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Abstract. In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for
the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly
distributed load considering the creep effects, are presented. The time-dependent closed-form method for
the particularly straightforward determination of a vertical uniformly distributed load applied over the
entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or
to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-
strain properties of steel cables as well as creep of cables and their rheological characteristics are
considered. In this solution, applying the Irvine’s theory, the direct use of experimental data, such as the
actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results
obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure
range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a
suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-
elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus
concept. At each time step, the suspended cable is analyzed under the applied load and imposed
deformations originated due to creep. This combined time-dependent approach, based on the closed-form
solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region.
The application of the described methods and derived equations is illustrated by numerical examples.

Key words: suspended cable; time-dependent post-elastic analysis; creep of cable; non-linear analysis;
closed-form analysis; discrete combined analysis; stress-strain diagram of cable; elastic limit; deflection
equation of cable. 

1. Introduction

The evaluation of the non-linear response of a suspended cable in the post-elastic region

necessitates the development of accurate and computationally efficient analytical or numerical

model. An important task in the post-elastic analysis of a suspended cable is a consideration of

creep strain of cable corresponding to the stress level at the elastic limit, and/or at the post-elastic

region. Because, the elastic limit is not clearly defined from the stress-strain diagram of cable, one

of the important problems in the analysis and design of a suspended cable in the post-elastic
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(plastic) region is therefore decision of what cumulative post-elastic strains and creep strain

increments are reasonable for the whole suspended cable, concerning its structural serviceability. 

Serviceability criteria referring to deformations of a suspended high strength cable are the

significant factors those influence the design in the post-elastic region. Limits to retain a suspended

cable under serviceability load conditions in the required behaviour interval are related to maximum

values of stresses lain in the post-elastic range. 

The development of advanced analytical techniques for the plastic analysis and design of classical

steel structures has received significant attention recently. Many of the advanced analytical

techniques used in the ultimate load analysis of steel structures have implemented concentrated

plastic-hinge models, although the plastic-zone method of analysis is more computationally

intensive. These methods can not be applicable in case of the cable structures and that is why the

new non-traditional analytical techniques must be developed and applied. Because the elastic limit

is not clearly defined from stress-strain diagram of structural ropes and strands, it is difficult to be

precise about the conditions at the post-elastic response analysis of a suspended cable. 

There have been published only few analytical closed-form studies on the behaviour and analysis

of a suspended cable in the post-elastic region. Because of the difficulties that can arise (it may be

difficult to be precise about the physical conditions in post-elastic region of stress-strain diagram

due to non-existence a clearly defined yield plateau), numerical methods are by far most popular.

Nevertheless, some analytical work has been attempted. Irvine (1981) and Palkowski (1998) have

given comprehensive mathematical formulations for post-elastic problems of suspended cable,

though their solution procedures were different. However, there is a lack of the non-linear post-

elastic rheological analysis of a suspended cable considering creep of cables. So far, there is no

analytical solution for the calculation of the deflection of a suspended cable depending on stress and

time at the post-elastic conditions. That is why, the authors focus on these problems, and elaborating

them they start with the work of Irvine (1981), which has been further complemented. Irvines

convenient form of the cable equations is modified, because the effects of creep strain increments

need to be incorporated in them. A development of the analytical methods for a non-linear solution

of cable structures is still an active area of the research, particularly for a use of the probabilistic

simulation-based reliability assessment of cable structures.

Greenberg (1970) has presented solutions based on numerical methods for the post-elastic

behaviour analysis of cable networks. Jonatowski and Birnstiel (1970) have presented a numerical

procedure for the elasto-plastic response analysis of suspended cables. Saafan (1970) proposed

numerical solutions for cable structures with the introduction of the actual stress-strain properties of

the cables. Murray and Willems (1971) based their analytical method of inelastic suspended

structures on the principle of minimum total potential energy. Contro et al. (1975) have proposed an

inelastic analysis of suspension structures by non-linear programming.

Irvine (1981) has presented analytical closed-form solutions for the post-elastic response of a flat-

sag suspended cable to a point load and a uniformly distributed load. Switka (1988) derived discrete

analytical model of the geometrically and physically non-linear cable structures including plastic

deformations and rupture of cables. Palkowski (1998) has presented an iterative method for the

calculation of suspended cables in the inelastic range. The method is based on the known stress-

strain relation of the cable and the result is obtained by the method of successive approximation and

by the application of the secant modulus of elasticity of the cable. 

Kassimali and Parsi-Feraidoonian (1987) investigated the non-linear behaviour and the ultimate

strength of cable structures considering the effects of large displacements, slackening of members
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and inelastic material properties. This discrete method of analysis established on an Eulerian

formulation accounting the arbitrarily large joint displacements is based on fundamentals previously

developed by Jonatowski and Birnstiel (1970) and Saafan (1970). The incremental relationship

between member end forces and end displacements is expressed by means of the tangent stiffness

matrix originally given by Tezcan (1968). A Newton-Raphson type of iteration is performed to

satisfy the joint equilibrium equations. The non-linear material model of a cable structural member

was proposed by Jonatowski and Birnstiel (1970). Panagiotopoulos (1976) formulated variational

inequality of cable structures (networks) considering the inelastic stress-unilateral behaviour for

infinitesimal incremental displacements. Contri and Schrefler (1977) performed a stability

investigation of cable suspended pipelines. Schrefler et al. (1983) presented a unified formulation

for the geometrically non-linear analysis of combined and cable structures using a total Lagrangian

approach. The complementary energy principle for a cable modelled as one-dimensional continuum

has been presented for large deflection analysis by Cannarozzi (1987).

Most of the recent methods of non-linear analysis of cable structures are based on the

discretisation of the equilibrium equations using FEM and solving the resulting non-linear algebraic

equations by numerical methods (Jayaraman and Knudson 1981, Kmet 1994, Levy and Spillers

1995, Buchholdt 1988, Talvik 2001, Gasparini and Gautam 2002, Kwan 2003, Gattulli et al. 2004,

Zhou et al. 2004, Kim et al. 2004, and others). A bendable finite element for the analysis of flexible

cable structures was proposed by Gosling and Korban (2001). Ivanyi and Topping (2002) presented

a new graph representation for cable-membrane structures modelled using both one- and two-

dimensional elements. Kanno et al. (2002) derived a special method for friction or friction-less

analysis of non-linear elastic cable structures based on second-order cone programming. Hong et al.

(2002) adopted the concept of artificial neural network to develop preliminary design system for

cable-stayed bridges. Lefik and Schrefler (2002) presented an example of the use of an artificial

neural network for parameter identifications of a theoretical elasto-plastic behaviour model of a

super-conducting cable under a cyclic loading. Kanno and Ohsaki (2003) have established the

minimum principle of complementary energy for cable networks involving only stress components

as variables in geometrically non-linear elasticity. Al-Quassab and Nair (2003) applied the wavelet-

Galerkin method to study the free vibrations of a suspended cable. Brew and Lewis (2003)

proposed an efficient numerical tool, which will allow a better integration of the design/analysis/

manufacture of tension membrane structures. Volokh et al. (2003) presented a special approach for

non-linear dynamic analysis of cable structures. Wang and Xu (2003) investigated a wind-rain-

induced vibration of cable. Cheng et al. (2004) presented an improved Monte Carlo method for the

probabilistic determination of initial cable forces of cable-stayed bridges.

The common approach to these investigations is to study the cable structure as a geometrically

non-linear system. However, little attention is paid to the time-dependent post-elastic analysis of a

suspended cable with rheological properties. 

The purpose of this paper is to present the non-linear time-dependent closed-form, discrete and/or

combined solutions for the elastic and post-elastic response of a geometrically and physically non-

linear suspended cable to uniformly distributed load considering the creep effects. For the time-

dependent analysis of a suspended cable, the time domain is divided into a discrete number of time

steps. At each time step, the cable is analysed under the corresponding stress-strain properties and

imposed deformations due to applied load and due to creep. In this paper, the time-dependent

closed-form method for the particularly straightforward determination of the uniformly distributed

load and accompanying deflection at time t those correspond to the elastic limit and/or to the elastic
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region, post-elastic and failure range of a suspended cable considering the creep effects, is

presented. In this solution, applying the Irvine theory, the direct use of experimental data, such as

the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. A

suspended cable is analysed at the initial time t0 and at time t, when creep strain εc(t) under the

corresponding stress level σ (t0) is defined through the experimentally obtained constitutive

equations. 

This approach avoided the use of an incremental procedure, in which the slope of the stress-strain

curve is required at numerous points, as is commonly presented in numerical solutions. On the other

hand, the results obtained by the closed-form solution, i.e., a load corresponding to the elastic

region, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-

dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the

non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and

iterative solution strategies with tangent modulus concept. Known value of the corresponding load

is divided into the required number of load increments at the studied time t. At each time step, the

suspended cable is analysed under the applied load and imposed deformations originated during the

previous time interval due to creep. This combined time-dependent approach, based on closed-form

solution and on the FEM, allows the prediction of the required load that occurs in the post-elastic

region. 

The application of the described methods and derived equations is illustrated by numerical

examples.

2. Time-dependent closed-form solution of suspended cable in the elastic and

post-elastic region

At this point, it is worthwhile explaining the basic terms as post-elastic, plastic, elastic limit and

ultimate strain, those are often used with some different meanings by different authors.

The limiting stress above which the behaviour of cable is no farther elastic is called the elastic

limit. Region in the stress-strain relation, i.e., in the stress-strain diagram of the cable behind the

elastic limit is called the post-elastic and/or plastic region. The main characteristic of elastic strain is

reversibility. Most cables are linearly elastic after a pre-stretching is applied. The strain that does not

disappear after removal of the stress is called the plastic strain. In the present paper a strain

occurred in the elastic region at the time t0 will be marked as εe(t0) (with corresponding stress σe(t0))

and a strain in the post-elastic region, i.e., in the plastic region will be marked as εp(t0) (with

corresponding stress σp(t0)). 

Steel cables stretch in effect of tensile axial stress. This extension and/or strain are of two kinds,

particularly an elastic one and an inelastic one, i.e., permanent (or plastic). The elastic part of the

cable strain primarily depends on elastic stretching of contained wires, so it is influenced by

modulus of elasticity of the wires and the cable construction. Primarily, inelastic strain is affected by

the cable pulling, when single wires are mutually pulled together or the cable core is compressed

transversally. As a result of that the deformation of cables is then bigger and the modulus of

elasticity smaller than in individual wires. Strain and modulus of elasticity of each steel cable are

dependent on many factors, especially on the structure, i.e., on the geometry of the cable (on the

number of layers of wires in a strand, on the number of strands in a cable, on number and shape of

wires in a layer, on the height of wire stranding in a strand and that of strands in a cable), and
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further on the magnitude of loading and the number of loading cycles, on cable treatment and

lubrication, etc. A pre-stretching load of about 55 percent of the breaking load is usually applied to

remove constructional looseness in the cables. 

In the first section of the stress-strain diagram (see Fig. 4), which is limited by the elastic limit

εe, lim(t0), there is relatively uniform increase of strain εe(t0) with increasing tensile stress σe(t0), and

the course of stress-strain can be considered as a linear one. The second part of the stress-strain

diagram, behind the elastic limit, is characterized by a considerable increase of the post-elastic

permanent strain εp(t0). The stress-strain curve is rising ever more slowly till rupture of the cable,

when ultimate tensile strength σu(t0) with corresponding ultimate strain εu(t0), is achieved. Typically

the elastic limit σe, lim(t0) is achieved at about 50 percent of the ultimate tensile strength σu(t0).

The closed-form static solution of a suspended cable will proceed on the following assumptions:

Perfectly flexible cable, working only in tension and having zero stiffness in compression and

bending will be assumed. The profile of a uniform cable hanging under its own weight between two

supports is flat, so that the ratio of sag to span is 1:8 or less (hence, d/l ≤ 1/8 is considered). Most

of the suspended cables used for structural purposes are within this category. The analysis will be

hold for suspended cables under vertical uniformly distributed static load, with no slackening

behaviour and no unloading behaviour in plastic region. Loading is monotonically increasing, being

distributed over the ground plan of the cable projection. The cable is homogeneous with a constant

cross section along its entire length. The expression for a cable length is expanded into a binomial

series, considering just its first two terms. All relationships for geometrical and force quantities of a

suspended cable will be expressed by means of a cable horizontal force which is constant

everywhere along the cable since no longitudinal load is acting. 

For the time-dependent analysis of the suspended cable, the time domain is divided into a discrete

number of time steps. At each time t, the structure is analysed under uniformly distributed load of

intensity q, per unit span and under the imposed deformations due to the elastic, post-elastic and

creep strains. The response results are compared with those obtained at the initial reference time t0.

All the approaches are fully automated through a computer program. 

2.1 Response of cable to uniformly distributed load at the elastic region 

Consider a suspended cable with a span l, hanging under its self-weight g0 between two supports

those are not at the same level as shown in Fig. 1. The following equation for the initial reference

profile z(x, t0) of this cable at time t0 is given by 

 (1)

where β is the inclination of the connecting line of the suspension points of the cable with the

horizontal x axis. The horizontal component of cable tension H(t0) of the cable loaded only by its

self-weight g0 per unit length at the starting initial time t0 is generally defined as a ratio of a

bending moment M(x) at an investigated x cross section of the simple horizontal beam with the

same span and load as the investigated cable to a sag d(x) measured from the connecting line of

suspension points. Hence, H(t0) can be written as H(t0) = M(x)/d(x). The horizontal component of

cable tension H(t0) for a suspended cable with the mid-span sag d, hanging under its self-weight g0

between two supports at the same level (β = 0), is given as H(t0) = g0l
2/8d. 

z x t0,( )
g0

2H t0( )cosβ
---------------------------- x l x–( ) xtanβ+=
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2.1.1 Deflection and cable equation as the time functions

In this section, the characteristic time-dependent equations for the non-linear elastic response of a

suspended cable to a vertical uniformly distributed load q at time t are derived and presented.

Suppose that under applied vertical uniformly distributed load q and under self-weight g0 the

shear force at some cross section x along the span of a suspended cable is Q = (ql/2)(1 − 2x/l) +

(g0l/2cosβ )(1 − 2x/l). Then, the vertical equilibrium at a cross section of the deformed cable at time

t requires that

 (2)

where w(x, t) is the additional vertical cable deflection and ΔH(t) is the increment in the horizontal

component of cable tension N(t) at the investigated time t. The resultant horizontal component of

cable tension N(t) is given as H(t) = H(t0) + ΔH(t). The right-hand side of the equilibrium Eq. (2) is

analogous to the shear force in a simple supported horizontal beam of uniform weight under the

action of a uniformly distributed load (the span of the beam is the same as that of the suspended

cable). Eq. (2) may be integrated directly, and after the boundary conditions have been satisfied, the

additional vertical deflection w(x, t) at time t is 

 (3)

To complete the solution, ΔH(t) must be determined. Use is made of a cable equation that

incorporates elastic (application of the Hooke’s law), creep and temperature strain to provide a

closure condition at investigated time t relating the changes in cable tension force to the changes in

cable geometry when the cable is displaced from its original equilibrium profile.

If ds(t0) is the original length of the cable element and ds(t) is its new length at time t, then

 and , where u(x, t) and w(x, t)

are the longitudinal and vertical components of the displacements of the cable element, respectively.

If the profile of the cable is flat, so that the ratio of its sag to span is 1:8 or less, the fractional

change in its length, correct to the second order of small quantities, is

 (4)

H(( ) t0( ) H t( ) )
 

d

xd
----- z x t0,( )( )(Δ w x t,( ) )+ + Q H t0( ) HΔ t( )+( )tanβ+=

w x t,( ) 1

H t0( ) H t( )Δ+

----------------------------------
ql

2
-----x 1

x

l
--–⎝ ⎠

⎛ ⎞ H t( )g0lΔ
2H t0( )cosβ
----------------------------x 1

x

l
--–⎝ ⎠

⎛ ⎞
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

s t0( )d( )2 x
2

d z
2

d+= s t( )d( )2 xd u x t,( )d+( )2 zd w x t,( )d+( )2+=

s t( )d s t0( )d–

s t0( )d
--------------------------------

u x t,( )d

s t0( )d
------------------

xd

s t0( )d
--------------

w x t,( )d

s t0( )d
-------------------

zd

s t0( )d
--------------

1

2
---

w x t,( )d

s t0( )d
-------------------⎝ ⎠

⎛ ⎞ 2

+ +=

Fig. 1 Profile geometry of a suspended cable at initial time t0
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In the cable element of a vertically loaded suspended cable of appreciable curvature, the longitudinal

displacement component is much smaller than the transverse one. Accordingly, the axial strain

, related to the current displacement of the cable element, can be

evaluated through the following simplified expressions  and

. Thus the corresponding axial strain ε(t) is obtained from a solution of the

quadratic equation  =0. 

By the effect of the increment in axial tension force ΔN(t) exerted on the cable element, the

elastic element of the cable ds(t0) (ds(t0) here denotes the length at the equilibrium state under its

self-weight) is extended by Δds(t) = ds(t) − ds(t0). Assuming Hooke’s law, the constitutive equation

is usually written in the form of 

(5)

where E(t) is the modulus of elasticity of the cable at time t and A is the cross-sectional area of the

cable. The change in cable strain Δε (t) due to increment in tension is given by Δε (t) = ε (t) − ε0(t0).

The strain of cable ε0(t0) under its self-weight has low order of magnitude and will be ignored here

(i.e., ε0(t0) = 0). Consequently, considering ε0(t0) = 0 and substituting ΔN(t) = Δ(H(t)ds(t0)/dx into

Eq. (5) leads to the following expression

 

 (6)

If the effect of a creep strain εc(t) of the cable at time t and the effect of a uniform temperature

difference of (where T(t0) and T(t) are the initial and computational temperature

of the cable, respectively) are considered, terms εc(t) and  need to be added to the

elemental equation, where α is the coefficient of expansion. On the basis of Eq. (4) and Eq. (6), the

cable equation for the element can be written as 

(7) 

After multiplication of Eq. (7) by (ds(t0)/dx)2, one obtains

 (8)

If the effects of elastic cable deformation, assuming Hooke’s law, as well as the effects of creep

strain and of temperature change and the fractional change in length of the cable, correct to the

second order of small quantities are considered, the cable equation follows the general integrated

form as 

(9) 

ε t( ) sd t( ) sd t
0

( )–( )/ sd t
0

( )=
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2
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where Le, Lc and LT are the members connected with the length of the non-loaded cable under its

own weight g0 at time t0. They can be determined from the following expressions

 (10) 

 (11) 

After respective adjustment of cable Eq. (9) for a continuous uniformly distributed load, the

increment in the horizontal component of cable tension force ΔH(t) at time t, can be obtained.

Substituting Eq. (1) and Eq. (3) into Eq. (9), and performing the necessary integration, the following

cubic equation for ΔH(t) as a time function is found as

(12) 

The strain increment εc(t) of the cable at time t under non-linear creep (at constant stress level

σ (t0)) is characterised by a constitutive equation in the form of the logarithmic-exponential

approximation function as 

 (13)

with coefficients a, b and c for the corresponding stress level σ. On the base of creep tests the

concrete forms of the constitutive equation were obtained (Kmet 2004, Kmet and Holickova 2004).

By statistical investigation of the resultant creep curves the optimal creep constitutive equations for

steel cables were found. Values of their coefficients depend on the stress level and/or on the load of

a suspended cable. 
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Fig. 2 Geometry and loading of a suspended cable
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If horizontal supports flexibilities of fax(t) and fbx(t) (elastic and viscoelastic yielding supports)

occur at each end, respectively, as shown in Fig. 2 one may replace the axial tension stiffness E(t)A

of the cable by the modified stiffness at time t given by 

 (14)

where , and then proceed as if the supports were unyielding.

In a non-linear elastic analysis of a suspended cable the increment of the horizontal component of

cable tension ΔH(t) and the corresponding additional deflection w(x, t) at time t are generally the

dependent variables, while a uniformly distributed load q, stiffness and geometrical parameters of

the cable, i.e., modulus of elasticity of the cable E(t), cross-sectional area of the cable A at time t,

the members connected with lengths of the cable Le, Lc and LT under g0 and the horizontal

component of cable tension H(t0) at time t0 are the independent variables. However, in non-linear

closed-form post-elastic analyses the situation is best reversed. In the post-elastic range the cable

stress σp(t0) with the corresponding post-elastic strain εp(t0) at the initial time t0 and the

accompanying creep strain εc(t) at time t are known from the stress-strain as well as from the strain-

time (creep curves under corresponding stress levels) properties of the cable. Thus, the dependent

variables, i.e., uniformly distributed load corresponding to the post-elastic region qp(t) and the

associated deflection wp(x, t) at time t, may be unambiguously determined. 

The elastic limit represents the limit of applicability of Eq. (3) and Eq. (12). The reverse approach

described for the post-elastic analysis we shall also apply in the following closed-form solution for

the elastic region. 

2.1.2 Uniformly distributed load and associated deflection of cable corresponding to the

elastic limit and/or to the elastic region as time functions

This section will be focused on developing simple time-dependent equations for determining the

uniformly distributed load and also the associated deflection of the suspended cable corresponding

to the elastic limit and/or to the elastic region at required times. 

The cable stress σe(t0) and accompanying strain εe(t0) corresponding to the elastic limit and/or to

the elastic region are determined from the experimentally obtained stress-strain diagram of the

cable. The corresponding creep strain εc(t) of the cable is determined from the adequate creep curve

(creep strain – time diagram) or is calculated from the adequate constitutive equation of creep. It is

known that the elastic limit of cables cannot be directly defined as in the case of tension tests of

steels. Typically for cables, the elastic limit σe,lim(t0) is reached at about 50 percent of the ultimate

tensile strength σu(t0). 

The horizontal component of cable tension force  will be used in the

following analyses. For the geometries under consideration  the cable axial tension force

Ne(t0) is, at most, about 10 percent higher than its horizontal component He(t0). This small variation

can be compensated by the decrease of the horizontal component of cable tension. For this purpose

the coefficient 1,1 can be used. Therefore the horizontal component of cable tension He(t0)

corresponding to the elastic limit and/or to the elastic region can be determined as

 (15)

where σe(t0) is the known stress at the elastic limit and/or from the elastic region and A is the cross-
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sectional area of the cable.

Substituting  into Eq. (12) and performing its necessary

arrangement, the following quadratic equation for uniformly distributed load qe(t) corresponding to

the elastic limit and/or to the elastic region at time t is found as

 (16) 

Because of simplification, the following denotation for the absolute term in Eq. (16) can be

accepted as

(17)

and the equation for qe(t) at time t is in the form as

 (18)

From Eq. (3) the corresponding additional deflection under this load at time t is given by 

 (19)

These equations are not restricted to elastic limit conditions but may be used for any part of the

elastic region.

2.2 Uniformly distributed load and associated deflection of cable corresponding to the

post-elastic region as time functions

After the elastic limit of the cable is reached, the problem of the response becomes more difficult
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because it is non-linear both with respect to geometrical and also material properties. 

As the load exceeds the elastic region, irreversible inelastic strains increase and the cable is

characterized by a non-linear post-elastic behaviour. Because the equilibrium of forces has to be

maintained, so the equations for additional deflection are of the same form as previously. Therefore

Eq. (3) can be applied and the expression for the additional deflection at time t of suspended cable

in the post-elastic region of its stress-strain curve is given by 

 (20)

The horizontal component of cable tension force corresponding to the post-elastic condition Hp(t0) is

considered as

 (21)

where σp(t0) is the stress at the post-elastic region and A is the cross-sectional area of the cable.

Cable stress σp(t0) corresponding to the post-elastic region and the accompanying strain εp(t0) as

well as the creep strain εc(t) are determined following the cable stress-strain properties and/or

following the creep strain-time curve of the cable, respectively. Consequently, by means of the

mentioned inputs, a uniformly distributed load corresponding to the post-elastic range qp(t) and the

associated deflection wp(x, t) at time t may be found. 

The compatibility cable equation as a time function at the post-elastic condition is changed, but

not substantially. Its integrated form is given by

 

 (22) 

where εp(t0) is the strain of the cable at the post-elastic region at the time t0 and ε0(t0) is the strain in

the cable under its self-weight in its initial unloaded profile at the time t0.

Substituting Eqs. (1) and (20) into Eq. (22) and performing the necessary integration, the

following quadratic equation for a uniformly distributed load qp(t) corresponding to the post-elastic

region at time t is found

(23)

Because of simplification, the following denotation for the absolute term in Eq. (23) can be
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(24)

and the equation for qp(t) at time t (considering creep strain of the cable εc(t)) is in the form as

 (25)

with just one positive real root at time t given by

 (26)

The deflection at the mid-span (x = l/2) of the suspended cable with supports at the same level

(β = 0) in the post-elastic region at time t is given as 

 (27)

2.3 Uniformly distributed load and associated deflection of cable corresponding to its

ultimate capacity as time functions

At an ultimate condition, the additional deflection wu(x, t) at time t can be calculated from

Eq. (20) in which Hp(t0) is replaced by the horizontal component of cable tension force

corresponding to the ultimate condition Hu(t0) and qp(t) is replaced by qu(t). Hu(t0) is assumed as

 (28)

where σu(t0) is a stress at the ultimate limit and A is a cross-sectional area of the cable.

An uniformly distributed load qu(t) corresponding to the ultimate limit at time t, considering the

creep strain εc(t), can be obtained from Eq. (26) in which qp(t) is replaced by qu(t) and Ωp(t) is

replaced by Ωu(t) where the ultimate strain εu(t0) instead of εp(t0) has to be introduced into the

expression (24). 

An additional deflection wu(t) at the mid-span (x = l/2) of the suspended cable with supports at the

same level (β = 0) under the ultimate condition at time t can be calculated analogously to Eq. (27). 

3. Combined time-dependent closed-form and discrete solution 

Effective approach for the time-dependent geometrically and physically non-linear analysis of a

suspended cable in the post-elastic region can be established on the suitable combination of the

closed-form solution presented with the conventional discrete FEM. 

Closed-form solution based on the simple one-step technique enables to frame an initial quantity
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of the uniformly distributed load corresponding to the individual levels, i.e., to the level at the

elastic and post-elastic region. For the discrete analysis of the non-linear suspended cable this initial

value is needed, due to the incremental procedure that is used for a solution. This known value of

the corresponding load is divided into a required number of load increments at the studied time t. 

Results obtained by closed-form solution, i.e., the load corresponding to the elastic or post-elastic

region is used as input into the discrete FEM. This direct finding of the required load is the basic

advantage of appropriate combination of mentioned methods. It should, also be noted that this

combined method can cause a reduction of CPU times, which may often be desirable. 

The proposed combined method allows one to assess the structural safety and serviceability of

suspended cable in the post-elastic region. This method allows one to evaluate the influence of post-

elastic and creep strains on the short- and long-term behaviour of the suspended cable. By this

method, the stress redistributions can be evaluated and mainly the excessive deflections of a

suspended cable that can occur in the post-elastic region, may be assessed. 

Combined non-linear time-dependent method based on the combination of the closed-form

solution with the discrete FEM for the behaviour analysis of the suspended cable in the post-elastic

region can be briefly described by the following expressions. 

The fundamental system of non-linear equilibrium equations of the suspended cable at time t can

be expressed as

 

(29)

where  is the global incremental stiffness matrix of the suspended cable;  is the

incremental vector of the nodal displacements and ΔQ(t) is the incremental load vector. 

The transformation of the uniformly distributed load qp(t) (given by Eq. (26)), that correspond to

the post-elastic region at time t, into the discrete load vector Qp(t) of a cable finite element in the

direction of vertical z axis is considered in 2D as 

 (30)

 

where a is the corresponding loading length. Substituting Eq. (30) into Eq. (29), the following

system of non-linear equilibrium equations, in the incremental combined form, is obtained 

(31)

The incremental nodal load vector  (at 2D) of a cable finite element in the direction of

vertical z axis is defined as 

(32)

Eq. (31) characterizes the strategy of the combined time-dependent closed-form and discrete

solution. That enables to use directly the loading vector  corresponding to the level in the

post-elastic region of the suspended cable obtained by the closed-form solution. This approach

offers an effective tool for the time-dependent non-linear post-elastic behaviour analysis of large-

span cables with the rheological properties. 
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An analogous approach can be applied for the elastic region of suspended cables and the

following system of non-linear equilibrium equations, in the incremental combined form, can be

found as 

(33)

where  is given by Eq. (17).

Full derivation and details of the FEM presented can be found in Kmet (1994). The created

transformation model has been implemented into the LANSTAT software.

It should, just be noted that the combined approach presented can also be applied by means of an

arbitrary available FEM based software such as COSMOS/M, ANSYS etc. 

4. Numerical applications and discussions of the results

The following examples are given to characterize the application of the derived theories to

practical problems. Numerical illustration of the developed closed-form and combined discrete

methods (as LANSTAT and COSMOS/M software are used) was carried out on the suspended cable

with immovable supports shown in Fig. 3. The structural response of suspended cable is obtained

using two developed analytical models. 

First, the uniformly distributed load and the accompanying deflection corresponding to the elastic

limit, post-elastic and failure range is calculated in a closed-form model, secondly combined FEM is

applied. Resulting responses, i.e., deflections determined according to mentioned two models are

compared.

The two suspended cables with the different properties used as the examples were selected for the

investigation of their elastic and post-elastic behaviour and for the illustration of the mentioned

methods. The first suspended cable analysed was the cable without the creep effect. As the second

case, time-dependent behaviour of the suspended cable with the creep effect was studied.

4.1. Characteristic of suspended cable and input data

Consider a suspended cable (see Fig. 3) with the suspension points at the same level (accordingly

β = 0 and cosβ = 1), with a span l = 60 m and the mid-span sag d = 6 m (so the sag to span ratio is
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Fig. 3 Geometry and loading of the investigated suspended cable
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1: 10). There is a vertical uniformly distributed load q applied over the entire span. In the case of

the discrete analysis, the uniformly distributed load is replaced by equivalent concentrated load

forces. Thus, the point loads are applied at nodes of the suspended cable. The following properties

for a steel wire spiral-strand cable with a diameter D = 45,9 mm are specified: A = 1240 mm2 =

1240.10−6 m2 and g0 = 0,1015 kNm−1. The minimum carrying capacity is Nu,min = 1805,0 kN. The

horizontal component of cable tension H(t0) of the suspended cable under its self-weight g0 at the

initial time t0 is H(t0) = g0l
2/8d = 0,1015.602/8.6 = 7,6125 kN. The corresponding strain in the cable

(with its initial unloaded profile at the time t0) under its self-weight is ε0(t0) = 0,00003288. The

Young’s modulus of elasticity of the cable is E(t0) = 169700 Nmm−2 = 1,697.108 kNm−2.

Young’s modulus affects the behaviour of suspended cables at the initial conditions and naturally

also during their entire expected service-life (Lewis 2003). Therefore, in the case of the non-linear

discrete analysis, at all stress levels in the post-elastic region, the corresponding instantaneous

tangential values of the Young’s modulus (according to the relationship ),

reflecting the stress-strain curve of the cable will be determined. In this study the stress-strain

diagram of a cable as shown in Fig. 4 is considered. The following polynomial form for an

approximation function of the non-linear stress-strain diagram is defined 

 

(34)

4.2 Time-independent analysis at the initial time t0

4.2.1 Closed-form analysis

The length of the non-loaded cable under g0 at time t0 is equal to =

60[1 + (0,10152.602/8.7,61252)] = 64,8 m.

Results, i.e., uniformly distributed loads qe(t0) of the suspended cable those are obtained by the

closed-form solution (as Eq. (18) for the load and Eq. (19) for the deflection are used) under the

corresponding elastic stresses σe(t0) = 84,85; 169,70; 254,55; 339,40; 424,25; 509,10; 593,95 and

678,80 Nmm−2, with the accompanying elastic strains εe(t0) = 0,0005; 0,001; 0,0015; 0,002; 0,0025;

0,003; 0,0035 and 0,004 are shown in Fig. 5. The associated mid-span deflections we(t0) of the

suspended cable under the corresponding strains and stresses in the elastic region are shown in Fig. 6. 

The uniformly distributed loads qp(t0) of the suspended cable obtained by the closed-form solution

(as Eq. (26) for the load and Eq. (27) for the deflection are used) under the corresponding post-
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Fig. 4 Stress-strain diagram of the investigated cable
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elastic stresses σp(t0) = 762,16; 833,36; 898,45; 957,34; 1010,15; 1057,11; 1098,55; 1134,90;

1166,59; 1194,11; 1217,94 and 1238,55 Nmm−2, with the accompanying post-elastic strains

εp(t0) =0,0045; 0,005; 0,0055; 0,006; 0,0065; 0,007; 0,0075; 0,008; 0,0085; 0,009; 0,0095 and 0,01,

are shown in Fig. 5. The associated mid-span deflections wp(t0) of the suspended cable under the

corresponding strains and stresses in the post-elastic region are shown in Fig. 6. 

Typically the elastic limit of cables σe is reached at about 50 percent of their ultimate strength σu.

In our case, the stress σe, lim(t0) = 746,68 Nmm−2 with the accompanying strain εe, lim(t0) = 0,0044 at

the elastic limit are reached at 51,32 percent of the ultimate strength σu = 1455 Nmm−2.

The elastic limit (i.e., the boundary between the elastic and post-elastic region) can be obtained by

the successive elastic (as Eq. (18) and Eq. (19) are used) and post-elastic (as Eq. (26) and Eq. (27)

are used) solutions within the expected interval with the adequate densification of considered

stresses. For this purpose the stresses σe, p(t0) = 678,80; 695,77; 712,74; 729,71; 747,21; 762,16;

776,87; 791,36; 805,60; 819,60 and 833,36 Nmm−2, with the accompanying strains εe, p(t0) = 0,0040;

0,0041; 0,0042; 0,0043; 0,0044; 0,0045; 0,0046; 0,0047; 0,0048; 0,0049 and 0,005, are used. At the

elastic limit (for σe, lim(t0) = 746,68 Nmm−2 and εe, lim(t0) = 0,0044), the uniformly distributed loads

qe(t0) and qp(t0) of the suspended cable, as well as the associated mid-span deflections we(t0) and

wp(t0), obtained by the closed-form elastic and post-elastic solutions, respectively, are approximately

equal, as is shown in Fig. 7. 

It is obviously advisable to be conservative in use the ultimate strength σu. It seems reasonable to

reduce σu by about 10 percent. Also the value of ultimate strain εu(t0) as measured in tension tests

should not be used. Therefore values of εu those are equal approximately half of the test values

εu, test are acceptable (Greenberg 1970). Consequently, in our examples, the ultimate strength

Fig. 5 Uniformly distributed load qe, p(t0) of the
suspended cable under the corresponding
stresses σe, p(t0) and the accompanying strains
εe, p(t0)

Fig. 6 The associated mid-span deflections we, p(t0) of
the suspended cable under the correspond-
ing stresses σe, p(t0) and the accompanying
strains εe, p(t0)
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Fig. 7 The boundary of elastic and post-elastic region obtained by the elastic and post-elastic solutions.
Uniformly distributed load qe(t0) and qp(t0) - (a), and the associated mid-span deflections we(t0) and
wp(t0) - (b), of the suspended cable under the corresponding stresses σp(t0) and the accompanying
strains εp(t0) 

Fig. 8 Comparison of the uniformly distributed load - (a) and of the deflection - (b), at the elastic and ultimate
limits
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σu(t0) = 1455 Nmm−2, and the ultimate strain εu(t0) = 50%εu, test = 0,5.0,06 = 0,03 (for εu, test = 0,06)

are considered. 

The uniformly distributed load qu(t0) and the associated mid-span deflection wu(t0) of the

suspended cable obtained by the closed-form solution under the ultimate strength σu(t0) =

1455 Nmm−2
 and under the ultimate strain εu(t0) = 0,03 are shown in Fig. 8. Comparison of the

uniformly distributed loads and the associated mid-span deflections at the elastic limit (qe, lim(t0);

we, lim(t0)) with those at the ultimate limit (qu(t0); wu(t0)) is shown in Fig. 8, too.

For the steel typically used in cables, the ratio of strain at ultimate to strain at elastic limit is

small, being of the order of 10. This may be contrasted with mild steels, which have a clearly

defined yield plateau, where typically this ratio may be of the order of 100 or more. 

The load causing failure of suspended cable is substantially greater than the load pertaining to the

elastic limit. A suspended cable resists to applied load by changes in tension forces and geometry.

Tension changes occur because of the pronounced strain-hardening characteristic of the high-

strength steels used in cables, for which there is no clearly defined yield plateau. Failure will occur

when the ultimate strain is reached in some part of the cable. A characteristic of flat suspended

cables (as sag to span ratio of 1:8 or less is considered) is that small changes in cable length give

rise to substantial changes in cable geometry. Therefore, even though the strain ratio at ultimate may

be small, this behaviour together with the strain-hardening effect makes it possible for the load that

causes failure to be often substantially in excess of that which just exceeds the elastic limit.

4.2.2 Combined discrete analysis 

The loads corresponding to the individual strain and/or stress levels at the elastic and the post-

elastic region, i.e., qe(t0) and qp(t0) respectively, obtained by closed-form solutions, were used in the

combined discrete FEM analysis (as LANSTAT and COSMOS/M software are used). The known

intensity of the load at the appropriate region and its direct use in the discrete non-linear analysis

based on the incremental techniques belongs to the basic advantage of the combined approach. For

the discrete analysis, the uniformly distributed load is replaced by the equivalent concentrated load

forces, those are applied at nodes of the cable. The suspended cable was divided into 60 finite

elements. Solving the non-linear problem, for every increment of the load the Newton-Raphson

iterations were applied (at every investigated time t). The number of loading increments depends on

a type of the analysis. In the case of the post-elastic analysis under the high stress levels and under

the associated low values of the Young’s modulus E(σ, t), those reflect the stress-strain curve of the

cable, a large number as far as of 500 increments, due to the strong non-linearity, was necessary. 

The mid-span deflections we(t0) of the suspended cable under the corresponding elastic stresses

σe(t0) = 84,85; 169,70; 254,55; 339,40; 424,25; 509,10; 593,95 and 678,80 Nmm−2, with the

accompanying elastic strains εe(t0) = 0,0005; 0,001; 0,0015; 0,002; 0,0025; 0,003; 0,0035 and 0,004,

obtained by the closed-form and discrete solutions, are shown in Fig. 9. The mid-span deflections

wp(t0) of the suspended cable under the corresponding post-elastic stresses σp(t0) = 762,16; 833,36;

898,45; 957,34; 1010,15; 1057,11; 1098,55; 1134,90; 1166,59; 1194,11; 1217,94 and 1238,55 Nmm−2,

with the accompanying post-elastic strains εp(t0) = 0,0045; 0,005; 0,0055; 0,006; 0,0065; 0,007;

0,0075; 0,008; 0,0085; 0,009; 0,0095 and 0,01, obtained by the closed-form and discrete solutions,

are shown in Fig. 10. 

Loading and deflection of the suspended cable in the form of a graphical output of a

postprocessor as the LANSTAT software is used, is shown in Fig. 11. 

Resultant responses, i.e., deflections determined according to the mentioned models are compared.
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Results obtained in the elastic region (Fig. 9) are in good agreement. There are differences between

the results in the post-elastic region (see Fig. 10). These are caused by the different approaches. The

discrete solution enables the actualization of the geometrical and stiffness properties of a suspended

cable for every finite element during the calculation. 

The presented post-elastic analyses are useful when we need to increase a utilization of the high-

strength steel cables frequently used in suspended cable structures. Particularly, they are suitable for

Fig. 9 The mid-span deflections we(t0) of the suspended cable under the corresponding elastic stresses σe(t0)
and the accompanying elastic strains εe(t0), obtained by the closed-form and the discrete combined
solutions

Fig. 10 The mid-span deflections wp(t0) of the suspended cable under the corresponding post-elastic stresses
σp(t0) and the accompanying strains εp(t0), obtained by the closed-form and the discrete combined
solutions
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making the decision: what cumulative post-elastic extension with accompanying deflection is

reasonable for the whole cable. In these cases the design of suspended cables in the post-elastic

region is more effective in comparison with the elastic one. 

4.3 Time-dependent analysis 

When the creep data of a suspended cable are available, we can realize the time-dependent

response analyses by the closed-form and discrete combined model. The problem is to find the

uniformly distributed load q(t) (using the closed-form solution) corresponding to the elastic and

post-elastic regions and the associated mid-span deflection w(t) at the investigated times t = t0 = 0

days (initial time), t = 1; 10; 100; 1000 and 10000 days. For this purpose the creep strains εc(t) at

the investigated times corresponding to the required stresses σe and σp at the elastic and post-elastic

region respectively, are calculated from the logarithmic-exponential constitutive Eq. (13), that is

given in the form as

(35)

The coefficients a, b and c in Eq. (35) for the required stress levels, as a number of percentages of

the actual ultimate load carrying capacity of the cable σu = 1455 Nmm−2 are given in Table 1. The

units of time t into Eq. (35) is necessarily in days, thus the resultant εc(t) is dimensionless.

The length of the non-loaded cable under g0 at time t0 is equal to

 = 60[1 + (0,10152.602/12.7,61252)] = 63,2 m.

4.3.1 Elastic region

The uniformly distributed loads qe(t) of the suspended cable obtained by the closed-form solution

(as Eq. (18) for the load and Eq. (19) for the deflection are used) under the corresponding elastic

stresses σe(t0) = 84,85; 169,70; 254,55; 339,40; 424,25; 509,10; 593,95 and 678,80 Nmm−
2, with the

εc t( ) 0,001 a clnt+( ) 1 e
bt–

–( )=

Lc l 1 g0

2
l
2
/12H

2
t0( )( )+[ ]=

Fig. 11 Loading - (a) and deflection - (b) of the suspended cable in the form of a graphical output of a
postprocessor as the LANSTAT software is used
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accompanying elastic strains εe(t0) = 0,0005; 0,001; 0,0015; 0,002; 0,0025; 0,003; 0,0035 and 0,004,

at the investigated times t = t0 = 0 days (initial time, i.e., without creep), t = 1; 10; 100; 1000 and

10000 days, are shown in Fig. 12. These obtained loads were used in the time-dependent discrete

combined FEM analysis (as LANSTAT software was used). The associated mid-span deflections

we(t) of the suspended cable at the investigated times obtained by the closed-form and discrete

Table 1 The coefficients a, b and c for the required stress levels of the logarithmic-
exponential creep constitutive equation of the cable

% σu a b c

(%) (−) (−) (−)

23 0,20506 3583,71 −0,0002

25 0,225702 3257,647 0,000862

30 0,279691 2511,556 0,004134

35 0,336852 1999,831 0,00833

40 0,397113 1621,747 0,013498

45 0,460404 1322,79 0,019652

50 0,526774 1065,143 0,026767

55 0,757447 1339,503 0,061957

60 1,020605 1866,129 0,102997

65 1,317163 3278,96 0,149428

75 2,017433 3918,502 0,255023

80 2,417719 3768,74 0,315898

85 2,851148 3577,115 0,382297

Fig. 12 The uniformly distributed loads qe(t) of the suspended cable under the corresponding elastic stresses
σe(t0) at the investigated times t 
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solutions are shown in Fig. 13. Resultant deflections obtained by the present closed-form solution

are little greater than those obtained by non-linear FEM. 

4.3.2 Post-elastic region

The resultant uniformly distributed loads qp(t) of the suspended cable obtained by the closed-form

solution (as Eq. (26) for the load and Eq. (27) for the deflection are used) under the corresponding

post-elastic stresses σp(t0) = 762,16; 833,36; 898,45; 957,34; 1010,15; 1057,11; 1098,55; 1134,90;

1166,59; 1194,11; 1217,94 and 1238,55 Nmm−2, with the accompanying post-elastic strains

εp(t0) = 0,0045; 0,005; 0,0055; 0,006; 0,0065; 0,007; 0,0075; 0,008; 0,0085; 0,009; 0,0095 and 0,01,

Fig. 13 The associated mid-span deflections we(t) of the suspended cable under the corresponding elastic
stresses σe(t0) at the investigated times t, obtained by the closed-form and the discrete combined
solution 

Fig. 14 The uniformly distributed loads qp(t) of the suspended cable under the corresponding post-elastic
stresses σp(t0) at the investigated times t
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at the investigated times t = t0 = 0 days (initial time, i.e., without creep), t = 1; 10; 100; 1000 and

10000 days, are shown in Fig. 14. These obtained loads were used in the time-dependent discrete

combined FEM analysis (as LANSTAT software was used). The associated mid-span deflections

wp(t) of the suspended cable at the investigated times obtained by the closed-form and discrete

solution are shown in Fig. 15. 

The cable deflections increase under the influence of the creep strain increments as time increases.

Their magnitudes increase as the respective stress levels and/or load levels increase. 

Results demonstrate that there are differences between the responses of the investigated suspended

cable at the post-elastic region obtained by the closed-form and discrete FEM analysis (Fig. 15).

Greater resultant deflections are obtained by the closed-form solution. 

The reason of the mentioned differences in the results can be explained as follows. Discrete

method enables more realistic sublime consideration of physically non-linear material properties (as

a multi-linear stress-strain relationship with updated current modulus of elasticity is used) and

geometrically non-linear structural behaviour (as tension stiffening is performed) of suspended cable

in the post-elastic region. Whereas, the closed-form solution is based on known final quantities of

cable forces (those were determined approximately) and post-elastic strains, the discrete method

with incremental and iterative solution strategies can simulate post-elastic phenomena of cables such

as changes in the material properties of the cable (modification of modulus of elasticity) as well as

changes in the geometry and tension of the cable members (hence, the tangential stiffness matrix is

updated for any displaced form of the suspended cable). 

Fig. 15 The associated mid-span deflections wp(t) of the suspended cable under the corresponding post-elastic
stresses σp(t0) at the investigated times t, obtained through the closed-form and the discrete combined
solution
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5. Conclusions 

Time-dependent non-linear closed-form and discrete combined solutions have been presented for

the elastic and post-elastic response of a flat-sag suspended cable to a uniformly distributed load.

Creep of the cable was considered. 

In the closed-form analysis, by treating the additional tension force as the independent variable,

rather than the applied load, the actual stress-strain and strain-time (creep curves under the applied

constant stresses) properties of the cable could be used directly. By the present analytical approach,

the post-elastic stress with accompanying strain and the corresponding creep strain at the

investigated times need only be determined by a function of the stress-strain and of the strain-time

properties of the particular cable in order to obtain a unique solution for the load and associated

deflection at a studied time. 

Discrete combined analysis of a suspended cable in the post-elastic region, based on the FEM

with an initial framework of the corresponding loading vector, that is defined by the closed-form

solution, has been presented. For the discrete analysis of the non-linear suspended cable this initial

value is needed, concerning the incremental procedure that is used for a solution. The proposed

combined approach allows one to make in two steps quick and clear elastic and post-elastic

behaviour analysis of suspended cable as follows. First, by the closed-form robust solution one

accomplishes to allocate and directly specify an intensity of the vertically distributed load

corresponding to the elastic or post-elastic region. Thereon, the improved analysis can be done by

the discrete FEM. Thus the CPU times can be economized. The more realistic consideration of

cable material properties and time-dependent modelling of structural behaviour, taking into account

the creep effects allows one to improve the investigation of geometrically and parametrically non-

linear suspended cables in the post-elastic region. 

The application of the described methods and derived equations was illustrated by numerical

examples. The obtained results confirm the correctness of the derived equations and techniques as

well as their physical importance.

Many national and international specifications for design of structures with steel cable

components are based on the Partial Safety Factor Method. Factors of safety vary, but the working

elastic stresses are usually used for a rope or strand in the cable structures. In these cases the

suspended cable will never enter the post-elastic region, nor should it. 

The presented post-elastic analyses are useful when one needs to increase a utilization of the high-

strength steel cables used in the suspended cable structures and to decide what post-elastic extension

with accompanying deflection is reasonable for the whole cable. 

The closed-form model is useful when one needs to perform a time-dependent analysis of the

suspended cable in the post-elastic region and to use the obtained results as the input data for the

discrete time-dependent post-elastic analysis. Also in the cases, when it is needful to compare the

results of other forms of analysis. The closed-form concept leads to a reliable understanding of the

significance of individual stress and/or strain levels those affect the resultant time-dependent

behaviour of the suspended cables in the post-elastic region. 

It is believed, that the presented solutions will lead to an improved analysis of the time-dependent

response of suspended cables with rheological properties in the post-elastic region.
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