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Abstract. The paper deals with the numerical solution of the dynamic problem of masonry structures.
Masonry is modelled as a non-linear elastic material with zero tensile strength and infinite compressive
strength. Due to the non-linearity of the adopted constitutive equation, the equations of the motion must
be integrated directly. In particular, we apply the Newmark or the Hilber-Hughes-Taylor methods
implemented in code NOSA to perform the time integration of the system of ordinary differential
equations obtained from discretising the structure into finite elements. Moreover, with the aim of
evaluating the effectiveness of these two methods, some dynamic problems, whose explicit solutions are
known, have been solved numerically. Comparisons between the exact solutions and the corresponding
approximate solutions obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the
cases under consideration both numerical methods yield satisfactory results. 
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1. Introduction

The study of masonry structures subjected to time-dependent loads is invested with great

theoretical and practical importance. The main aspects of this problem are both the choice of the

constitutive equation for masonry materials, whose mechanical properties depend heavily on their

constituent elements and the building techniques used, and the formulation of suitable numerical

techniques for the integration of the equations of the motion.

In this paper masonry is modelled as a non-linear elastic material, with zero tensile strength and

infinite compressive strength (Heyman 1966, 1982, Romano and Romano 1979, Romano and Sacco

1984, Di Pasquale 1984a,b, Como and Grimaldi 1985, Panzeca and Polizzotto 1988, Del Piero

1989, Lucchesi et al. 1994). This constitutive equation is able to account for some of masonry’s

peculiarities, in particular its inability to withstand large tensile stresses. Assumptions underlying the

model are that the infinitesimal strain is the sum of an elastic part and a fracture part, and that the

stress, negative semi-definite, depends linearly and isotropically on the former and is orthogonal to

the latter, which is positive semi-definite. Thus, the stress is a non-linear function of the
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infinitesimal strain. This equation, known as the equation of masonry-like or no-tension materials,

has been implemented in the finite element code NOSA, with the purpose of studying the static

behaviour of masonry solids and modelling restoration and reinforcement operations on

constructions of particular architectural interest (Lucchesi et al. 2000).

Regarding solution of the dynamics problem, it is necessary to directly integrate the equations of

motion. In fact, due to the non-linearity of the adopted constitutive equation, the mode-superposition

method is meaningless.

Instead, we perform the integration with respect to the time of the system of ordinary differential

equations obtained from discretising the structure into finite elements, by implementing the

Newmark (Bathe and Wilson 1976) and the Hilber-Hughes-Taylor methods (Hilber et al. 1977) in

NOSA. Moreover, the Newton-Raphson scheme, needed to solve the non-linear algebraic system

obtained at each time step, has been adapted to the dynamic case. With the aim of evaluating the

effectiveness of the Newmark and Hilber-Hughes-Taylor methods, some dynamic problems whose

explicit solutions are known (Casarosa et al. 1997, Lucchesi et al. 1999b, Lucchesi 2000) have been

numerically solved.

A well known, specific property of the longitudinal vibrations of finite (Casarosa et al. 1997) and

infinite (Lucchesi et al. 1999b) beams made of a masonry-like material is that, due to the non-

linearity of the constitutive equation, shock waves arise at the interface between the zone of positive

strain and that in which the strain is negative, with a consequent loss of mechanical energy and

progressive decay of the solution. Comparisons between the exact solutions calculated in (Casarosa

et al. 1997, Lucchesi et al. 1999b, Lucchesi 2000) and the corresponding approximate solutions

obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the examples considered

here both numerical methods yield satisfactory results. However, these methods assume the

smoothness of the velocity, while it is actually discontinuous in correspondence of the shock wave.

2. Masonry-like materials

2.1 The constitutive equation

The constitutive equation of masonry-like materials is based on three assumptions: infinitesimal

elasticity, zero tensile strength and a normality postulate. For a more detailed treatment of this

subject, refer to (Heyman 1966, 1982, Romano and Romano 1979, Romano and Sacco 1984, Di

Pasquale 1984a,b, Como and Grimaldi 1985, Panzeca and Polizzotto 1988, Del Piero 1989,

Lucchesi et al. 1994, 1995, 1996); herein, we shall limit ourselves to recalling some fundamental

results.

Let V be a two-dimensional vector space, Sym the vector space of symmetric tensors on V

equipped with the inner product A · B = tr(AB), A, B ∈ Sym, with tr the trace. We denote by Sym+

and Sym− the convex cones of Sym constituted by the positive and negative semi-definite tensors,

respectively.

Let T ∈ Sym be the Cauchy stress tensor and E ∈ Sym the infinitesimal strain tensor, E = 1/2(∇u

+ ∇uT), where u is the displacement vector. We assume that E is the sum of an elastic part Ee and a

fracture part Ef

E = Ee + Ef (1)
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and that T depends linearly and isotropically on Ee

T = C[Ee] (2)

where

(3)

In (3) E and ν are respectively the Young’ modulus and the Poisson’s ratio of the material, I is the

fourth-order identity tensor, I is the identity of Sym and I ⊗ I[A] = tr(A)I for each A ∈ Sym. In

particular, the fourth-order tensor C is symmetric and positive definite in view of the following

inequalities satisfied by E and ν,

 (4)

Lastly, we assume that T is negative semi-definite

(5)

and that Ef is positive semi-definite and orthogonal to T,

 (6)

(7)

From (5), (6) and (7) it follows that T and Ef are coaxial. Ef is called fracture strain because if it is

non-null in any region of the structure, then we can expect fractures to be present in that region. If

for any v ∈ V, v · Efv > 0, v is not necessarily a fracture direction, in other words, v is not

necessarily an eigenvector of T corresponding to the zero eigenvalue. Nonetheless, there must

surely exists at least one eigenvector q of Ef (in view of the coaxiality of Ef and T, q is also an

eigenvector of T) such that q · Efq > 0 and then, in view of (7), q · Tq = 0. Thus, if F is a fracture

line, then every vector orthogonal to F is an eigenvector of T corresponding to the eigenvalue zero

and an eigenvector of Ef corresponding to a positive eigenvalue.

Let  denote the function that to each strain tensor E associates the stress T defined by the

constitutive Eqs. (1), (2), (5), (6) and (7),

 (8)

Function  is non-linear, Lipschitz continuous, monotone, non invertible and not differentiable

everywhere in Sym (Del Piero 1989). The derivative DE (E) of  with respect to E has been

explicitly calculated in Lucchesi et al. (1994, 1996); here, we shall limit ourselves to recall the

expression of DE (E), where it exists. In view of the application in question, we limit ourselves to

consider plane stress and plane strain states. For E ∈ Sym, let e1 ≤ e2 be its eigenvalues, q1, q2 the

corresponding orthogonal unit eigenvectors and define the following tensors

(9)

C
E

1 ν+

------------I
Eν

1 ν+( ) 1 2ν–( )
--------------------------------------I+ I⊗=

E 0> 0 ν≤ 1

2
---<,

T Sym
–∈

E
f

Sym
+∈

T E
f⋅ 0=

T̂

T T̂ E( )=

T̂

T̂ T̂

T̂

O11 q1 q1, O22 q2 q2, O12

1

2
------- q1 q2⊗ q2 q1⊗+( )=⊗=⊗=
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For a plane strain the derivative DE (E) of  with respect to E is

(10)

(11)

(12)

where

(13)

 (14)

 (15)

.

Although tensor DE (E) does not exist on the interfaces s13 = =

= 0} and s23 = , as  is Lipschitz continuous, DE (E) can be replaced

by the set (Curnier et al. 1995, Clarke 1983)

(16)

  (17)

From the relations (10)-(12) it follows that for each E ∈ Sym in which  is differentiable, we

have

DE (E)[E] =  (E) (18)

DE (E)[Ef] = 0  (19)

In addition, the jump [DE (E)] of DE (E) across the interfaces s13 and s23 satisfies the conditions

given in Curnier et al. (1995), which express the absence of tangential discontinuity of the

derivative of the stress with respect to the strain,

(20)

T̂ T̂

DET̂ E( ) E

1 ν+

------------I
Eν

1 ν+( ) 1 2ν–( )
--------------------------------------I I, if E R1∈⊗+=

DET̂ E( ) O, if E R2∈=

DET̂ E( ) ϕ O11 O11⊗
e1

e1 e2–

---------------O12 O12⊗+⎝ ⎠
⎛ ⎞ , if E R3∈=

R1 E Sym πe1 2 π+( )e2+∈ 0<{ }=

R2 E Sym e1∈ 0>{ }=

R3 E Sym πe1 2 π+( )e2+∈ 0 e1 0<,>{ }=

π
2ν

1 2ν–

---------------=   and  ϕ
E

1 ν
2

–

--------------=

T̂ E{ Sym g13 E( )∈ πe1 2 π+( )e2+

E Sym g23 E( ) e1 0= =∈{ } T̂ T̂

∂ET̂ E( ) S E( ) S E( ) ξϕ O11 O11⊗
e1

e1 e2–

---------------O12 O12⊗+⎝ ⎠
⎛ ⎞  +=

⎩
⎨
⎧

=

1 ξ–( ) E

1 ν+

------------⎝
⎛

I
Eν

1 ν+( ) 1 2ν–( )
--------------------------------------I I⊗+ ⎠

⎞ , ξ 0 1,[ ]∈
⎭
⎬
⎫
, E s13∈

∂ET̂ E( ) S E( ) S E( ) ξϕ O11 O11⊗
e1

e1 e2–

---------------O12 O12⊗+⎝ ⎠
⎛ ⎞ ξ 0 1,[ ]∈,=

⎩ ⎭
⎨ ⎬
⎧ ⎫

, E s23∈=

T̂

T̂ T̂

T̂

T̂ T̂

DET̂ E( )[ ] E 1 2ν–( )
4 1 ν

2
–( )

------------------------ g13 E( ) g13 E( ), E s13∈∇⊗∇–=
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(21)

In particular, it holds that

[DE (E)][E] = 0 (22)

for E ∈ s13 or E ∈ s23 (Padovani 2000).

Analogously, in the case of plane stress it holds that

(23)

(24)

(25)

where

(26)

(27)

(28)

The properties of DE (E) summarized for the plane strain state also hold for the plane stress case.

The material defined by the constitutive Eqs. (1), (2), (5), (6) and (7) is hyperelastic (Del Piero

1989), and the strain-energy density coincides, within an additive constant, with the function

(29)

Thus, in particular, DEε (E) =  (E).

2.2 The mixed problem

Let�B be a body made of a masonry-like material. We assume given on  a continuous function

ρ > 0 called density; the mass of a part P of B is then dv (Gurtin 1972). Let (0, t0) be a fixed time

interval. A motion of the body B is a vector field u on B × (0, t0). The vector u(x, t) is the

displacement vector of x at time t, and the fields  and  are the velocity,

acceleration, strain and strain-rate.

Let us consider a body force field b on B × (0, t0), initial displacements u0 on B, initial velocities

v0 on B, surface displacements  on S1 × (0, t0), surface forces  on S2 × (0, t0), where S1 and S2

are two disjoint portions of the boundary ∂B; of B with S1 ∪ S2 = ∂B.

The mixed problem of the dynamics of a no-tension body consists in finding fields u : B × (0, t0)

→ V, E : B × (0, t0) → Sym, T : B × (0, t0) → Sym that satisfy the congruence relation

(30)

DET̂ E( )[ ] ϕ g13 E( ) g13 E( ), E s23∈∇⊗∇=

T̂

DET̂ E( ) E

1 ν+

-------------I
Eν

1 ν
2

–

--------------I I   E T1∈,⊗+=

DET̂ E( ) O E T2∈,=

DET̂ E( ) E O11 O11⊗
e1

e1 e2–

---------------O12 O12⊗+⎝ ⎠
⎛ ⎞ E T3∈,=

T1 E Sym πe1 2 1 π+( )e2+∈ 0<{ }=

T2 E Sym e1∈ 0>{ }=

T3 E Sym πe1 2 1 π+( )e2+∈ 0 e1 0<,>{ }=

T̂

ε E( ) 1

2
---T̂ E( ) E( ), E Sym∈⋅=

T̂

B

ρ
P

∫

u· u·· E, , 1/2 u∇ u
T∇+( )= E

·

û ŝ

E
1

2
--- u∇ u

T∇+( )=
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the constitutive equation

T =  (E) (31)

the equation of the motion

divT + b =  (32)

the initial conditions

u(x, 0) = u0(x), (x, 0) = v0(x), x ∈ B (33)

the displacement condition

u(x, t) = (x, t),  (x, t) ∈ S1 × (0, t0) (34)

and the traction condition

T(x, t)n(x) = s(x, t), (x, t) ∈ S2 × (0, t0)  (35)

where n(x) is the outward unit normal vector to S2 at x. The triple (u, E, T) is called solution of the

mixed problem. In the framework of this formulation the uniqueness of the solution of the mixed

problem in not guaranteed, even in terms of stress, which on the contrary holds for the static case

(Giaquinta and Giusti 1985, Anzellotti 1985, Lucchesi et al. 1996). In order to avoid this

inconvenience, a viscous stress Tv = V  can be introduced, thanks to which the uniqueness of

the displacement, strain and stress fields is recovered ( ilhavý 1997). According to the vanishing

viscosity approach described in Dafermos (2000), we assume V = α1C, with α1 as small as

possible.

Setting , the Eqs. (30) and (32) can be rewritten as a first order system of balance laws,

(36)

where vx , vy, bx , by, Exx, Eyy, Exy, Txx, Tyy, Txy are the components of v, b, E and T with respect to a

fixed orthonormal basis of V, respectively.

Given the fourth-order tensor DE (E) and the unit vector m, let us introduce the acoustic tensor

A(E, m) defined by the relation (Gurtin 1972)

(37)

T̂

ρu··

u·

û

E
·[ ]

S

ê

v u·=

∂ Exx

∂ t
-----------

∂ vx

∂ x
--------– 0=

∂ Eyy

∂ t
-----------

∂ vy

∂ y
--------– 0=

∂ Exy

∂ t
-----------

1

2
---

∂ vx

∂ y
--------

∂ vy

∂ x
--------+⎝ ⎠

⎛ ⎞
– 0=

ρ
∂ vx

∂ t
--------

∂ Txx

∂ x
-----------–

∂ Txy

∂ y
-----------– bx=

ρ
∂ vy

∂ t
--------

∂ Txy

∂ x
-----------–

∂ Tyy

∂ y
-----------– by=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

T̂

A E m,( )a ρ
1–
DET̂ E( ) a m⊗[ ]m, for every   a V∈=
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We recall that system (36) is hyperbolic in the t-direction (Dafermos 2000) if for any fixed U =

(Exx, Eyy, Exu, vx , vy), (x, y, t) ∈ B × (0, t0), and unit vector g, the eigenvalue problem

[g1DUG1(U, x, y, t) + g2DUG2(U, x, y, t) − γ I ]R = 0  (38)

with

(39)

and

(40)

has five real eigenvalues γ1(g, U, x, y, t), ..., γ5(g, U, x, y, t) called characteristics speeds, and five

linearly independent eigenvectors R1(g, U, x, y, t),......, R5(g, U, x, y, t). It can be verified that (36) is

hyperbolic if for any unit vector m the acoustic tensor (37) is positive definite (Dafermos 2000).

For a masonry-like material, there exist E ∈ Sym and unit vector m such that A(E, m) is not

positive definite. This result, proved in the Appendix, where the acoustic tensor for a plane strain

state and its eigenvalues are explicitly calculated, shows that there are regions in which (36) is not

hyperbolic.

Let

(41)

and

(42)

be the kinetic energy and the strain energy, respectively and let T = V + U denote the mechanical

energy. Since, in view of the constitutive equation, the inequality

 (43)

holds, the strain energy, analogously to the kinetic energy, is non-negative.

The classical theorem of power and energy (Gurtin 1972) which holds for linear elastic materials,

states that the rate at which work is done by the surface and body forces equals the rate of change of

total energy. In particular, when b = 0 on B and Tn ·  = 0 on , then the total energy is constant.

For masonry-like materials such a result is not longer true: for example, in the case of longitudinal

vibrations of masonry beams (Casarosa et al. 1997, Lucchesi et al. 1999b), starting at time t = 0, a

shock wave is generated at the interface between the unloaded and compressed regions of the beam,

and consequently, the mechanical energy decreases and the solution decays (Lax 1972).

3. The numerical method

Let w be a vector field such that w = 0 on S1 × (0, t0), from (32) and (35) it follows that at each

G1

T
vx–  0  

1

2
---vy–  Txx–  Txy–, , , ,⎝ ⎠

⎛ ⎞
=

G2

T
0  vy–  

1

2
---vx–  Txy–  Tyy–, , , ,⎝ ⎠

⎛ ⎞
=

V
1

2
--- ρu·

2
vd

B

∫=

U ε vd
B

∫=

T̂ E( ) E( )⋅ T̂ E( ) E
e⋅ C E

e[ ] E
e⋅ 0≥= =

u· ∂B
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time t the condition of dynamic equilibrium

 (44)

must be verified. Since T depends non-linearly on E, the following incremental equation

 (45)

must be considered. From (45), by taking (31) into account, it follows that

(46)

By applying the finite element method, and using standard techniques, the incremental Eq. (46) can

be rewritten as the non-linear evolution system

 (47)

where  are the velocity and the time-derivatives of the nodal accelerations. The tangent stiffness

matrix K and the mass matrix M are obtained from the relations

 (48)

(49)

where c is the vector of the nodal values of the field w, and lastly,

(50)

Recalling that the evolution system (47) follows from the application of the finite element method

to the problem (30)-(35), for which the uniqueness of the solution is not guaranteed, and bearing in

mind that introduction of a viscous term allows recovery the uniqueness, in the place of system (47),

we integrate the system

(51)

In (51) we assume C = α1K
e, where K e is the linear elastic stiffness matrix and α1 is a non-negative

scalar chosen to be the smallest possible quantity which allows numerical solution of the system

(51). In order to calculate nodal displacements, velocities and accelerations, the evolution system

(51) must be integrated with respect to the time. By denoting with  as the internal forces

vector at time t, we assume that the equation

(52)

T
B

∫ w∇ Vd⋅ ρu··

B

∫ w Vd⋅+ b
B

∫ w Vd⋅ s
S
2

∫ w Ad⋅+=

T
·

B

∫ w∇ Vd⋅ ρu···

B

∫ w Vd⋅+ b
·

B

∫ w Vd⋅ s·

S
2

∫ w Ad⋅+=

DET̂ E( ) E
·[ ]

B

∫ w∇ Vd⋅ ρu···

B

∫ w Vd⋅+ b
·

B

∫ w Vd⋅ s·

S
2

∫ w Ad⋅+=

Ku· Mu···+ f
·

=

u· u···,

c Ku·⋅ DET̂ E( ) E
·[ ]

B

∫ w∇ Vd⋅=

c Mu···⋅ ρu···

B

∫ w Vd⋅=

c f
·⋅ b

·

B

∫ w Vd⋅ s·

S
2

∫ w Ad⋅+=

Ku· Cu·· Mu···+ + f
·

=

f t

in( )

f t

in( )
Cu· t Mu··t+ + ft=
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holds, and the body is thus in dynamic equilibrium. Subsequently, we assign a load increment Δf

defined by means of the relation

(53)

and solve the linear ordinary differential equation system

(54)

In order to solve system (54) we apply the Newmark method (Bathe and Wilson 1976). Let ut, 

and  be, respectively, the nodal displacements, velocities and accelerations at time t. For the

analogous quantities corresponding to time t + Δt we make the following assumptions

(55)

(56)

with β and δ are parameters that remain to be defined. In the applications described in Section 4 we

adopt the values β = 1/4 and δ = 1/2 for which the Newmark method is unconditionally stable.

From relations (55)-(56) we obtain the velocities and accelerations at time t + Δt as functions of

displacements ut+Δt,

(57)

(58)

From (57) and (58) we calculate  and  as functions of the unknown quantity Δu,

(59)

 (60)

and then, substitute the just determined relations in (54), by obtaining the system

(61)

with

(62)

Let us now briefly describe the algorithm implemented in NOSA. Consider the following

quantities related to the j-th load increment (corresponding to time t + Δt), at the i-th iteration,

c fΔ⋅ b t tΔ+( ) b t( )–( )
B

∫ w Vd⋅ s t tΔ+( ) s t( )–( )
S
2

∫ w Ad⋅+=

K ut( ) uΔ C u·Δ M u··Δ+ + fΔ=

u· t
u·· t

u· t tΔ+ u· t 1 δ–( )u·· t δu··t tΔ++[ ] tΔ+=

ut tΔ+ ut u· t tΔ 1

2
--- β–⎝ ⎠

⎛ ⎞ u··t βu··t tΔ++ t
2Δ+ +=

u·· t tΔ+
1

β t
2Δ

----------- ut tΔ+ ut–( ) 1

β tΔ
--------u· t–

1 2β–

2β
---------------u·· t–=

u· t tΔ+
δ

β tΔ
-------- ut tΔ+ ut–( ) β δ–

β
------------u· t

2β δ–

2β
---------------u··t tΔ+ +=

u·Δ u··Δ

u··Δ u·· t tΔ+ u··t–
1

β t
2Δ

----------- uΔ 1

β tΔ
--------u· t–

1

2β
------u··t–= =

u·Δ u· t tΔ+ u· t–
δ

β tΔ
-------- uΔ δ

β
---u· t–

2β δ–

2β
---------------u·· t tΔ+= =

W ut( ) uΔ fΔ C
δ

β
---u· t

2β δ–

2β
---------------u··t tΔ–⎝ ⎠

⎛ ⎞ M
1

β tΔ
--------u· t

1

2β
------u··t+⎝ ⎠

⎛ ⎞
+ +=

W ut( ) K ut( ) δ

β tΔ
--------C

1

β t
2Δ

-----------M+ +=
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(63)

is the nodal displacements vector,

(64)

is the matrix of the system,

 (65)

is the nodal equivalent of the assigned incremental loads, if i = 0; or the nodal equivalent of the

residual loads, if i ≥ 1. Let us assume that at time t + Δt we have calculated the displacement ,

the matrix  and the nodal equivalent loads  corresponding to the i-th iteration; in

particular,  and  coincides with the right-hand side of (61). We now solve the

system

 (66)

in order to determine the displacement

(67)

associated to the i + 1-th iteration. We then calculate the velocities

 (68)

the accelerations

(69)

the vector of the engineering components of stress  (in the Gauss points of the elements), the

derivative of the stress with respect to strain, according to Eqs. (10)-(12) or (23)-(25), and lastly, the

vector of residual loads 

(70)

In (70) matrix B connects the nodal displacements to the strains in the Gauss points of the element,

and ft is the vector of the nodal equivalent loads at time t. Lastly, we perform the convergence

check; if the inequality

 (71)

is satisfied, we go on to the next load increment j + 1, otherwise we repeat all operations beginning

with the solution to system (66). As an alternative convergence check, we may adopt the following

criterion

ut tΔ+

i( )

W ut tΔ+

i( )( )

gt tΔ+

i( )

ut tΔ+

i( )

W ut tΔ+

i( )( ) gt tΔ+
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ut tΔ+
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ut= gt tΔ+

0( )

W ut tΔ+

i( )( ) ut tΔ+

i( )Δ gt tΔ+

i( )
=

ut tΔ+

i 1+( )
ut tΔ+

i( )
uΔ t tΔ+

i( )
+=

u· t tΔ+

i 1+( )
u· t tΔ+

i( )
u· t tΔ+

i( )Δ+ u· t tΔ+

i( ) δ

β tΔ
-------- ut tΔ+

i( )Δ δ

β
---u· t–

2β δ–

2β
---------------u··t tΔ+ += =

u·· t tΔ+

i 1+( )
u··t tΔ+
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u··t tΔ+

i( )Δ+ u·· t tΔ+
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 (72)

where du is the displacement vector corresponding to the current increment, δu is the displacement

vector corresponding to the current iteration, and TOL is a tolerance check parameter. In this way,

the convergence is reached when the maximum displacement of the last iteration is small with

respect to the maximum incremental displacement.

In 1977 Hilber, Hughes and Taylor, within the framework of linear dynamics, proposed, a method

for the numerical integration of the equations of the motion which is not only unconditionally

stable, but also is characterized by a numerical dissipation that can be controlled (and eventually

eliminated) by a parameter that is independent of time. Such numerical dissipation damps the

contribution to the solution of the modes corresponding to the higher vibration frequencies, without

however influencing the modes corresponding to the lower frequencies. Subsequently, this method

has also been used to solve non-linear problems (Chung and Hulbert 1993, Hulbert and Jang 1995,

Geradin and Rixen 1997).

In the Hilber-Hughes-Taylor method, instead of the equation of motion (52), we consider the

following modified equation

(73)

where α is a parameter belonging to the interval [0, 1/3]. To solve Eq. (73) we use the relations

(55), (56) with

(74)

(for these values of β and δ the numerical method is unconditionally stable).

4. Examples

In this section we numerically solve the problem of the free longitudinal vibrations of a beam

made of a masonry-like material subjected to different initial conditions. The corresponding exact

solutions have been calculated in (Lucchesi et al. 1999b, Lucchesi 2000) for an infinite beam and in

Casarosa et al. (1997) for a beam with fixed ends. The main feature of the solutions is the

development of a shock wave at the interface between the cracked and compressed parts of the

beam, which determines a loss of mechanical energy. As well known ( ilhavý 1997), in the

presence of shock waves, the solution to the equation of the motion may be not unique. Thus, with

the aim of excluding physically meaningless solutions, further conditions are required, among which

the entropy condition and the Lax’s E-condition.

Let us consider a beam made of a no-tension material. At time t = 0, a longitudinal displacement

is assigned and the beam is then left to oscillate freely. The exact solution of the equation of the

motion can be determined by virtue of the fact that, despite the material’s non-linearity, the

characteristics are straight lines. Strain and velocity are constant in certain regions of the plane (x, t),

where x is the abscissa along the beam and t the time, and are discontinuous along the curves

separating the different regions.

δu ∞

ud ∞
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Let u(x, t) be the longitudinal displacement at time t of the point having abscissa x, ux(x, t) the

strain and  its sign. For ρ the mass density and E the Young’s modulus of the material,

setting  and τ = κt, let us introduce the quantity ω(ς) = 1 if ς = −1, and ω(ς)  = 0 if ς = 1.

For ux = 0, ω(ς) is not defined, and in this case we put ω(ς)ux = 0. Hereinafter, subscripts x and τ

will denote the partial derivatives with respect to x and τ. The free vibrations of the beam are

governed by the partial differential equation

 (75)

Here we limit ourselves to considering cases in which the initial velocity is zero, thus

u(x, 0) = (x) and uτ (x) = 0,  (76)

with  a given continuous function of x.

The solution to Eq. (75) can be calculated by using the characteristics method. In the regions

where , there are two families of characteristic curves, x + τ = const and x − τ = const, that

degenerate in the unique family of vertical lines x = const when ux > 0. If ux = 0 the characteristics

are not defined. It can be verified that Eq. (75) is not genuinely non-linear and is strictly hyperbolic

only if . We assume that the “velocity” u
τ
 and strain ux have discontinuity of the first kind

across a finite number of curves in the plane (x, τ). In this case, u
τ
 and ux must satisfy the Rankine-

Hugoniot conditions (Lax 1972)

s[ux] = −[u
τ
],  s[u

τ
] = −[ω2ux] (77)

where s is the “speed” of propagation of the discontinuity and the square brackets [ ] denote the

jump (right minus left) across the discontinuity of the enclosed quantities.

We shall label the values of a quantity on the left and right side of the discontinuity as − and +,

respectively. With the help of (77), it can be proved that if either ς+ = ς −, or ux vanishes on one of

the two sides, then . Such a discontinuity is called contact discontinuity. On the contrary, if

ς+ ≠ ς −, then the discontinuity line cannot coincide with a characteristic (i.e., ) and it is

called a shock (Lucchesi et al. 1999a,b). Let

 (78)

be the mechanical energy of the beam, which is assumed to be bounded and differentiable for each

. With the aim of excluding physically meaningless solutions, we require that, in the presence

of discontinuities, Ψ is a non-increasing function of τ (entropy condition). Otherwise, we can

require that when the characteristic beginning on either side of the discontinuity curve is continued

in the direction of increasing τ, it will intersect the line of discontinuity. This is the Lax’s E-

condition (Lax 1972), which in our case is meaningful only when both  and  are different

from zero. The Lax’s E-conditions dictates that

0 ≥ s ≥ −1,  for  s ≤ 0,  and  1 ≥ s ≥ 0, for s ≥ 0 (79)

In particular, when ς+ = ς− = −1, then  and when ς+ = ς− = 1, then . In other words,

condition (79) implies that the cracked region of the beam is in front of the shock, while the

compressed one is behind it.

ς ux/ ux=
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ττ
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4.1 Longitudinal vibrations of an infinite beam with parabolic initial displacement

Let us assume that the beam is subjected to the initial conditions

(80)

with a and λ positive numbers, and that

uτ (x, 0) = 0 (81)

In Lucchesi et al. (1999b) the explicit solution to the problem (75)-(80)-(81) has been determined

by using the following property of the characteristic lines: the quantities u
τ
 + ux and u

τ
 − ux are

constant along the characteristics x + τ = const. and x − τ = const., respectively, till they cross a

shock, whereas they are not affected by crossing a contact discontinuity. The half plane {(x, τ)⏐τ > 0}

can be partitioned in the following regions

where γ1(τ) is the straight line x(τ) = τ, and γ2(τ) is the curve having equation x(τ) =  ·

γ1 and γ2 are shock curves because during their crossing the material goes from a state in which

û x( )

0              for x λ–≤,

a 1
x

2

λ
2

-----–⎝ ⎠
⎛ ⎞ for λ– x λ< <,

0              for x λ≥,⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Ω1 x τ,( ) τ x λ x τ
1

2
---λ<,–< <

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Ω2 x τ,( ) λ– x γ1 τ( )< < τ 2λ<,{ }=

Ω3 x τ,( ) γ1 τ( ) x τ   for  τ
1

2
---λ< , γ1 τ( ) x λ τ   for  τ 2λ<–< << <

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Ω4 x τ,( ) x τ λ+>{ }=

Ω5 x τ,( ) λ τ– x λ τ+   for  τ
1

2
---λ< ,  τ x λ τ   for  τ

1

2
---λ>+< << <

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Ω6 x τ,( ) 1

2
---λ x τ< <   τ

1

2
---λ>,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Ω7 x τ,( ) λ τ– x
1

2
---λ  for  

1

2
---λ τ 2λ  γ2 τ( ) x

1

2
---λ  for  τ 2λ>< <,< << <

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Ω8 x τ,( ) λ τ– x γ2 τ( )   τ 2λ>,< <{ }=

Ω9 x τ,( ) x λ–<   τ λ x–<,{ }=

1

2
---–

λ

2
---

9λ
2

2 2τ λ–( )
----------------------–



120 Silvia Degl’Innocenti, Cristina Padovani and Giuseppe Pasquinelli

ux > 0 to a compressive state.

For  we have

ux(x, τ) = −2ϕx, u
τ
(x, τ) = −2ϕτ, for (x, τ) ∈ Ω1  (82)

ux(x, τ) = −2ϕx; u
τ
(x, τ) = 0, for (x, τ) ∈ Ω2 (83)

ux(x, τ) = for (x, τ) ∈ Ω3  (84)

ux(x, τ) = 0, u
τ
(x, τ) = 0, for (x, τ) ∈ Ω4 (85)

ux(x, τ) = −ϕ (x − τ), uτ (x, τ) = ϕ (x − τ), for (x, τ) ∈ Ω5 (86)

ux(x, τ) = 0, u
τ
(x, τ) = 0, for (x, τ) ∈ Ω6 (87)

ux(x, τ) = for (x, τ) ∈ Ω7 (88)

ux(x, τ) = u
τ
(x, τ) = , for (x, τ) ∈ Ω8 (89)

ux(x, τ) = 0,  u
τ
(x, τ) = 0, for (x, τ) ∈ Ω9 (90)

where .

The beam has been discretized with 1920 eight-node plane stress elements. Figs. 1 to 6 show the

behaviour of the displacement u as function of x for different values of τ (the following parameter

values have been used, κ = 1666.6 m/s, ρ = 1800 kg/m3 and a = 10−4 m). The time integration step

used in the Newmark and Hilber-Hughes-Taylor (HHT) methods is Δt = 10−7 s. The red, black and

the blue line respectively represent the exact solution obtained from (82)-(90), the numerical

solution obtained with the Newmark method with α1 = 10−7, and the numerical solution obtained

with the Hilber-Hughes-Taylor method (α1 = 0, α = 0.3), respectively.
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The behaviour of the displacement u(τ) is detailed in Lucchesi et al. (1999b). For 0 < τ < , apart

from the undisturbed regions, there are three distinct portions of the beam: the first portion has

positive strain and velocity equal to zero; the second one, which is separated from the first by the

shock γ1, is compressed with negative velocity; the third one is compressed with positive velocity. For

τ =  and x = , when ux = u
τ
 = 0, two new portions of the beam arise, the former with positive

strain and negative velocity, the latter with zero strain and zero velocity; a situation that continues up

to the disappearance of the shock γ1, at τ = 2λ. For τ > 2λ there are four distinct portions of the

beam: the first portion, where both strain and velocity are negative, spreads out, reducing the second

portion, from which is separated by the shock γ2, traveling with positive velocity.

In Lucchesi et al. (1999b) the expression of , where Ψ is the mechanical energy of

the beam and θ = τ /λ, has been explicitly calculated

 (91)

 (92)
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Fig. 3 Displacement u vs. x, τ = λ Fig. 4 Displacement u vs. x, τ = 2λ

Fig. 5 Displacement u vs. x, τ = 3λ Fig. 6 Displacement u vs. x, τ = 5λ
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In particular,  and , thus, we have

 (93)

Function  is plotted in Fig. 7; the red line represents the function (91)-(92), the black line and

the blue line are the normalized energy obtained via the Newmark method (α1 = 10−7) and the

Hilber-Hughes-Taylor method (α1 = 0, α = 0.3), respectively.

By looking over the diagrams, it can be seen that the best fit for the exact solution is achieved via

the Newmark method, at least for . The curve representing the exact mechanical energy is

nearly halfway between the results obtained via the two numerical schemes: Newmark fits well in

the “knee” zone and HHT prevails toward the tail. On the other hand, it should be noted that

Newmark method requires using an explicit damping term (α1 > 0) in order to obtain a converging

iterative sequence. Thus, α1 has been chosen to be as small as possible, in order to reach the

convergence.

4.2 Longitudinal vibrations of an infinite beam with piecewise linear initial displacement

Now, let us assume that the beam is subjected to the initial conditions

(94)

and (81). Based on the procedure outlined in the preceding example, with the help of the Rankine-

Hugoniot conditions and the results given in Lucchesi (2000), we have calculated the displacement

u(x, τ) satisfying (75), (94) and (81) for . Specifically, it holds that

(95)
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in the regions Λ1 = ,  and Λ9 = 

};

(96)

in ;

(97)

in ;

(98)

in ;

 (99)

in ;

 (100)

in  and, lastly

(101)

in .
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Fig. 8 shows the behaviour of the characteristics in the strip . Segment OD,

with equation x(τ) = , represents the shock. The displacement u satisfying Eq. (75), with the

initial conditions (94) and (81), calculated on the basis of (95)-(101), is

(102)

if ;

(103)

if ;

    (104)
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if .

The discretization of the beam and the parameters κ, ρ and a are the same of the preceding

subsection. Figs. 9 to 14 show the displacement u as function of x for different values of τ : the red,

black and the blue lines respectively represent the exact solution, the Newmark solution (α1 = 10−7)

and the HHT solution (α1 = 0, α = 0.3).

For , apart from the undisturbed regions, there are three distinct portions of the beam:

the first portion has ux > 0 and u
τ
 = 0, the second, which is separated from the first by the shock

τ 2λ
7

2
---λ,∈

0 τ
1

2
---λ< <

Fig. 9 Initial displacement  vs. x û Fig. 10 Displacement u vs. x τ, 1

2
---λ=

Fig. 13 Displacement u vs. x, τ = 3λ Fig. 14 Displacement u vs. x, τ = 
7

2
---λ

Fig. 11 Displacement u vs. x, τ = λ Fig. 12 Displacement u vs. x, τ = 2λ
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OD, is compressed with uτ ≥ 0; while the third is compressed with uτ > 0. For τ =  and x = ,

two new portions arise on the beam, the former with uτ < 0 and ux = 0, the latter with ux = uτ = 0.

For τ > , displacement u(x, τ) has a discontinuity of the first kind in x = . The interval  <

τ < 2λ is characterised by the fact that the compressive front in Λ5 travels rightward causing

expansion of the undisturbed region Λ9. On the contrary, the unstrained region Λ7 travels leftward,

reducing the compressed region Λ3, a situation that continues up to the disappearance of the shock

OD at τ = 2λ. For 2λ < τ <  there are four distinct portions of the beam: the first portion,

characterised by u
τ
 < 0 and ux < 0, spreads out, reducing the second portion, characterised by u

τ
 < 0

and ux = 0. In particular, for τ =  this portion reduces to a point, as shown in Fig. 14. The third

portion, where ux = u
τ
 = 0, spreads out rightward, due to the fact that the fourth compressed portion

travels with positive velocity.

The mechanical energy is

(105)

Function , with  is plotted in Fig. 15; the red line represents the suitably normalized

function (105), the black and blue lines are the normalized energy obtained via the Newark and

HHT method, respectively.

The observations advanced in the preceding example hold in this case as well. The presence of a

discontinuity in the displacement at x =  for τ >  explains the worse fit achieved by both

methods, although Newmark’s results are still better, particularly regarding the mechanical energy.

4.3 Longitudinal vibrations of a beam with fixed ends

Let us consider a finite beam with length l. We are now considering the boundary conditions

u(0, τ) = u(l, τ) = 0, τ ≥ 0 (106)

and choose the initial condition
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(107)

It is possible to prove that (Casarosa et al. 1997) the displacement of the midpoint is

(108)

and that the mechanical energy of the beam is

(109)

The beam has been discretised with 640 eight-node plane stress elements, with l = 1 m, κ = 1666.6

m/s, ρ = 1800 kg/m3 and a = 10−4 m. Fig. 16 shows the behaviour of u(0.5, τ) for τ ∈ [0, 2] and

Fig. 17 the plot of the function .

The red line represents the exact solution (108) and (109), the black and blue lines are the

numerical solutions obtained by using the Newmark method with α1 = 10−7, and the Hilber-Hughes-

Taylor method with α1 = 0, α = 0.3, respectively.

Fig. 17 indicates that a loss of mechanical energy occurs due to the formation of two shock waves

(Casarosa et al. 1997). This phenomenon causes a progressive decay of the solution, as shown in

Fig. 16.

5. Conclusions

In order to integrate with respect to the time the system of ordinary differential equations obtained
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by discretising the structure into finite elements, the Newmark and Hilber-Hughes-Taylor methods

have been implemented in NOSA. With the aim of evaluating the effectiveness of the Newmark and

Hilber-Hughes-Taylor methods, some dynamic problems whose exact solution is known (Lucchesi

et al. 1999b, Lucchesi 2000, Casarosa et al. 1997), have been solved numerically.

Many trials were performed by varying the parameters α1, α and Δt. As far as the Hilber-Hughes-

Taylor method is concerned, we have verified that the choice of α1 = 0, α = 0.3 (in view of (74),

we have δ = 0.8, β = 0.4225) yields the best results, in the sense that the displacement calculated

with these values is the closest to the exact displacement. It should be noted that even in the

absence of damping terms (α1 = 0), for α ≠ 0 a term depending on the velocity is introduced into

Eq. (73); thus, the Hilber-Hughes-Taylor method presents a numerical damping. We have verified

that the convergence to the solution is not guaranteed by using the Newmark method with α1 = 0,

and that the choice α1 = 10−7 with δ = 0.5, β = 0.25 provides a good algorithm of integration. In

addition, the Newmark method with α1 = 0 and δ = 0.8, β = 0.4225 (the same values used in the

HHT method) yields the same results as the Hilber-Hughes-Taylor method with α = 0.3. Lastly, for

values of Δt less than 10−7 s neither method provides results better than those obtained with Δt =

10−7 s. 

Comparison of the exact solutions with the corresponding approximations obtained via the

Newmark and Hilber-Hughes-Taylor methods shows that in the examples considered here, both

numerical methods provide satisfactory results, although they assume the velocity to be smooth,

while in fact it is discontinuous in correspondence of the shock wave. In the cases addresses herein,

the numerical solution calculated via the Newmark method provides a very good fit to the exact

solution.
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Appendix

Here we calculate the acoustic tensor (37) for a plane strain state. From (10), (11) and (12), we obtain

(110)

A(E, m) = 0, E ∈ R2  (111)

E ∈ R3 (112)
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ê
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If E ∈ R1, A(E, m) has two positive eigenvalues

(113)

then, system (36) is hyperbolic. If E ∈ R2, A(E, m) has two null eigenvalues. Lastly, if E ∈ R3, the eigen-
values of A(E, q2) are

 (114)

and A(E, m) has two distinct positive eigenvalues for m ≠ q2,

(115)

(116)

with η1 < η2.
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