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Abstract. Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-
supported structures are presented. The cable element, derived by using the concept of an equivalent
modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to
model the cables. The stability functions for a frame member are modified to obtain a numerically stable
solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed
finite element model. It is shown that the finite elements proposed in this study can be very useful for
geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported
structures.

Keywords: cable-supported structures; geometric nonlinear analysis; free vibration analysis; cable
element; frame element; stability function.

1. Introduction

Cable-supported structures are used extensively to support cable-stayed bridges, suspension

bridges, offshore structures, long span roofs, communication towers, and so on. Such structures are

often more economical than conventional ones because of the high efficiency of steel members in

simple tension. However, cable-supported structures are quite flexible so that they may undergo

large displacements before attaining their equilibrium configuration. Consequently, a more

challenging geometric nonlinear analysis may well be required.

Analytical methods have been employed in the past mainly for quite simple cable structures
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(Irvine 1992). Dean (1961), Davenport and Steels (1965), and Veletsos and Darbre (1983) have

presented theoretical formulae for computing equivalent spring constants for uniformly loaded

cables. For cable roof structures, analysis methods and several very illustrative design details were

studied by Buchholdt (1985). 

As cable structures are increased with popularity, more efficient and accurate methods were

searched and various cable modeling techniques could be found. Gambhir (1977) developed a two-

node curved finite element using cubic polynomial interpolation functions and used for the static

and dynamic analysis of three-dimensional prestressed cablenets. Ozdemir (1979) developed another

two-node curved finite elements using Lagrangian functions for the interpolation of element

geometry. Recently, derivations of isoparametric cable elements, which includes the element

curvature, were presented (Leonard 1988) and a four-node isoparametric cable element was used for

modeling cables in cable stayed bridges (Ali and Abdel-Ghaffar 1995). Karoumi (1999) developed

two-node catenary cable element using exact analytical expressions for the elastic catenary and

Desai and Punde (2001) proposed a simple cable element with nine degrees of freedom to describe

vibrations of an inclined cable by using a generalized finite element approach.

However, although a number of researchers had studied the analysis of the non-linear behavior of

cable-supported structures, the applications were so complicated that general engineers could not

apply those cable elements for modeling cables with ease. In particular, when modeling cable in

cable-stayed bridges, the truss elements with an equivalent cable stiffness are often adopted, which

is referred to as the equivalent modulus approach and has been used by several investigators

(Fleming 1979, Fleming and Egeseli 1980, Nazmy and Abdel-Ghaffar 1990, Boonyapinyo and

Yamada 1994, Adeli and Zhang 1995, Karoumi 1996, Gimsing 1997, Monaco and Fiore 2005,

Wang et al. 1998). The equivalent secant modulus of elasticity, used to take account of the sag

effect, which was derived by Ernst (1965), can be written as follows;

(1)

where Ee is the modulus of elasticity of a cable, A is the cross-sectional area of a cable, w is the self

weight of a cable, l is the cable length, and α is the inclined angle of a cable.

This study places emphasis on the simple finite element modeling aspect of cable-stayed bridges.

Cable and frame finite elements are derived for modeling cable-stayed structures. The equivalent

modulus of elasticity as shown in Eq. (1), which is used in cable element, is enhanced. And, the

stability, which is used in frame element, is modified for stable solutions. Various numerical

examples are solved to illustrate the versatility and efficiency of the proposed model.

2. Finite element model of a cable

An equivalent modulus of elasticity for the cable having sag is frequently used in the cable-

supported structures. Cables are only supported to resist axial tensile force. Thus, they have large

deformations under the external forces and show the dramatically nonlinear structural behaviors.

There are several useful methods to model the geometrical nonlinear behavior of cables, in which

elastic catenary cable elements and truss elements with the equivalent modulus of elasticity are
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included. The method to use the truss element with an equivalent modulus of elasticity derived by

Ernst (1965) has solutions with some errors as sag becomes large, because the method assumes that

deflection curve is a parabolic function. Some elastic catenary cable elements have so difficult

formulations that general engineers cannot apply with ease. Therefore, in this study, the equivalent

modulus of elasticity of a cable having sag, which is simple and enhanced, is derived by the use of

catenary function. 

2.1 Equivalent modulus of elasticity

Two cables in the different loading conditions are considered to derive the equations of the

equivalent modulus of elasticity of a cable. In Fig. 1, tensile force Ti is being loaded to a cable and

in Fig. 2, the tensile force Ti is increased to Tf .

The catenary cable function before the increase of the tensile force in Fig. 1 is as follows; 

(2)

where w is the self weight of a cable.

And, the catenary cable function after the increase of the tensile force in Fig. 2 is as follows; 

(3)

Therefore, on the basis of the condition that the tensile force is zero, the total elongations of two

cables under the tensile forces Ti and Tf are respectively as follow;

(4)
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Fig. 2 Cable after the increase of tensile force

Fig. 1 Cable before the increase of tensile force
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where Ee is the modulus of elasticity of a cable, A is the cross-sectional area of a cable, and it is

assumed that δ is much smaller than Lc.

From Eqs. (4) and (5), the relative deformation of two cables  is derived as

follows;

(6)

Thus, the secant modulus of elasticity of a cable can be derived by the use of Eq. (6) as follows;

(7)

Therefore, finally, the equivalent secant modulus of elasticity  of a cable with the angle of

chord α in Fig. 3 can be derived as follows;

(8)

where

(9)

δ = s1Δ s2Δ–( )

δ

Tf Ti–( )Lc

2EeA
-------------------------

1

2EeAw
----------------- Tf

2
sinh

wLc

Tf

---------⎝ ⎠
⎛ ⎞ Ti

2
sinh

wLc

Ti

---------⎝ ⎠
⎛ ⎞

–+

cosh
wLc

2Tf

---------⎝ ⎠
⎛ ⎞

-----------------------------------------------------------------------------------------------------------------------------=

 

2

w
---- Tisinh

wLc

2Ti

---------⎝ ⎠
⎛ ⎞ Tf sinh

wLc

2Tf

---------⎝ ⎠
⎛ ⎞

–

cosh
wLc

2Tf

---------⎝ ⎠
⎛ ⎞

--------------------------------------------------------------------------------+

Esec

c

Tf Ti–( )
A

--------------------

δ

Lc

-----

--------------------=

Esec

c

Esec

c Ee

1 C1 C2+ +( )/2cosh
wLccosα

2Tf

----------------------⎝ ⎠
⎛ ⎞

-----------------------------------------------------------------------------=

C1

1

wLccosα Tf Ti–( )
------------------------------------------ Tf

2
sinh

wLccosα

Tf

----------------------⎝ ⎠
⎛ ⎞ Ti

2
sinh

wLccosα

Ti

----------------------⎝ ⎠
⎛ ⎞

–=

Fig. 3 Local axis and direction vector in cable element
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(10)

And, the equivalent tangent modulus of elasticity  can be also expressed as follows;

(11)

where

 (12)

(13)

The equivalent secant modulus of elasticity derived by Ernst (1965) in Eq. (1) can be derived by

substituting only the first term of Eq. (6) for Eq. (7). In other words, the more nonlinear terms in

Eqs. (8) and (11) than in Eq. (1) are used to take account of the influence of sag effect.

2.2 Element stiffness matrix

The degrees of freedom of a cable element are defined as shown in Fig. 4. The axial stiffness of

the cable element can be expressed with the help of the equivalent modulus of elasticity Eeq. The

element tangent stiffness matrix of a cable  can be given by

(14)

where  is the elastic stiffness matrix and  is the geometric stiffness matrix of a cable

element (Nazmy and Abdel-Ghaffer 1990) (Appendix A). Using the direction vector in Fig. 3, the

element tangent stiffness matrix can be defined in the global axis.
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Fig. 4 Degrees of freedom in the local axis of cable element
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3. Finite element model of a frame member

The large deformations that occur in the frame members of a cable-supported structures under the

combined effect of large bending moments and high axial forces produce a strong coupling between

axial and flexural stiffness in these members (Fig. 5). This coupling can be considered in the refined

nonlinear analysis by introducing the concept of stability functions (Prezeminiecki 1969).

3.1 Element stiffness matrix

In this study, frame elements are adopted to model towers and girders in three-dimensional space.

The degrees of freedom of a frame element are defined as shown in Fig. 6. The element tangent

stiffness matrix of a frame  can be given by

(15)

where  is the elastic stiffness matrix of a frame element and  is the geometric stiffness

matrix of a frame element (See Appendix A). , which is shown in Eq. (A.4) in the Appendix,

is composed by using stability functions , , and S5 (Fleming 1978).

When external loads are gradually increased, the principal moment of inertia axes in a frame

member are changed by the influence of the torsional rotation (θi1) in a node. Thus, in each load

incremental step, θi1 should be modified to compose transformation matrix [T ] as shown in Eq. (16)

(Tezcan 1969) (Fig. 7).
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where

(17)

where  is initial directional vector, and , , and
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Fig. 6 Degrees of freedom in the local axis of frame element

Fig. 7 Global axis and local axis of frame element
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 are respective directional vectors of the initial local axes in a frame element

(Fig. 8).

By the use of the modified transformation matrix , the global stiffness matrix  of a

frame member can be made as follows;

(18)

For a cable member, it is needless to consider the influence of a torsional rotation in a node and

the global stiffness matrix can be made by the use of the general transformation matrix.

3.2 Modification of stability functions

When the conventional stability functions given by Fleming (1978) are used without any

modification, they occasionally give unstable solutions (Fig. 9). In order to remove this problem,

they are modified thorough using Taylor’s series expansion (Choi and Lee 1996).
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Fig. 8 Initial direction vector of frame element
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(23)

where .

In the case of compressive force P (P is negative),

(24)

(25)
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Fig. 9 Modification of stability functions
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(27)

(28)

 are modified by the same way and S5 is used as the same one with the conventional

function (Appendix C).

3.3 Element mass matrix

A frame element with the degrees of freedom shown in Fig. 6 has the element mass matrix given

in Eq. (B.1) in the Appendix (Przemieniecki 1968). In composing the element mass matrix of a

cable element, it is assumed that  in Appendix (B.1).

4. Numerical analysis methods

4.1 Nonlinear static analysis

When structural analysis is performed by considering material nonlinearity and geometrical

nonlinearity, structural responses are generally solved through iterative analysis because nonlinear

terms are included in the stiffness matrix of the structure. In this paper, a combination of the

incremental and iterative schemes is utilized. The load is applied incrementally, and iterations are

performed after all the load increments (Nazmy and Abdel-Ghaffar 1990).

4.2 Free vibration analysis

In the first place, the nonlinear static analysis for the whole structure under the dead weight is

performed and in this deformed structural shape, the stiffness matrix and mass matrix of the whole

structure are composed. And then, by using these system matrices, free vibration analysis is

fulfilled. In this paper, subspace iteration method is used to solve the eigenvalue problem. It is very

useful to solve the main low-order free vibration mode (Cook et al. 1989).

5. Numerical examples

5.1 Cable under its own weight subjected to tensile force at both ends (sag ratio=1/10)

A cable hanging under its own weight and subjected to a tensile force along its chord, as shown

in Fig. 10 was studied to verify the cable element. Using the different models, the sag and the

longitudinal displacement along the chord of the cable were determined for different values of the

tensile force T and the results are plotted in Fig. 11. Good agreement is observed when comparing

the curves for the proposed cable element with those of other cable elements.
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Fig. 10 Cable under its own weight and tensile force (sag ratio=1/10)

Fig. 11 Load-displacement relationship (sag ratio=1/10)
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5.2 Cable under its own weight subjected to tensile force at both ends (sag ratio=1/2)

A cable hanging under its own weight and subjected to a tensile force along its chord, as shown

in Fig. 12 is the second verification example of the proposed cable element. H(=0.358 ton) is the

horizontal force to sustain the sag of 152.4 m under the self-weight of cable in the initial state. The

analysis results using the proposed equivalent modulus of elasticity of a cable are compared with

those using the equivalent modulus of elasticity of a cable proposed by Ernst (1965). As shown in

Fig. 13 and Table 1, the horizontal displacement is converged to the constant value as the number

of cable elements is increased. In the case that the number of cable elements is two, the differences

between the two analysis results are clearly distinct. As the number of cable elements increase, the

difference disappears.

Fig. 12 Cable under its own weight and tensile force (sag ratio=1/2)

Fig. 13 Load-displacement relationship (sag ratio=1/2)
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5.3 Cantilever beam under vertical load

For the verification of the formulation of a frame element, a cantilever beam under vertical load

as shown in Fig. 14 is analyzed and the analysis results are compared with theoretical solutions

(Hyundai 1994). The cantilever beam is modeled with 10 elements and the vertical displacements

(δv), horizontal displacements (δh), and rotations (θ ) at the right end are compared. Through

comparing analysis results, good agreements are shown in Table 2. 

5.4 Guyed tower subjected to a head load

 

The response of the rigidly encasted guyed mast illustrated in Fig. 15 was investigated for a head

load of 222.3 kN applied at the tip of the mast in 10 equal increments. Horizontal tip displacement

of the mast are compared with those obtained by other researchers for each load increment as

shown in Fig. 16. It can be observed that there is a close agreement.

Table 1 Comparisons of the horizontal displacements (Unit: m)

Cable tensile force (kgf) 9,072 1,361 1,814 2,268 2,722 3,175 3,629 4,082 4,536

Numbers 
of  

elements

1

Ernst 109.730 163.410 188.240 201.560 209.640 215.020 218.900 221.870 224.270

Present 57.018 83.030 94.887 101.180 104.940 107.400 109.120 110.410 111.410

Error (%) 92.4 96.8 98.3 99.2 99.8 100.2 100.6 100.9 101.3

2

Ernst 90.711 138.750 161.970 173.520 179.780 183.490 185.860 187.460 188.610

Present 86.264 132.330 154.480 165.450 171.380 174.880 177.100 178.600 179.660

Error (%) 5.2 4.9 4.9 4.9 4.9 4.9 4.9 5.0 5.0

8

Ernst 73.002 110.770 129.130 138.250 143.130 145.960 147.720 148.870 149.660

Present 72.981 110.740 129.110 138.220 143.100 145.930 147.690 148.840 149.630

Error (%) 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

32

Ernst 72.182 109.470 127.620 136.660 141.530 144.360 146.130 147.310 148.140

Present 72.182 109.470 127.620 136.660 141.530 144.360 146.130 147.310 148.140

Error (%) 0. 0. 0. 0. 0. 0. 0. 0. 0.

Fig. 14 Cantilever beam under vertical load
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5.5 Cantilever beam supported by an inclined cable

A cantilever beam supported by an inclined cable is modeled with 10 frame elements and 1 cable

element as shown in Fig. 17. In this example, the analysis results are compared with those of elastic

catenary cable elements (Hyundai 1994). The vertical deflections at node 7, in which the vertical

deflection is largest, are compared with the other result. In spite of simple formulation, the analysis

result in this study shows good agreement as shown in Table 3.

Table 2 Comparisons of the analysis results with the theoretical solutions

PL2/EI
δv /L δh /L θ/2π

Theoretical Present Theoretical Present Theoretical Present

0. 0. 0. 0. 0. 0. 0.

0.2 0.066 0.066 0.003 0.003 0.063 0.063

0.4 0.131 0.131 0.010 0.010 0.126 0.126

0.6 0.192 0.192 0.022 0.022 0.185 0.185

0.8 0.249 0.250 0.038 0.038 0.241 0.241

1. 0.302 0.302 0.056 0.056 0.294 0.294

1.5 0.411 0.411 0.108 0.108 0.407 0.407

2. 0.493 0.494 0.161 0.160 0.498 0.498

3. 0.603 0.604 0.254 0.254 0.628 0.628

4. 0.670 0.672 0.329 0.328 0.714 0.715

5. 0.714 0.716 0.388 0.387 0.774 0.775

6. 0.745 0.747 0.435 0.434 0.817 0.818

7. 0.767 0.770 0.473 0.472 0.850 0.851

8. 0.785 0.788 0.505 0.504 0.875 0.876

9. 0.799 0.803 0.532 0.531 0.895 0.896

10. 0.811 0.815 0.555 0.554 0.911 0.912

15. 0.848 0.854 0.635 0.634 0.956 0.957

Fig. 15 Guyed tower subjected to a head load
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5.6 Two-dimensional cable-stayed bridge

A 2-D model of the cable-stayed bridge described in Karoumi (1999) was adopted for the

Fig. 16 Horizontal tip displacement on the head

Fig. 17 Cantilever beam supported by inclined cable

Table 3 Comparisons of the vertical deflection at node 7 (Unit: m)

Cable tensile force
(tonf)

Catenary cable element
(Hyundai 1994)

Present

110.4 −0.47239 −0.47129 

147.2 −0.46532 −0.46330 

184.0 −0.46101 −0.45777 

220.8 −0.45776 −0.45417 
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verification for cable-stayed bridges. The geometry is depicted in Fig. 18, in which 120 cable

elements to model cables and 44 frame elements are used to model stiffening girders and pylons.

Results of free vibration frequencies analysis for this model were compared with those of Karoumi

(1999), which are inserted in parentheses. As shown in Fig. 19, good agreement is obtained. Among

the vertical bending modes, there are some free vibration modes, which result from the vibration of

cables. For searching these modes, the free vibration analysis should be done through the refine

division of cable elements, as in Karoumi (1998).

5.7 Three-dimensional cable-stayed bridge

The nonlinear static analysis and free vibration analysis of a 3-D cable-stayed bridge was adopted

for final verification (Abdel-Ghaffar and Nazmy 1987, Nazmy and Abdel-Ghaffar 1990). The

Fig. 18 Two-dimensional cable-stayed bridge

Fig. 19 Natural frequencies and mode shapes for the lowest three vertical bending modes
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geometry is shown in Fig. 20, in which 48 cable elements for cables, 52 frame elements for

stiffening girders, 42 frame elements for pylons, 27 frame elements for floor beams, and 8 frame

elements for the connection between deck and pylons, are used. 

The geometric nonlinear behavior of the cable-stayed bridge under initial cable tensile force and

dead load are investigated at the points indicated in Fig. 20(b). When comparing the analysis results

with those of Nazmy and Abdel-Ghaffar (1990), the improved cable elements and the modification

of stability functions suggested in this paper show reasonable solutions although they make the

difference of 4 percents (See Fig. 21).

Free vibration frequencies of this study were compared with those of Abdel-Ghaffar and Nazmy

(1987) and good agreements were shown in Fig. 22. It is shown that torsional vibration mode can

be not displayed in 2-D model but displayed in 3-D model. Therefore, it can be expected that the

more accurate analysis results can be obtained by using the 3-D model.

In Fig. 23, the free vibration periods for three analysis models, which are classified by the

supporting types on an abutment, are compared. The three supporting types studied in this study are

Fig. 20 Three-dimensional cable-stayed bridge
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hinge-hinge, hinge-roller, and roller-roller supporting conditions. As can be noticed, the differences

of free vibration periods according to supporting types are larger for the lower-order modes than for

the higher order modes. For the model of the hinge-hinge supporting type, the free vibration periods

are shortest and for the roller-roller supporting type, those are longest. For example, the difference

between two types is almost 17 percents for the second mode.

Fig. 21 Comparisons of the analysis results

Fig. 22 Natural vibration frequencies and mode shapes
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6. Conclusions

Enhanced and efficient 3-dimensional finite elements for the structural analysis of cable-stayed

bridges are presented in this study. The cable element for the modeling of cables is derived by using

the concept of an equivalent modulus of elasticity and by assuming the catenary function as

deflection curve of a cable. The frame element for modeling the bridge deck and the pylons is

modified through using Taylor’s series expansion as the stability functions to obtain a numerically

stable solution. Various benchmark problems, in which comparable solutions exist, were performed

to verify the accuracy and efficiency of the proposed finite elements. The numerical examples have

illustrated that the proposed finite elements could be very useful for geometrically nonlinear

analysis as well as free vibration analysis of 3-dimensional cable-stayed bridges through analyzing

numerical examples.
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Appendix 

A. Element stiffness matrix

(A.1)

where (or ).

(A.2)

where

(A.3)

where T is the tensile force of a cable.

 (A.4)

where A is the cross-sectional area, L is the length, E is the modulus of elasticity, Iz and Iy are the principal
moment of inertia, and J is the torsional constant of a frame.
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(A.5)

where P is the axial force of a frame.

B. Element mass matrix

(B.1)

where Ix is the polar moment of inertia of a frame.
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C. Conventional stability functions before modifications

In the case of tensile force P (P is positive),

(C.1)

(C.2)

(C.3)

where

 (C.4)

 (C.5)

where

(C.6)

In the case of compressive force P (P is negative),
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