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Abstract. A new method called fuzzy factor method for the stationary stochastic response analysis of
fuzzy truss with global fuzzy structural parameters is presented in this paper. Considering the fuzziness of
the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function
matrix of structural displacement response in time domain is derived by using the fuzzy factor method
and the optimization method, the fuzzy mean square values of the structural displacement and stress
response in the frequency domain are then developed with the fuzzy factor method. The influences of the
fuzziness of structural parameters on the fuzziness of mean square values of the displacement and stress
response are inspected via an example and some important conclusions are obtained. Finally, the example
is simulated by Monte-Carlo method and the results of the two methods are close, which verified the
feasibility of the method given in this paper.

Keywords: fuzzy truss; stationary stochastic excitation; fuzzy correlation function matrix of displace-
ment response; fuzzy factor method; fuzzy mean square values of structural dynamic response.

1. Introduction

Due to kinds of uncertain effects on the production of the structural material, its physical

parameters and geometric dimensions take on uncertainty to a certain extent. Furthermore, the loads

like earthquake, wind and ocean wave applying to structures often take on randomness. Therefore,
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studying the stationary stochastic response of uncertain structure has realistic engineering

background and theoretic signification.

Though the random dynamic response analysis of linear stochastic structure is very complicated

and difficult, some researches on compound stochastic vibration may be found in the literatures

(Jensen and Iwan 1992, Zhao and Chen 2000, Lin and Yi 2001, Li and Liao 2002, Gao et al. 2004).

Jensen and Iwan (1992) studied the response of systems with uncertain parameters to random

excitation by extended the orthogonal expansion method. Gao et al. (2004) analyzed the dynamic

response of structures with stochastic parameters under external non-stationary random excitation by

means of the random factor method, the algebra synthesis method and random variable’s function

moment method. 

With the increasing realization to the uncertainty, however, uncertainties due to inaccurate

measurement, the lack of experimental data and incomplete knowledge of the structure belong to

fuzziness, which should not be dealt with as randomness simply. Some researches on fuzziness have

been done using fuzzy set as Valliappan and Pham (1993), Cherki et al. (2000), Simões (2001), Rao

and Cao (2001), which was put forward by Zadeh (1978) in 1965. Valliappan and Pham (1993)

proposed a model based on the theory of fuzzy sets to take account of the uncertainty in the soil

behaviour, and considered the elastic modulus and Poisson’s ratio as two fuzzy numbers in the

elastic matrix. Rao and Cao (2001) developed a fuzzy boundary element method for the analysis of

imprecisely defined systems and solved the resulting fuzzy equations using a fuzzified version of

Gaussian elimination procedure coupled with truncation. Compared with the structural analysis with

stochastic parameters, dynamic analysis and modeling of structures with fuzzy parameters is of

significance as well, remaining to be studied further.

In this paper, the stationary stochastic dynamic response analysis of truss with fuzzy physical

parameters and geometric dimensions is presented. A new method (Fuzzy Factor Method) is

proposed, in which the influence of each fuzzy parameter on the structural dynamic response can be

reflected expediently. Firstly, the fuzzy correlation function matrix of the displacement response in

time domain is derived by means of the fuzzy factor method, interval arithmetic and the

optimization method. Then fuzzy mean square values of the structural displacement and stress

response in the frequency domain are developed by fuzzy factor method. Finally, the example is

simulated by Monte-Carlo method to verify the feasibility of the method given in this paper. 

2. Structural stationary random dynamic response analysis

Suppose that there are ne bar elements in the analyzed truss. The mass matrix [M] and stiffness

matrix [K] in global coordinate can be expressed respectively as

(1)

(2)

where [K(e)] and [M (e)] are the eth bar element’s stiffness and mass matrix in global coordinate,

respectively; [I ] is 6 × 6 identity matrix; E(e), A(e), l(e) and ρ(e) are the eth bar element’s Young’s

M[ ] M
e( )[ ]

e 1=

ne

∑
1

2
---ρ

e( )
A

e( )
l

e( )
I[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

e 1=

ne

∑= =

K[ ] K
e( )[ ]

e 1=

ne

∑  
e 1=

ne

∑ T
e( )[ ]

TE
e( )

A
e( )

l
e( )

----------------- G[ ] T
e( )[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

= =



Stationary random response analysis of linear fuzzy truss 471

modulus, cross-section area, length and mass density, respectively; [G] is 6 × 6 matrix, where

g11 = g44 = 1, g14 = g41 = −1, other elements are zero; [T (e)] is a transformation matrix that translates

the local coordinates of the eth element to global coordinates, and [T (e)]T is its transpose.

The dynamic equation of the structure under stationary stochastic excitation is

(3)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively. , 

and  are structural displacement vector, velocity vector and acceleration vector, respectively.

{P(t)} is stationary stochastic load force vector. 

Eq. (3) is a set of differential equations coupled to each other. Its formal solution can be obtained

from the decoupling transform and Duhamel integral:

(4)

where [φ ] is the structural normal modal matrix, [φ ]T is its transpose; [h(t)] is the structural impulse

response function matrix and it can be expressed as 

(5)

where

(6)

where ωj and ξj are the jth order structural natural frequency and mode damping respectively; =

. 

From Eq. (4), the correlation function matrix of the structural displacement response  is

(7)

where  is the correlation function matrix of the load {P(t)}.

By performing a Fourier transformation to , the power spectral density matrix of the

displacement response  can be obtained as follows:

(8)

where  is the power spectral density matrix of load ,  is the conjugate

matrix of ,  is the structural frequency response function matrix and can be

expressed as

(9)
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where 

(10)

Integrating  within the frequency domain, the mean square value matrix of the structural

displacement response, that is,  can be obtained

(11)

Then the mean square value of the kth degree of freedom of structural displacement response is

(12)

where  is the kth line vector of the matrix .

From the relationship between node displacement and element stress, the stress response of the

eth bar element in the truss is

(13)

where  is the displacement response of the eth bar element’s nodes,  is stress

response of the eth element, [B] is geometric matrix of the eth element, E (e) is the Young’s module

of the eth element.

From Eq. (13), the correlation function matrix of the eth bar element’s stress response  is

(14)

Thus, the power spectral density matrix of the stress response of the eth element  is

(15)

Then, the mean square value matrix of the eth element’s stress response  is

(16)

3. Fuzzy factor method and interval arithmetic

3.1 L − R representation of fuzzy numbers (Dubois and Prade 1980) and fuzzy factor

method

The definition of fuzzy set A is as follows:

Let X be a classical set of objects, called the universe, whose generic elements are denoted x.

Membership in a classical subset A of X is often viewed as a characteristic function μA from X to

{0, 1} such that
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(N.B.: “iff” is short for “if and only if”.); {0, 1} is called a valuation set.

If the valuation set is allowed to be the real interval [0, 1], A is called a fuzzy set. μA(x) is the

grade of membership of x in A. The closer the value of μA(x) is to 1, the more x belongs to A.

The definition of fuzzy number is: for universe X, a fuzzy set A is called a fuzzy number.

The definition of L − R type fuzzy number is: A function, usually denoted L or R, is a reference

function of fuzzy numbers iff: (1) ; (2) ; (3) L is nonincreasing on

.

A fuzzy number M is said to be an L − R type fuzzy number iff 

L is for left and R for right reference. m is the main value of M. α and β are called left and right

spreads respectively. When the spreads are zero, M is a nonfuzzy number by convention. As the

spreads increase, M becomes fuzzier and fuzzier. Symbolically, an L − R type fuzzy number is

written as .

The fuzzy factor method below is aimed at L − R type fuzzy number.

(1) Let  be an L − R type fuzzy number, MM is its main value, α and β are its

left and right spreads. Taking the grade of membership λ as small as we can to do λ-level cut, the

approximate maximum MR and minimum ML in the value range of M can be obtained, their

deviations from MM represent the fuzzy dispersion degree of M too. Then M can be described as a

fuzzy number . Introduce a fuzzy number without dimension γ = M/MM as the

fuzzy factor of M, main value of γ is 1, its value range representing the fuzzy dispersion degree of

M too is . Then .

(2) If y is a dissymmetrical normal fuzzy number near m, its membership function about fuzzy set

A (Luo 1989) is

(17)

(18)

where m is the main value of y, α and β are left and right spreads. y can then be described as an

L − R type fuzzy number (m, α, β )LR. When α = β, y is a symmetrical normal fuzzy number and it

can be described as an L − R type fuzzy number (m, α, α)LR, and the uniform representation of

Eqs. (17) and (18) (Luo 1989) is .

Because the normal fuzzy number is a special case of the L − R type fuzzy number, and it is

impossible to reach zero and get a bounded fuzzy number in this case, here taking grade of

membership λ small enough to do λ-level cut, the approximate minimum yL and the approximate

maximum yR in the value range of y can be obtained
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(20)

Then y can be described as a fuzzy number . Now introducing fuzzy number

 as the fuzzy factor of y. , and γ represents the

fuzziness of y. Then y = γ · m, main value of γ is 1, and its value range is .

Then other L − R type fuzzy number (m, α, β )LR like triangle fuzzy number can be denoted

 or M = γ · MM as well, where γ is the fuzzy factor of M obtained from the

method above, MM (that is, m) is its main value.

3.2 Interval arithmetic (Alefeld and Claudio 1998)

Interval analysis is a conventional method to deal with uncertainty. 

From the addition, multiplication and division of interval, for two closed intervals: 

=  and , then ,

.

4. Dynamic response of fuzzy truss under stationary stochastic excitation

Considering the fuzziness of structural parameters  and , and the randomness of

applied load  simultaneously. The engineering background of this case is that the stationary

stochastic applied loads act on the truss structure with fuzzy parameters.

When these fuzzy structural parameters are all L − R type fuzzy number, suppose that all bars’

material is homology, from fuzzy factor method, they can be described as 

. where ρM and EM are main values of  and  respectively;  and  are their

fuzzy factors respectively. From fuzzy factor method,  and
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respectively.

Suppose that the fuzzy dispersion degree of all bars’ length is equivalent, and the dispersion

degree of all bars’ cross section area is equivalent as well, from fuzzy factor method, 

and . where  and  are fuzzy main values of  and  respectively;  is the
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AR/AM )

M[ ] M
e( )[ ]

e 1=

ne

∑
1

2
---A

e( )
ρ

e( )
l
e( )

I[ ]⋅ ⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

e 1=

ne
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(22)

where  is the deterministic part of [K] when ,  and ;  is the

deterministic part of [M] when  and .

The fuzziness of structural parameters leads to fuzziness of dynamic characteristic ωi and .

The fuzziness of the dynamic characteristic and the randomness of loads will lead to fuzziness of

the mean square values of dynamic displacement and stress response in the end. 

Substituting Eqs. (21) and (22) into Raleigh quotient of structural vibration 

, then

(23)

where  is the fuzzy factor of ωi; from the interval arithmetic, the value range of  is

 and its main value is 1; ωiM is the main value of ωi. The

fuzzy value range of ωi is .

 in Eq. (23) is fuzzy factor of  and  in Eq. (23) is counteracted, and it is independent to

number of order the same as fuzzy factor ;  is the ith order deterministic natural mode shape

after fuzzy factor  abstracted from ;  is the transpose of .

The solution to the fuzzy factor  is as follows: considering the fuzziness of amplitude of the

fuzzy normal modal matrix , where 

,  is the deterministic normal modal matrix after  is abstracted from .

From mode theory of structural vibration, the equation below holds:
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(26)

Given the known correlation function matrix of load , the load action time t and

time interval ε, let , and the matrix

 can be obtained by using engineering analytical software MATLAB to integrate. Its

element is

(27)

where rij is the ith line and the jth column element of matrix , and it is a fuzzy variable; a1,

 are constants; ωi

and ωj are the ith and jth structural fuzzy natural frequency respectively. 

From the optimization theory, rij is a function with two variables ωi and ωj. Value ranges of ωi

and ωj are  and  respectively, and they construct a protruding set (when ωi is

taken as X-axis and ωj is taken as Y-axis) which is the constraints of the function rij. From the

theory of the non-linear programming and by using indirect optimization method like sequential

unconstrained minimization technique (that is, SUMT), the maximum rijR and the minimum rijL of rij
within the constraints can be obtained. When ωi and ωj in Eq. (27) are taken as ωiM and ωjM

simultaneously, the main value rijM of rij can be obtained.

From fuzzy factor method, the fuzzy factor  of rij can be obtained. The main

value of  is 1, and its value range is . The fuzzy factor  with

largest value range among all  is taken as the uniform fuzzy factor  of matrix

.

Given the known loads’ self-power spectral density and mutual-power spectral density (that is, the

correlation function matrix  of applied loads vector can be obtained by using

Fourier transformation) and the structural fuzzy parameters, for the same load action time t, fuzzy

factor  of the matrix  is independent to the time interval ε. As an evidence, the fuzzy

factor  of a 10-bar fuzzy truss is computed and the results are listed in Table 1, where the load’s

self-power spectral density Spp= 20 N2/s which is a white noise stationary stochastic process acting
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r̃

Table 1  of 10-bar fuzzy truss when different time intervals ε are taken

Time interval
ε (s)

Time of applied 
load action t(s)

Self-power spectral 
density Spp(N

2/s)
Self-correlation function of 

applied load Rpp

Fuzzy factor 
 of 

1e-4 10 20 1799 (1, 0.7935, 1.2764)

1e-2 10 20 −187.098 (1, 0.7935, 1.2764)

1 10 20 −3.0705e-5 (1, 0.7935, 1.2764)

r̃

r̃
rij[ ]s s×
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on one of the nodes, the time of applied load action t = 10s and the structural fuzzy parameters are

the same as those of the example 5 below.

Then Eq. (26) can be described as

  (28)

where  is fuzzy factor of , from interval arithmetic,  =

;  is the deterministic part of  when = 1.

From Eq. (8), the power spectral density matrix of the fuzzy displacement response  is

(29)

where  is the deterministic part of .

From Eq. (11), in frequency domain , the mean square value matrix of displacement

response is

(30)

where  is the deterministic part of  when = 1; when fuzzy factor  and

, the minimum and maximum of  are obtained respectively.

From Eq. (12), the fuzzy mean square value of displacement response of the kth degree of

freedom is

(31)

where  is the deterministic part of ;  is the kth line vector of deterministic normal modal

matrix , and  is its transpose.

From Eq. (14), the fuzzy correlation function matrix of stress response of the eth bar element

 is

(32)

where  is the main value of ;  is the fuzzy factor of , and 

;   is the deterministic part of  when .

From Eq. (15), the fuzzy power spectral density matrix of the eth element’s stress response

 is

    (33)
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2

R̃uR⋅= ), R
σ

e( )
τ( )[ ]

#

R
σ

e( )
τ( )[ ] R̃

σ
1=

S
σ

e( )
ω( )[ ]

S
σ

e( )
ω( )[ ] E

e( )
B[ ] Su

e( )
ω( )[ ] B[ ]TE

e( )
=

R̃
σ

EM

e( )
B[ ] φ[ ]# H ω( )[ ]# φ[ ]#T SP ω( )[ ] φ[ ]# H

*
ω( )[ ]

#
φ[ ]#T B[ ]TEM

e( )( ) R̃
σ

S
σ

e( )
ω( )[ ]

#

=⋅=



478 J. Ma, J. J. Chen, W. Gao and Y. Y. Zhao

where  is the deterministic part (that is, fuzzy main value) of  when .

From Eq. (16), the fuzzy mean square value of the eth element’s stress response is

(34)

where  is the deterministic part (that is, the fuzzy main value) of  when = 1;

when = , the minimum of  is obtained; when = , the maximum of .

In the computational course above, taking the main values of all structural parameters as the

deterministic structural parameters, here ωiM and  can be obtained by engineering software

ANSYS, and ,  can be obtained by

using engineering software MATLAB to program expediently. Additionally, the method presented in

this paper is only applicable to the truss structures with the global fuzzy structural parameters, that

is, the fuzziness of the structural parameters of all elements is respectively equal to each other. 

5. An example

A 20-bar planar truss is taken as the example. All structural parameters are symmetric normal

fuzzy numbers : Young’s module E = (2.1, 0.04, 0.04) × 1011 pa, mass density

ρ = (7.8, 0.02, 0.02) × 103 kg/m3, the bars’ fuzzy dispersion degree is equivalent: {L} = ({l},

0.001{l}, 0.001{l}), bar’s cross-sectional area A = (1.0, 0.003, 0.003) × 10−4 m2; taking membership
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Fig. 1 20 bar planar truss system
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grade λ = 1.365 × 10−11, from fuzzy factor method, they are transferred into fuzzy numbers

: E = (2.1, 1.9, 2.3) × 1011 pa, ρ = (7.8, 7.7, 7.9) × 103 kg/m3, {L}=({l}, {l −
0.005l}, {l + 0.005l}), A = (1.0, 0.985, 1.015) × 10−4 m2. The structural mode damping ξj = ξ = 0.01.

A stationary stochastic (white noise stationary stochastic process) applied load P(t) acts on node 9

along the direction of X-axis. Its self-power spectral density is S0 = 20 N2/s and its center frequency

is ω0 = 45 Hz, and its band width is B = 90 Hz. In the course of computation, the end frequency is

ωc = ω0 + B/2 = 90 Hz. The first ten order modes are chosen to compute. The mean square value of

the 9th-node displacement response in the direction of X-axis  and mean square value of the 1st

element’s stress response  are listed in Table 2, and the fuzzy factors of structural parameters,

natural frequencies and normal mode shapes are given simultaneously.

To verify the feasibility of the modeling and method given in this paper, the example above is

simulated by Monte-Carlo simulation method in which all structural fuzzy parameters are simulated

by similar distribution. The simulation number is 1000. The results of these two methods are listed

in Table 3 and they are very close.

M MM ML MR, ,( )=

ψX9

2

ψ
σ1

2

Table 2 Dynamic response of 20-bar planar truss

Fuzzy variable  

Main value 1 1 1 1 1 1 5.4066 4.7733 × 104

Minimum 0.995 0.905 0.985 0.987 0.984 0.942 4.0409 2.9217 × 104

Maximum 1.005 1.095 1.015 1.013 1.017 1.058 7.3254 7.7545 × 104

l̃ Ẽ Ã ρ̃ φ̃ ω̃ ψX9

2

/10
4–

m
2

( ) ψ
σ1

2

/MPa
2

( )

Table 3 Results of 20-bar planar truss by using different methods

Results of method in this paper Results of Monte-Carlo simulation method

The mean square value of maximal 
displacement response

The mean square value of maximal 
displacement response 

Fuzzy main value 5.4066 Mean value μ 5.3890

Minimum 4.0409 μ − 3σ 4.0780

Maximum 7.3254 μ + 3σ 6.7170

ψX9

2

/10
4–

m
2

( ) ψX9

2

/10
4–

m
2

( )

Table 4 The main value , minimum  and maximum of the mean square value of the 9th-node
displacement response in the direction of X-axis 

Model Fuzzy factor 

5.4066 4.7994 6.0700 (1, 0.8877, 1.1227)

5.4066 3.7741 6.6441 (1, 0.6981, 1.2289)

5.4066 3.9277 7.2677 (1, 0.7265, 1.3442)

5.4066 4.9059 5.9905 (1, 0.9074, 1.1080)

5.4066 3.9959 7.2809 (1, 0.7391, 1.3467)

5.4066 3.6233 8.0668 (1, 0.6702, 1.4920)

5.4066 2.9201 9.8493 (1, 0.5401, 1.8217)

5.4066 4.9082 5.8514 (1, 0.9078, 1.0823)
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To investigate the effects of the fuzzy dispersal degree of E, ρ, l and A on the structural dynamic

response, the different models are selected and the parameter E, ρ, l or A is respectively taken as

fuzzy variable in different groups. The main value , the maximum  and minimum 

of the mean square value of the 9th-node displacement response in the direction of X-axis  are

listed in Table 4 respectively. The main value , the maximum  and minimum  of

the mean square value of the 1st element’s stress response  are listed in Table 5 respectively.

The results in Tables 4 and 5 show that

1) When the fuzzy dispersion degree of E, ρ, l and A equals, the effects of their fuzziness on the

fuzziness of mean square value of the structural displacement and stress response are different. The

fuzziness of bar’s length l produces the greatest effect on the fuzziness of the mean square value of

the structural displacement and stress response, mass density ρ takes second place.

2) When fuzzy dispersion degree of physical parameters are equal to that of geometric

dimensions, the fuzziness of the later affects more on the fuzziness of the mean square value of

structural displacement response, while the fuzziness of former has a greater effect on that of the

mean square value of stress response.

3) Comparing with the conditions that only one kind of fuzziness of E, ρ, l and A is considered,

under the condition that their fuzziness are all considered, the fuzziness of the mean square value of

structural displacement and stress response is greater. 

4) With the increase of the fuzziness of E, ρ, l and A, the fuzzy dispersal degree of the mean

square value of structural dynamic response will increase as well.

6. Conclusions

The fuzzy factor method is presented for the dynamic response analysis of the fuzzy truss

structures under the stationary stochastic excitation, in which the influences of fuzziness of

structural parameters on the fuzziness of the mean square values of structural displacement and

stress response can be reflected expediently and objectively. Specially, we analyze the stationary

stochastic dynamic response of the conventional deterministic structure only one time so that to

obtain the deterministic parts (main values) of the mean square values of the dynamic response by

means of engineering analytical software ANASYS or MATLAB, then the fuzzy mean square
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Table 5 The main value , maximum  and minimum  of mean square value of the 1th
element’s stress response 

Model
(/Mpa2) (/Mpa2) (/Mpa2)

Fuzzy factor 

4.7733 × 104 3.8239 × 104 5.9084 × 104 (1, 0.8011, 1.2378)

4.7733 × 104 2.8406 × 104 5.9027 × 104 (1, 0.6981, 1.2289)

4.7733 × 104 4.3313 × 104 5.2888 × 104 (1, 0.9074, 1.1080)

4.7733 × 104 3.5278 × 104 6.4282 × 104 (1, 0.7391, 1.3467)

4.7733 × 104 3.1294 × 104 7.0740 × 104 (1, 0.6557, 1.4820)

4.7733 × 104 3.1991 × 104 7.1218 × 104 (1, 0.6702, 1.4920)

4.7733 × 104 2.3265 × 104 9.5848 × 104 (1, 0.4874, 2.0080)

4.7733 × 104 4.2902 × 104 5.2177 × 104 (1, 0.8988, 1.0932)
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values of displacement and stress response can be obtained by fuzzy factor method with a small

computational amount. The example shows that the modeling and method of the stationary

stochastic dynamic response analysis of fuzzy truss structure presented in this paper are rational and

feasible.
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