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Abstract. A p-version of the finite element method in conjunction with the modeling dynamic method
using the arc-length stretch deformation is considered to determine the bending natural frequencies of a
cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used
to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic
polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions
representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and
centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the
rotating plate Fourier p-element proposed and the results are in good agreement with the work of other
investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson’s
ratio and the hub radius on the natural frequencies are investigated.
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1. Introduction 

Vibration analysis of rotating cantilever plates is an important subject of study in mechanical

engineering. There are many examples in astronautic and aeronautic which can be modelled as

rotating cantilever plates, such as solar panels of satellite, turbo-engine blades and helicopter blades.

Compared to the plate in the stationary state, the natural frequencies and mode shapes vary

significantly with the rotating speed caused by the centrifugal and Coriolis effect. The correct

estimation of the natural frequencies at various speeds of rotation is important. Since turbo-engine

blades and solar panels are generally idealized as cantilever beams and several papers have been

presented in the past for modelling the rotating flexible beams, see for instance Southwell and

Gough (1921), Putter and Manor (1967) and Hamza-cherif and Houmat (2004). However this

idealization is not correct and gives erroneous results. For rotating plates only a few research works

could be found in the literature. Later, Dokainish and Rawtani (1971) used the finite element

method to find the natural frequencies and the mode shapes of a cantilever plate mounted on the

periphery of a rotating disc. By using the finite element method, Ramamurti and Kielb (1984) give

a detailed study to predict the eigenfrequencies of twisted rotating plates, the effects of Coriolis
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acceleration and sweep angle are considered. Recently a new linear dynamic modelling method was

introduced by Yoo and Chung (2001) and Yoo and Pierre (2003). This method employs the hybrid

deformation variables including a stretch variables and Cartesian variable. The use of the non-

Cartesian variables led to capture accurate centrifugal forces caused by the rotation of the plate, and

enables one to derive linear equations of motion which include proper motion-induced additional

stiffness terms. This modelling method was later successfully utilized to obtain the modal

characteristics of rotating beams (see Kane et al. 1987, Yoo et al. 1995), it is simpler, more

consistent, and more rigorous than the conventional methods.

This paper deals with the hierarchical finite element method applied to free vibration analysis of

rotating flexible plates. The p-version of the finite element method has been limited currently to

vibration of plates in the stationary state. The hierarchical concept for finite element shape functions

has been investigated during the past 25 years. Babuška et al. (1981) established a theoretical basis

for p-elements, where the mesh keeps unchanged and the polynomial degree of the shape functions

is increased; however, in the standard h-version of the finite element method the mesh is refined to

achieve convergence and the polynomial degree of the shape functions remains unchanged. Since

then, standard forms of the hierarchical shape functions have been represented in the literature

elsewhere; see for instance (Szabo and Sahrmann 1988, Szabo and Babuška 1991). Meirovitch and

Baruh (1983), Zhu (1986) have shown that the hierarchical finite element method yields a better

accuracy than the h-version for eigenvalues problems. The hierarchical shape functions used by

Bardell (1989) are based on integrated Legendre orthogonal polynomials; the symbolic computing is

used to calculate the mass and stiffness matrices of beams and plates. Coté and Charron (2001) give

the selection of p-version shape functions for plate vibration analysis. 

In this study a Fourier p-version finite element method is applied to the bending free vibration

analysis of rotating cantilever plates in conjunction with the method using the arc-length stretch

deformation. The transverse displacements are formulated in terms of cubic polynomials functions

used generally in FEM plus a variable number of trigonometric shapes functions representing the

internals DOF for the plate element, for more details see Houmat (1997, 2001). The natural

frequency is investigated for the variation of the rotating speed, dimensions of the plate, Poisson’s

ratio and hub radius.

2. Kinetic and strain energy expressions

In this section, expressions of strain and kinetic energy of a rotating plate are derived, the plate is

considered mounted (cantilevered) on the periphery of a rotating rigid hub of radius Rh, with length

a, width b, thickness h and mass per unit area ρ. The Kirchhoff plate assumptions are used in the

subsequent analysis (effects of shear deformations and rotary inertia can be neglected).

2.1 Co-ordinates systems

The co-ordinates used to define the geometry of the rotating plate are shown in Fig. 1. Where

 denotes the inertial frame and X, Y, Z denotes the moving reference frame attached to the

plate and rotating about the X-axis and related to the non-dimensional co-ordinates by

X Y Z, ,
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(1)

The inertial frame is related to the rectangular moving frame by the orthogonal rotation matrix

[A(θ )], what makes it possible to write

(2)

where rp is the position of a material point P in the local X, Y, Z co-ordinate, Rp is the global

position vector of a material point P. 

The position vector rp can be written in the following form

(3)

where u, v and w are the components of the elastic deformation in X, Y, Z co-ordinate and θ

represents the plate rigid body rotation.

2.2 Kinetic and strain energy expressions

The velocity of the material point P in the inertial frame can be written as

 (4)

where [Aθ (θ )] is the derivative  and Ω is the angular speed of the plate.

In the present study, a non-Cartesian variables S and R denoting the arc-length stretch are used

instead of the Cartesian distances measure u and v of a point P in the X and Y directions of the
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Fig. 1 Configuration of a rotating plate and co-ordinates system
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undeformed configuration of the plate respectively, see Fig. 2. Thus a hybrid set (Cartesian variable

w with the non-Cartesian variables S and R) is employed to derive the equations of motion.

The geometrical relations between the arc-length stretch S and the Cartesian displacements u, w

can be written as

(5)

where ( ), σ replaces .

Using a binomial expansion of the integrand of Eq. (5)

 (6)

and the time derivative of Eq. (6) is given by the following expression

(7)

In the same way, the geometrical relations between the arc-length stretch R and the Cartesian

displacements v, w is given by

(8)

Using a binomial expansion of the integrand of Eq. (8)

(9)

and the time derivative of Eq. (9) is given by

(10)

The kinetic energy of the rotating plate can be found from

 (11)
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Fig. 2 (a) Deformation variables for a rectangular plate, (b) Non-Cartesian deformation variables
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Eq. (11) can be rewritten as

(12)

where

(13)

(14)

Based on the assumptions given in the beginning of this section, the strain energy is given by

 (15)

The strain bending energy is expressed in non-dimensional co-ordinates as follows

(16)

The exact in-plane strain energy in non-dimensional co-ordinate can be expressed as 

(17)

3. Plate Fourier p-element formulation

In the p-version of the FEM, the accuracy of the approximation is improved by increasing the

number of shape functions over the element, keeping the mesh constant. The p-version of the FEM

has, amongst others, the following advantages over the h-version:

(i) simples structures can be modeled using just one element, thus there are no inter-element

continuity requirements and the assemblage of the elements is avoided;

(ii) the p-element in conjunction with the blending functions method can describe the irregular

geometry exactly;

(iii) the p-version of the FEM gives accurate results with fewer degrees of freedom than the h-

version, in general monotonic and uniform convergence is guarantied; 

(iv) this method offers superior performance in the h-version FEM for the vibration analysis of

higher frequencies. The refinement in h-version is computationally too expansive for

capturing high frequency vibrations; it is not well-suited to the vibration analysis of medium

or high frequency regimes (Langley and Bardell 1998). 

The rotating flexible plate is descritized into one hierarchical finite element, a plate Fourier p-

element is shown in Fig. 3. The element is fixed at the side (y = 0).

The element’s nodal DOF are the transverse displacements w, the slopes w, x, w, y and w, xy and the

stretching displacements S and R at each nodes. The displacement vector formed by the hybrid set
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of variables S, R and w is expressed as the combination of the in-plane and out-of plane hierarchical

shape functions and can be written as

(18)

where fl (η) and gl (η) are the shape functions for stretching and bending respectively. 

Eq. (18) can be expressed as 

(19)

[N] is the matrix of the shape functions given by

(20)
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Fig. 3 Plate Fourier p-element and nodal displacements
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{q} is the vector of generalized co-ordinates, expressed as

(24)

Where PS (=(MS + 2) (NS + 2)), PR (=(MR + 2) (NR + 2)) and Pw (=(Mw + 4) (Nw + 4)) are

respectively the order of the vector of generalized co-ordinates qS, qR and qw. Where MS (NS), MR

(NR) and Mw (Nw) are the number of trigonometric shape functions in X direction (Y direction).

The group of the shape functions used in this study for bending is given by

(25)

and the trigonometric shape functions are given by

(26)

The group of the shape functions for stretching is expressed as
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(28)
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element geometry is exactly the same as the structure geometry. The most attractive particularity of

the trigonometric shape functions is that they offer great numerical stability as compared to the

polynomial shape functions (numerical instability caused by the computer round-off error in

handling high degree polynomials).

The motion is assumed to be harmonic and the expression [Eq. (18)] for S, R, w is inserted into

the expressions for the strain energy U and the kinetic energy T, by applying the Euler-Lagrange

equations, the linearized system of equations for free vibration of a rotating flexible plate can be

obtained.

The system is a two coupled linear equations of motion caused by gyroscopic effect, given by

(29)

and a uncoupled linear equation of motion define the in-plane vibration, is given as follows

(30)

Where Mm, n, Km, n are the coefficients of the conventional trigonometric enriched mass and

stiffness matrix, Rm, n are the elements of the additional stiffness matrix caused by the centrifuges

effect and Gm, n are the coefficients of the gyroscopic matrix supposed negligible in this study, the

gyroscopic effect takes effect for very high speeds what is not the case in this study, for more

details see Ramamurti and Kielb (1984) and Yoo and Chung (2001). In the subsequent analysis the

gyroscopic effect is ignored and the angular acceleration  is taken as 0, Eq. (29) is reduced to

(31)

Eq. (31) represents the uncoupled bending equations of motion of a rotating plate.

The different matrices are expressed by the following set of equations
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(35)

(36)

(37)

(38)

where the indices α and β denote the order of the derivatives. 

The exact values of the above integrals can easily be found by using symbolic computation

Bardell (1989), which is available through a number of commercial packages.

The indices i, k, j and l represent the numbers of functions used in the assumed displacements

field take on the following values

(39)

(40)

and the indices m, n are expressed in terms of the indices i, k, j and l as
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Table 1 Convergence study of the five lowest frequency parameters ω* of rotating cantilever plates 
(μ = 10, Rh/b = 0, ν = 0.3)

Mw(= Nw) 1st 2nd 3rd 4th 5th

0 5.169 9.781 30.853 43.114 50.120

4 5.042 9.018 26.621 32.284 38.966

5 5.038 9.012 26.603 32.281 38.964

6 5.037 9.010 26.602 32.276 38.952

7 5.036 9.009 26.598 32.275 38.951

8 5.035 9.008 26.598 32.273 38.947

9 5.035 9.007 26.597 32.273 38.946

10 5.034 9.006 26.596 32.272 38.944

11 5.034 9.006 26.596 32.272 38.943

12 5.034 9.006 26.595 32.271 38.942

13 5.034 9.005 26.595 32.271 38.942

14 5.033 9.005 26.594 32.271 38.941

15 5.033 9.005 26.594 32.271 38.940

16 5.033 9.005 26.594 32.271 38.940

Converged solution 5.033 9.005 26.594 32.271 38.940
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4. Results and comparison with other work

4.1 Convergence study and comparison 

In order to see the manner of convergence, the plate is discretized into one element and the

number of trigonometric shape functions is varied.

The frequency parameter ω* and the angular speed parameter μ are employed in this study. 

For a rotating cantilever square plate (μ = 10, Rh/b = 0 and ν = 0.3) as shown in Table 1 as

number of trigonometric shape functions is increased from 1 to 16, the relative decreases of the

lower frequency parameters ω* is very small, and highly accurate solutions are obtained despite the

use of few hierarchical terms. An uniform and monotonic convergence is guaranteed. The value

Mw = 0 corresponds to using one 16 DOF rectangular finite element. 

In the case of plate in stationary state (μ = 0), the performance of the proposed plate Fourier p-

element can be verified by comparing the frequency parameters with other references in the case of

plate with different boundary conditions. The symbolism S, C and F used in the subsequent analysis

denote respectively an edge that is simply supported, clamped and free.

In order to see the manner of convergence of the Fourier p-finite element solutions, the number of

trigonometric terms is varied (equal terms is used in both directions). For a S-S-S-S square plate

(a = b and ν = 0.3), Table 2 clearly shows that rapid convergence from above to the exact values

occurs as the number of trigonometric terms is increased from 1 to 4. The results for the ten lowest

modes with Mw = Nw = 4 are in excellent agreement with exact solutions. The performance of the

Fourier p-element with that of the polynomial hierarchical finite element Bardell (1992) and that of

the 36-degree-of-freedom rectangular finite element on a total degree of freedom basis is also

investigated in Table 2. The number of trigonometric terms used in Fourier p-element is four and

the corresponding number of DOF is 36, the number of polynomials hierarchical terms (formed

from the orthogonal legendre polynomials) is six and the corresponding number of DOF is 64,

whereas, the number of rectangular finite elements used in both square plate is nine and the

corresponding number of DOF is 92. The Fourier p-element method gives more accurate solutions

with 43% fewer system DOF than the polynomial hierarchical element method solutions and 61%

fewer system DOF than the solutions from the rectangular finite element method. Additional

applications are to S-F-S-F and C-F-F-F square plates, Tables 3 and 4 show that fast convergence

from above to the converged values occurs as the number of trigonometric terms is increased.

Tables 3 and 4 also show that the Fourier p-element solutions are more accurate than the solutions

from the finite element method with fewer systems DOF. All results confirm that the rate of

convergence is influenced directly by the trigonometric terms and boundary conditions. It is

observed from these tables that the present results are fairly in good agreement with exact solutions

and other formulations with fewer DOF used in the computation. This reduction in the number of

system DOF leads to large computational savings.

In the case of a cantilever flexible plate mounted on the periphery of a rotating hub, the

performance of the proposed plate Fourier p-element can be verified by comparing the first five

frequency parameters with that of the modal analysis Yoo and Pierre (2003), Southwell method and

the finite element method by using ANSYS. The number of trigonometric terms used in Fourier p-

element is 16 and the corresponding number of DOF is 360. To obtain the finite element solutions

(ANSYS), 289 elements (element type used is SHELL 63 with four nodes and stress stiffening

capabilities) are employed to divide the plate, the corresponding number of DOF is 1221. Tables 5
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Table 2 Convergence and comparison of the ten lowest frequency parameters ω* for the S-S-S-S square plate (a = b, ν = 0.3)

Method
N of 
DOF

1 2 3 4 5 6 7 8 9 10
%

Error 10-3

Present 
analysis

Mw (=Nw)

0 5 20.976 58.992 58.992 92.563 --- --- --- --- --- ---

1 9 19.739 58.707 58.707 92.563 133.435 133.435 163.281 163.281 226.951 ---

2 16 19.739 49.348 49.348 78.957 133.435 133.435 158.727 158.727 226.951 248.503

3 25 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 177.653 248.503

4 36 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 167.783 167.783

Converged 
solution

4 36 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 167.783 167.783 0

Polynomial 
HFEM

64 19.739 49.348 49.348 78.957 98.716 98.716 128.322 128.322 167.987 167.987 20 

FEM 92 19.739 49.348 49.348 78.957 98.745 98.745 128.344 128.344 168.085 168.085 50

Exact 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 167.783 167.783

% Error = (Method-Exact)/Exact

Table 3 Convergence and comparison of the ten lowest frequency parameters ω* for the S-F-S-F square plate (a = b, ν = 0.16)

Method
N of 
DOF

1 2 3 4 5 6 7 8 9 10
%

Error 10−3

Present 
analysis

Mw (=Nw)

0 8 10.906 17.867 43.001 50.134 57.820 86.488 106.512 150.989 --- ---

1 15 9.809 17.149 38.324 50.092 57.820 81.362 106.232 125.279 132.945 150.989

2 24 9.809 17.063 38.324 39.353 48.068 73.808 77.350 115.595 125.279 132.675

3 35 9.808 17.063 37.974 39.348 48.068 72.949 77.350 88.631 97.745 115.595

4 48 9.808 17.060 37.974 39.348 48.052 72.949 76.455 88.631 97.702 113.777

5 63 9.808 17.060 37.956 39.348 48.052 72.894 76.455 88.628 97.702 113.777

6 80 9.808 17.060 37.956 39.348 48.050 72.894 76.392 88.628 97.694 113.643

7 99 9.808 17.060 37.954 39.348 48.050 72.885 76.392 88.627 97.694 113.643

Converged 
solution

7 99 9.808 17.060 37.954 39.348 48.050 72.885 76.392 88.627 97.694 113.643 33

FEM 112 9.808 17.060 37.954 39.348 48.050 72.882 76.378 88.679 97.740 113.611 50

Exact 9.808 17.060 37.953 39.348 48.049 72.881 76.375 88.627 97.691 113.605

% Error = (Method-Exact)/Exact 
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and 6 show that for a square plate and various values of μ in the case of the hub radius Rh = 0 and

Rh = b respectively, the results obtained using the present formulation are fairly in good agreement

with those of the modal analysis, Southwell method and agree to a remarkable degree for all

frequencies parameters. 

It is shown in Tables 5 and 6 that the lowest five mode of a rotating square plate obtained by

using the Fourier p-element method agree well with those obtained by using ANSYS but with 71%

fewer system DOF. This reduction in the number of system DOF leads to large computational

savings.

4.2 The effect of varying the angular speed parameters, aspect ratio, Poisson’s ratio and

hub radius 

Individual and joint variation of the angular speed parameters, aspect ratio, Poisson’s ratio and

 
 Table 4 Convergence and comparison of the ten lowest frequency parameters ω* for the C-F-F-F 

square plate (a = b, ν = 0.3)

Method N of DOF 1 2 3 4

Present 
analysis

Mw (=Nw)

0 8 3.518 8.953 28.888 37.415

1 15 3.487 8.552 21.411 27.483

3 35 3.476 8.517 21.308 27.219

5 63 3.473 8.512 21.297 27.203

7 99 3.472 8.510 21.292 27.200

9 143 3.472 8.509 21.290 27.200

11 195 3.471 8.508 21.288 27.199

12 224 3.471 8.508 21.288 27.199

Polynomial 
HFEM

360 3.471 8.506 21.284 27.199

FEM

Ritz 3.454 8.586 21.417 27.437

Method 5 6 7 8 9 10

Present 
analysis

Mw (=Nw)

0 44.245 83.568 96.417 154.430 --- ---

1 31.813 56.923 92.069 115.574 117.284 136.759

3 31.017 54.326 61.600 64.747 71.519 94.632

5 30.978 54.230 61.293 64.199 71.043 93.119

7 30.969 54.206 61.270 64.199 71.001 92.978

9 30.964 54.198 61.264 64.147 70.987 92.947

11 30.962 54.194 61.261 64.144 70.980 92.937

12 30.961 54.193 61.261 64.143 70.978 92.934

Polynomial 
HFEM

---- ---- ---- ---- ---- ----

FEM

Ritz ---- ---- ---- ---- ---- ----
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hub radius is found to influence greatly the bending natural frequency.

From the convergence and comparison studies, 16 trigonometric shape functions have been

employed in the subsequent analysis, and considered sufficient to insure adequate convergence for

the lowest five frequencies.

The natural frequencies are computed for clamped plates mounted on the periphery of a rotating

hub, for various values of the angular speed parameter (μ from 0 to 10), the aspect ratio (a/b from

0.25 to 4), the hub radius (Rh /b = 0 to Rh /b = 1) and the Poisson’s ratio (ν from 0 to 0.49). The

solid lines in the Figs. 4-6 are for zero hub radius (Rh = 0), while the dotted lines are for Rh/b = 1.

In this study the coupling effect is supposed negligible, Fig. 4 shows how the frequency of the

first five bending modes of a rotating cantilever square plate (a = b, ν = 0.3) vary with angular

speed parameter. In all cases the bending curves frequency increases with increasing angular speed

Table 5 Comparison of the first five frequency parameters ω* for rotating cantilever square plates (a = b, ν =
0.3, Mw = 16, Rh = 0)

μ Method 1st 2nd 3rd 4th 5th

1

Present method (360) 3.499 8.513 21.404 27.209 31.050

ANSYS (1221) 3.499 8.519 21.420 27.218 31.097

Modal analysis 3.515 8.533 21.520 27.353 31.206

Southwell method 3.513 8.528 21.525 27.402 31.458

2

Present method (360) 3.580 8.531 21.752 27.241 31.322

ANSYS (1221) 3.580 8.530 21.760 27.251 31.361

Modal analysis 3.596 8.550 21.865 27.384 31.477

Southwell method 3.579 8.532 21.894 27.691 32.113

10

Present method (360) 5.033 9.005 26.594 32.271 38.940

ANSYS (1221) 5.025 8.796 26.316 32.408 38.767

Modal analysis 5.049 9.032 26.761 32.350 39.078

Table 6 Comparison of the first five frequency parameters ω* for cantilever plates mounted on the periphery
of a rotating hub (a = b, ν = 0.3, Mw = 16, Rh /b = 1)

μ Method 1st 2nd 3rd 4th 5th

1

Present method (360) 3.717 8.604 21.591 27.250 31.193

ANSYS (1221) 3.775 8.617 21.649 27.264 31.268

Modal analysis 3.732 8.624 21.706 27.394 31.350

Southwell method 3.730 8.614 21.710 27.554 31.760

2

Present method (360) 4.367 8.889 22.468 27.415 31.888

ANSYS (1221) 4.551 8.914 22.633 27.449 32.035

Modal analysis 4.380 8.909 22.580 27.557 32.043

Southwell method 4.376 8.870 22.612 28.288 33.620

10

Present method (360) 13.252 15.275 29.618 43.185 48.691

ANSYS (1221) 13.952 15.408 29.338 45.908 50.370

Modal analysis 13.273 15.311 29.792 43.289 48.851
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parameter. The increasing rates become larger as the hub radius increases. In general for zero hub

radius (Rh = 0) the form of the modes is preserved through the range of angular speed parameter

except for frequency curves 3 and 4 (see Fig. 4). Another interesting phenomenon can be observed

in Fig. 4 is called veering modes. When the rotating speed is increased the frequency curves

increase and the corresponding mode shapes are changed through centrifugal stiffening, modal

interaction can occur between all modes. The third bending frequency curve and the fourth bending

curve veer, this indicates that the angular speed produces significant coupling between these two

curves. The corresponding modes shapes change with increasing the angular speed parameter and

seem to switch their shapes. At veering region (μ = 6.68) the mode shapes become very similar but

with opposite concavity of the nodal lines, for more details see Leissa (1974) and Yoo and Pierre

(2003). 

The frequency variation with aspect ratio (in the range 1/4 ≤ a/b ≤ 4) for a rotating cantilever

plate (μ = 10, ν = 0.3) is shown in Fig. 5. The frequencies of the first five modes all increases with

increasing aspect ratio a/b, the form of the first, second and third modes is preserved through the

range of aspect ratio considered here for Rh = 0 and Rh /b = 1 respectively. Another interesting

phenomenon can be observed in Fig. 5, is called crossing modes, involving the fourth and fifth

frequency curves. The crossing region is around a/b = 1.75 for Rh = 0 and around a/b = 1.66 for

Rh /b = 1. The frequency curves cross when the associated modes of free vibration belong to

different symmetry groups, and this in turn leads to a reordering of the modes. The mode reordering

that takes place at such a crossover, and an exchange in modal identity is made between mode 4

and 5. At the crossover the mode shapes of the fourth and fifth frequency curves become similar.

This feature was first reported by Barton (1951). It is clearly seen from Fig. 5 that after the

crossover the fourth mode is preserved through the range of aspect ratio.

Fig. 5 also shows that if the aspect ratio (a/b) increases the dotted lines converge to the solid

lines, consequently the hub radius Rh does not have an influence on the frequency parameters.

Fig. 6 gives the trajectory of the lowest frequency parameters for rotating cantilevered square

plates (μ = 10 and a = b) while varying the Poisson’s ratio ν (0.0 ≤ ν ≤ 0.49). The conclusion that

can be drawn from these curves is that in general the frequency parameters decrease with increasing

ν for Rh = 0 and Rh/b = 1 respectively.

Fig. 4 Frequency parameter variation with the angular
speed parameter

Fig. 5 Frequency parameter variation with aspect
ratio (a/b)
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Fig. 7 gives the trajectory of the lowest frequency parameters for rotating cantilevered square

plates while varying the aspect ratio Rh/b (0 ≤ Rh/b ≤ 1) for two angular speed values μ = 5 and

μ = 10 (a = b and ν = 0.3). The frequencies of the first five modes all increases with increasing

aspect ratio Rh/b. The increasing rates become larger as the angular speed increases.

5. Conclusions

The Fourier p-version of the finite element method is developed and used to find the natural

frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub in conjunction

with the modelling dynamic method using the arc-length stretch deformation. The main conclusions

have emerged from this work these are itemized in the following:

(i) Monotonic and uniform convergence is found to occur as the number of trigonometric shape

functions is increased.

(ii) For values of angular speed parameter other than zero the convergence is slowed, hence to

obtain reliable results, it has been necessary to include a significantly greater number of

trigonometric terms than that required in the case of plate in stationary state. 

(iii) The dynamic characteristics of rotating cantilever plates are influenced significantly by

varying individually or jointly the angular speed parameters μ, the aspect ratio (a/b), the hub

radius and Poisson’s ratio ν. In general the frequencies parameter increases with increasing μ,

(a/b) and (Rh/b) and decreases with increasing ν.
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Notation

a, b : plate element length in the x direction and y direction
bi, bi+1 : plate element length of adjacent elements
[A(θ )] : orthogonal rotation matrix
h : plate thickness

: flexural rigidity
E : Young’s modulus
f (η), g(η) : shape functions for stretching and bending respectively

D Eh
3
/12 1 ν

2
–( )=
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G : shear modulus
Gm, n : elements of the gyroscopic matrix
Mm, n, Km, n : elements of the mass and stiffness matrix respectively
Mw , Nw : number of the trigonometric shape functions in X and Y direction
[N] : matrix of the shape functions
{q} : vector of generalized co-ordinates
rp, Rp : local and global position respectively 
Rm, n : elements of the additional centrifugal stiffness matrix
Rh : hub radius
S, R : arc-length stretch non-Cartesian displacements
T, U : kinetic and strain energy of the rotating plate
Ui, Ub : in-plane and bending strain energy of the plate
(u, v, w) : displacements in X, Y, Z co-ordinates
X, Y, Z : global co-ordinates
X, Y, Z : local co-ordinates 
Xkl, Ykl, Zkl : elements of the vector of generalized co-ordinates
θ : plate rigid body rotation

: angular speed parameter
ν : Poisson’s ratio
ρ : mass per unit area 
ω : bending frequency (rd/s)

: frequency parameter 
Ω : angular speed of the plate (rd/s)

: angular acceleration of the plate
ξ,η : non-dimensional co-ordinates
α ,β : order of derivative of the shape functions 

μ a
2

ρh/D( )
0.5

Ω=

ω * a
2

ρh/D( )
0.5

ω=

Ω
·




