singular term and the remaining

terms regular in the radial co-ordinate r are referred to as the non-singular terms.

In SBFEM analysis, the stress and displacement fields along the radial direction emanating from

the crack tip can be analytically calculated when the so-called ‘scaling center’ is chosen at a crack-

tip, as shown in Fig. 2. Only the boundaries, but not the straight crack faces and faces passing

through the crack-tip are discretized. 

The SBFEM’s displacement field inside the domain of Eq. (15) can be expanded as 

(18)

where the coefficients 

(19)

and the power terms

(20)

For a radial direction emanating from the crack tip and inclined at an angle θ to the global x-axis

as shown in Fig. 2, the following relationships are obtained from Eq. (4). 
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Fig. 2 A typical SBFEM element in a crack analysis
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and  (22)

where,  = r(η) = {x(η)2 + y(η)2}1/2 is the radial distance of the boundary nodes from scaling

center, and r is a distance measured from the crack-tip along the radial lines. The angle θ and the

distance  are constants for a given radial line of a given element.

Substituting Eq. (21), Eq. (18) becomes 

(23)

Eq. (23) is similar to the Williams’ expansion of the displacement field, Eq. (17). Thus, the stress

intensity factors, T-stress, and higher order coefficient terms of stress field near crack-tip can be

computed by equating the coefficients of like powers of r terms of Eqs. (23) and (17). The proposed

formulations of fracture parameters for θ = 0 are as follows.

Stress intensity factor for mode I, 

(24)

T-stress, 

(25)

and higher coefficients terms,

 (26)

Eqs. (24), (25) and (26) indicate that the SIFs, T-stress of the Williams’ series can be directly

calculated from SBFEM.

4. Numerical examples

In this section, the following three numerical examples for two-dimensional stress concentration

problems are simulated to demonstrate the effectiveness of the SBFEM, and additionally to verify

the validity of the proposed SBFEM formulation of fracture parameters. 

(i) Square holed compression plate

(ii) Central crack rectangular plate, and

(iii) A T-joint weld attachment with a horizontal crack in the main plate

In order to demonstrate the effectiveness of the proposed SBFEM, the results obtained by using

this method are compared with the corresponding results of FEM; and the validity of the proposed

formulation is checked by comparing the results of the method with analytical and numerical results

from literatures. In all of the example problems, the discretizations employed in the study consist of

three-noded line elements in SBFEM analyses and a combination of four-noded quadratic elements

and three-noded triangular elements are used in FEM analyses.
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Fig. 3 Schematic diagram of square-holed compression plate

Fig. 4 Discretization models for square-holed compression plate 

Fig. 5 Comparison of displacements along OB
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4.1 Example 1: Square-holed compression plate 

The first example is a square-holed rectangular plate with uniaxial compression, as shown in

Fig. 3. The objective is to predict the stresses near the sharp corner where the stress singularity

exists and the displacements along inner face by using SBFEM and to verify the effectiveness of

SBFEM by comparing with corresponding FEM results. The analyses were carried out using plane

stress condition. The modulus of elasticity (Young’s modulus) E was 1.0 and Poisson’s ratio ν was

0.25. The applied stress σ0  was equal to 1 with its units consistent with that of E. A unit thickness

of plate was assumed. Due to the biaxial symmetry, only one quadrant, i.e., the hatched portion in

Fig. 3, was modeled using one SBFEM and two FEM discretizations. The FEM mesh with 246

nodes (492 DOFs) and SBFEM mesh with 25 nodes (50 DOFs) are illustrated in Figs. 4(a) and

(b), respectively. Since there are stress singularities at the internal corners, the scaling center was

placed at the corner and the inner faces were not discretized in SBFEM analysis as shown in Fig.

4(b). Only the symmetric faces and the exterior boundary surfaces were discretized. In the FEM

analysis, the mesh near the internal corner was refined as compared with other parts, as shown in

Fig. 4(a). 

The computed displacements along OB (Fig. 3) of SBFEM are presented in Fig. 5 with those of

FEM with 492 and 2868 DOFs. This comparative graphs clearly show that the SBFEM results with

less than 2 percentage DOFs are significantly similar to that of the fine mesh FEM. Fig. 6 presents

the comparison of stress components (σx, σy and τxy) along OA (Fig. 3) computed by FEM with 492

and 2868 DOFs and SBFEM with 50 DOFs. The comparison shows that SBFEM results are in

good agreement with FEM results except near the singularity region i.e., near the inner corner. In

the singularity region, FEM results increase with increase in DOFs, but the SBFEM results are

higher values than the fine mesh FEM results near the corner with much less number of DOFs.

Fig. 7 shows the contour of stress in x-direction (σx). 

Fig. 6 Comparison of stress components along OA
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Fig. 7 Contour of stress in x-direction (σx)

4.2 Example 2: Central-cracked rectangular plate 

The second problem consists of a center-cracked rectangular plate with uniaxial tension. The

schematic diagram of the problem is presented in Fig. 8, where H and W are plate dimensions and a

is the crack length. In this problem, the stress along y-axis σy ahead of the crack-tip and the

coefficients, an (1 ≤ n ≤ 10), of the asymptotic fields near the crack-tip were evaluated by using

Eq. (16) and the proposed SBFEM formulations (Eqs. (24) to (26)), respectively. The objective of

first analysis i.e., computation of near tip stress is to demonstrate efficiency of SBFEM compared to

FEM, and that of the second analysis is to verify the validity of the proposed formulation.

Fig. 8 Schematic diagram of central cracked rectangular plate under uniaxial tension 
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The analyses were carried out using plane stress condition with Young’s modulus E = 1.0 and

Poisson’s ratio ν = 0.3. The applied stress was σ0  = 1 with its units consistent with that of E. A unit

thickness of plate was assumed. The problem is a biaxial and symmetric, and therefore only one

quadrant (highlighted portion in Fig. 8) was modeled. The FEM and SBFEM analysis models are

shown in Fig. 9. Note that the scaling center i.e., plus sign in the Fig. 9(c), was placed at the crack-

tip in SBFEM mesh. Crack face, which was assumed as a straight face, and face through the crack-

Fig. 9 Discretization models of central cracked rectangular plate 

Fig. 10 Comparison of stress ahead of the crack-tip in y-direction (σy)
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tip were not discretized. The SBFEM analysis was performed with single discretization of 42 DOFs

and the FEM analysis was performed with three different discretizations – coarse of 90 DOFs,

medium of 366 DOFs and fine of 1260 DOFs. The FEM medium and fine meshes are shown in

Figs. 9(a) and (b), respectively. Fig. 10 presents the plots of computed stress σy normalized by

applied stress σo, σy /σ0, of a SBFEM and three FEM analyses as a function of x/(W − a). As in first

example, the Fig. 10 shows close agreement of all the computed results, except in the region near

crack-tip, where singularity occurs. In the singularity region, singularity of FEM results increase

with increase in number of nodes, but SBFEM results show more singularity than fine mesh FEM

results.

To compute the SIFs, T-stress and non-singular higher order terms, and to verify the validity of

the proposed SBFEM technique, analysis was carried out for a range of geometrical configurations

with variety of crack sizes. The computed results of normalized SIFs, KI /K0, where K0 = σ0(πa)1/2,

for H/W = 0.5, 1 and 1.5 and normalized T-stress, T/σ0, for H/W = 3 were compared with the values

of boundary collocation method (BCM) presented in Yan (2004) and the values of FEM and BEM

from Wang (2002) and Tan and Wang (2003) in Figs. 11 and 12, respectively. In Table 1, the first–

fifth coefficients terms of the stress field near the crack-tip for a = 1, W = H = 4 are compared

with the results of hybrid crack element (HCE) and BEM from Xiao et al. (2004). These

comparisons show that SBFEM results are generally in good agreement with the literature values.

The coefficients of sixth to tenth terms of the stress fields which, to the authors’ knowledge, have

not been done before are also presented in the Table 1.

Fig. 12 Comparison of normalized T-stress Fig. 11 Comparison of normalized SIFs 
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Table 1 Coefficients, an (1 ≤ n ≤ 10) in Eq. (28), of the stress field near the crack-tip

Terms
Coefficients

Ratio*
Present Xiao et al. (2004)

ai SBFEM BCM HCE BCM HCE

a1 0.7675  0.7680 0.7665 0.9993  1.0013

a2 -0.2774  -0.2777  -0.2779 0.9989 0.9982

a3 0.1865  0.1866 0.1915 0.9995 0.9739

a4 0.0030  0.0030  0.0018 1.0000 1.6667

a5 -0.0278  -0.0279  -0.0235  0.9964 1.1830

a6 0.0008 - - - -

a7 0.0057 - - - -

a8 -0.0001 - - - -

a9 -0.0018 - - - -

a10 0.00001 - - - -

*Ratio = computed SBFEM value/reference value

Fig. 13 Schematic diagram of T-joint weld attachment
with a horizontal crack in the main plate
under uniform tension 

Fig. 14 A SBFEM discretization model of T-joint
weld plate attachment with a horizontal
crack in the main plate
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4.3 Example 3: A T-joint weld attachment with a horizontal crack in the main plate 

In this problem, the SBFEM formulation is applied to more complex crack problems to compute

SIFs. The problem has some significance in engineering practices. A T-joint weld unit thickness

attachment with a horizontal crack in the main plate and a uniaxial tension of σ0 = 100 N/mm2

applied to the main plate, as shown in Fig. 13, was considered. Plane stress conditions were

assumed. The material properties employed were E = 20700 N/mm2 and ν = 0.3. The other

parameters used for the analysis are presented in Fig. 13. The top edge of the plate, where the

external load is applied, was restrained from displacement in x-direction.

The SBFEM analysis for this configuration was performed using sub-structuring as shown in

mesh diagram (Fig. 14). One of the restrictions of SBFEM is that the entire boundary must be

visible from the scaling center. So the model was divided into four sub-domains for SBFEM

analysis. The computed SBFEM results of the normalized SIFs from four different refined meshes

are compared with the FEM (p-version and h-version) results from Rahukumar et al. (1997) in

Fig. 15. The target values of the normalized SIFs, KI /K0, where K0 = σ0(πa)1/2, is also taken from

Rahukumar et al. (1997). The figure clearly shows that the SBFEM results are in good agreement

with the results of p-version and h-version FEM and converges rapidly with much less DOFs. In

addition SBFEM does not require discretization of crack faces or region near the crack-tip. Hence

no special care is needed, like in p-version FEM, in the design of meshes for SBFEM analysis. 

5. Conclusions

The scaled boundary finite element method (SBFEM) has been applied to simulate two-

dimensional linear elastic stress concentration problems. The accuracy and efficiency of the SBFEM

Fig. 15 Comparison of computed normalized SIFs 
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has been examined by comparing the computed SBFEM results with that of FEM. The SBFEM

outperformed the FEM regarding efficiently in terms of number of degrees of freedoms and

qualitatively accurate result in stress concentration region; this result is in agreement with the results

of the previous studies. In addition, a simple and direct formulation has been derived for evaluating

more than one fracture parameters of a cracked body by comparing the classical linear elastic field

solution in the vicinity of a crack-tip to that of SBFEM after power series expansion. The validity

of these formulations has been examined with two example problems for a range of crack sizes,

with good agreement obtained between the SBFEM results obtained and the corresponding ones in

the literature. Based on the results of the study, it can be conformed that the proposed numerical

method can be applied to stress concentration and crack problems more easily with relatively coarse

and simple model than other computational methods and can directly determine the coefficients, not

only stress intensity factors (SIFs) but also T-stress and higher order coefficients terms of stress

fields near a crack-tip.
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