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Detection of crack in L-shaped pipes filled with fluid 
based on transverse natural frequencies
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Abstract. The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement
of transverse natural frequencies is examined. The problem is solved by representing the crack by a
massless rotational spring, simulating the out-of-plane transverse vibration only without solving the
coupled torsional vibration and using the transfer matrix method for solution of the governing equation.
The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially
oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal
fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range
of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration
analysis and deflection method. The details of the two methods are given. The results by the two methods
are presented graphically and show good agreement. Crack locations are also determined by the inverse
analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of
rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The
maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild
steel pipes respectively.

Key words: detection of crack; out-of-plane transverse vibration; L-shaped pipe filled with fluid;
transfer matrix method; rotational spring.

1. Introduction

Long pipes abundantly occur in power plants, chemical plants, and oil and natural gas industries.

They are used to transport fluid at different pressures. Most often the pipes are employed in long

spans. Monitoring health of such pipes in service is very important for ensuring an uninterrupted

operation. Health can be monitored using non-destructive testing techniques, e.g., X-ray, electric

impedance technique, eddy current based method, etc. These methods require scanning of the whole

length of a pipe. This process is a very time consuming, labour-intensive and expensive. One

emerging potential candidate for the detection is based on changes in vibration responses of a

component. Its usefulness has been shown (Wauer 1990, Gasch 1993, Dimarogonas 1996, Salawu
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1997, Doebling et al. 1998) to a laboratory scale for components in the form of beams. The method

makes use of either the global or local effects produced by a crack. The changes in natural

frequencies form the basis of one of such global methods. This has suitability for components with

limited or full access. The limited access is common for pipes located in hazardous areas of nuclear

power plants and under-sea pipelines. The changes in displacements and mode shapes (or its

derivatives like strains, and curvatures) are the basis of the local methods, which are appropriate for

components with full access. The method based on natural frequencies is more attractive because

the frequency can be measured easily from any point on the component. Its applicability has been

shown for beams with external cracks, normal or inclined at an angle to the edge, single and

multiple cracks (e.g., Hu and Liang 1993, Nandwana and Maiti 1997, Li 2002, Ruotolo and Surace

1997). The method does not involve any iteration and is alright for any component whose free

vibrations can be modelled in a particular manner with and without crack. For straight beams the

focus has been more on free transverse vibrations than axial and torsional vibrations. The method

based on the transverse vibration is of interest here.

While modelling, the governing equations are obtained through the Euler-Bernoulli beam theory

for long beams and the Timoshenko theory for short beams. The local effects of a crack are

represented either in the form of a segment of reduced section height symmetrically placed around

it (Bovsunovsky and Matveev 2000) or by a rotational spring (Hu and Liang 1993, Nandwana and

Maiti 1997, Li 2002, Liang et al. 1991, Murigendrappa et al. 2004, Patil and Maiti 2002, Choy et al.

1995, Chaudhari and Maiti 2000, Chaudhari 2000) invoked at the crack location. The approach

based on the rotational spring assumes that a crack alters the mode shape of the beam only locally.

The rotational spring stiffness corresponding to a given crack can be determined from the

relationship between the stress intensity factor and the crack size. In the absence of such a

relationship it can be determined experimentally or numerically through the displacement method or

inverse vibration analysis (e.g., Hu and Liang 1993, Nandwana and Maiti 1997, Chaudhari and

Maiti 2000, Murigendrappa et al. 2004). In the displacement method, the relationship between the

rotational spring stiffness and the difference in strain energies of a beam corresponding to two

configurations, with and without crack, and the same loading, is utilized to determine the stiffness.

A wide variety of beams have been considered for crack detection, e.g., beams with uniform

section, discretely or continuously varying section, only supported at the ends on rigid or elastic

supports, intermittently supported on rigid or elastic supports (Liang et al. 1991, Narkis 1994, Choy

et al. 1995, Nandwana and Maiti 1997, Chaudhari and Maiti 2000, Patil and Maiti 2002, Kim and

Stubbs 2003), etc. Experimental results, though not very exhaustive, are also reported. 

Most of the studies on frames consider them to be made of prismatic bars. They address the

forward problem of determination of natural frequencies knowing the crack details (e.g., Chondros

and Dimarogonas 1989, Saavedra and Cuitiño 2001) and inverse problem of determination of crack

details from the natural frequencies (e.g., Yao et al. 1992, Hassiotis and Jeong 1993, Morassi and

Rovere 1997, Nikolakopoulos et al. 1997, Shi et al. 1998, Hassiotis 1999, Xia and Hao 2000).

Pipes filled with fluid under pressure have not yet been studied. Pipes can occur in straight or

framed configurations. The simplest framed pipe is in the form of L. In the case of such pipes, there

is a possibility of cracks developing in service at the internal surface due to stress-corrosion. There

is also a possibility of cracks developing at the external surface in circumferential orientation due to

the dominance of mechanical loading and/or stress-corrosion. Both the problems have practical

importance; the external crack is of concern here. Some of the studies (e.g., Chaudhari 2000) show

the possibility of detection of crack in straight empty pipes. A field pipe, which may contain fluid,
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is therefore required to be emptied, detached and taken to the laboratory for the vibration-based

crack detection. To help attain an in-situ testing capability they should be tested in the laboratory

under conditions similar to the operating conditions. Murigendrappa et al. (2004) present an attempt

in this direction for straight pipes. 

Leak-before-break is an established concept for pipelines carrying fluids under pressure. This has

motivated many on-line monitoring schemes and detection of leak-before-break for pipelines. If the

crack can be detected before it gives way to leaking, it will have a lot of practical utility. This is

also an important motivating factor for the present study.

In the case of free transverse vibration of L-shaped pipes with two orthogonal segments,

particularly in the case of out-of-plane vibrations, there is a coupling of bending and torsional

effects. For such pipes without any crack, Murigendrappa (2004) has proposed an approach of

modelling by considering only transverse vibration of each segment separately without solving the

coupled torsional vibration. In the approach, the coupling of torsional and transverse vibrations have

been decoupled by an inclusion of total torsional effect due to one segment on the transverse

vibration of the other in a way which is akin to lumping. 

This paper presents an extension of the method of vibration analysis for crack-free L pipes

proposed by Murigendrappa (2004) to similar pipes with a crack and gives a procedure for detection

of single crack in such pipes. The problem has been solved by combining the massless rotational

spring based representation of a crack and the transfer matrix method for solution of the governing

equation. The cracks considered are external, normal to the axis and have straight front part

through-the-thickness, i.e., a non-leaking crack. The rotational spring stiffness has been measured

experimentally by the displacement method and the inverse vibration analysis knowing the changes

in natural frequencies. Experimental studies are presented to demonstrate the effectiveness of the

method for the prediction of rotational spring stiffness, crack location and its size through the

measurement of natural frequencies.

2. Theoretical formulation 

For an L-shaped pipe without any crack filled with an incompressible fluid, neglecting effects of

shear deformation, rotational inertia and damping, the free out-of-plane transverse motion of each

segment is governed by (Fig. 1a)

(1)

where E is the modulus of elasticity, I is the second moment of inertia, ρP is the density of material

of pipe, ρf is the density of fluid, Afp and AP are cross sectional area of fluid cylinder and pipe

respectively, p is fluid pressure, yi is the transverse displacement of the pipe as a function of

position xi along the length of the pipe in a particular mode for the segment i. Considering harmonic

motion and 

(2)

where ηi = xi/Li for ith segment, the mode shape equation is obtained. 
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(3)

The solution of Eq. (3) is given by

vi(ηi) = Ai sinh(λ1,i ηi) + Bi cosh(λ1,i ηi) + Ci sin(λ2,i ηi) + Di cos(λ2,i ηi) (4)

where λ1,i = φ1Li, λ2,i = φ2Li for ith segment and 

Ai, Bi, Ci and Di are arbitrary constants determined from the boundary conditions. 
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Fig. 1 L-shaped pipe. (a) Crack-free. Crack is represented by rotational spring at D in (b) segment AB and (c)
segment BC 
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For a similar pipe with a crack, the segment with crack is split into two parts, which are

connected by a rotational spring of stiffness K at the crack location D (Figs. 1b or c). The governing

equation of motion of AD, DB and BC (Fig. 1b) or AB, BD and CD (Fig. 1c) is of the type of

Eq. (1). The transfer matrix method for each segment can be easily obtained using Eq. (4). The

state vectors {v}C associated with the end C (Figs. 1b or c), can be written in terms of {v}A of the

end A, as follows. 

Case 1 (Fig. 1b):

(5)

Case 2 (Fig. 1c):

(6)

where {v}= {v θ M V Mt θt}
T and [T]i is the matrix of ith segment. [Tt]1 and [Tt]2 are the matrices

linking the two sides of the torsional springs located at B. [T]J links the state variables associated

with the ends of the two segments AB and BC, and [T]K is the transfer matrix for the crack. These

matrices are given below.
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where 

 and J are shear modulus of elasticity and

polar moment of inertia of the pipe cross-section respectively.

The following characteristic determinant of size 3 × 3 is obtained after inserting the end conditions

for the fixed-free pipe in Eq. (5) for the case of crack is located in segment AB.

(7)

where Aij and Bij are explicitly given in Appendix I. A and C are considered fixed and free ends

respectively (Fig. 1).

Alternatively, Eq. (7) can be written in the following form and it can be used to solve the inverse

problem.

(8)

In the case of the crack is located in segment BC, the relations corresponding to Eqs. (7) and (8)

are given below. 
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(9)

and

(10)

where Aij and Bij are explicitly given in Appendix II. Since the transfer matrices for the segments

AD and DB (Fig. 1a), or BD and DC (Fig. 1c), depend on the crack location and the natural

frequency, the right hand sides of Eqs. (8) and (10) are functions of the crack location and natural

frequency.

3. Rotational spring stiffness

The change in strain energy of a pipe with and without a crack under the action of a constant

transverse load is equal to the energy released due to the crack. That is,

(11)

where KI is the stress intensity factor for first mode crack, Uc and Unc are strain energy of the pipe

with and without crack and Ac is area of crack. When the rotational spring is used to represent the

crack, this energy released gets stored in the spring. This is also given by 

(12)
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Fig. 2 Schematic representation of experimental setup for measurement of static deflection
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to loading P and self weight WP, LDB is the length between the crack location and load point and K

is the rotational spring stiffness. The difference ΔU can be calculated by applying a load P on the

pipe and measuring the deflections in the two cases. That is, 

(13)

when the pipe is empty and δnc and δc are the corresponding deflections along the load line.

Therefore,

(14)

For the case of a pipe with a fluid under pressure, considering the weight of fluid and pipe and its

contributions to deflections, it is again possible to write 

 

(15)

where , WFP is the total weight of the fluid

and pipe material per unit length.

4. Experimental determination of rotational spring stiffness

Experiments were conducted to determine the rotational spring stiffness through both the static

deflection and vibration methods. Specimens were made out of aluminium and mild steel pipes. L-

shaped pipes were fabricated by welding two straight pipes AB and BC (Fig. 1) at an included

angle of 90o. Before welding edges of the segments were prepared and circumferential welding
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Fig. 3 Photograph of experimental setup for frequency measurement
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was done. Sufficient care was taken to see that the two segments were at right angle to each other.

A special fixture was made to hold the two segments during the welding. Tests were conducted

with empty and water filled pipes. Both pressurized and no pressure conditions were examined.

Three water pressures (gauge) were considered: 0, 491 kPa and 981 kPa. All tests were carried out

with cantilever conditions. Aluminium pipe details are: L1 = 0.6 m, L2 = 0.34 m, external diameter

Do = 0.02 m and internal diameter Di = 0.013 m, material density ρ
 

= 2645 kg/m3, Young’s

modulus E = 60 GPa and shear modulus G = 25.5 GPa. Similar details for mild steel pipes are:

L1 = 0.6 m, L2 = 0.3405 m, Do = 0.019 m, Di = 0.011 m, ρ
 

= 7860 kg/m3, Young’s modulus E =

190 GPa and shear modulus G = 70.5 GPa. For testing under water filled conditions, one end of

the pipe was closed by welding a cap. The other end was closed by a threaded stainless steel end

cap, which was connected by a pipe to a hand operated hydraulic pump. To facilitate supporting

the specimen at the ends suitable supports were specially fabricated. These were fixed on a

vibration table at a required spacing by T-bolts. The setup is shown in Figs. 2 and 3. Pressure of

fluid is directly noted from the pressure gauge of the hand pump. Totally 36 specimens (including

two virgin specimens, one each for the two materials) were considered for the vibration test. The

same specimens were used for static deflection testing. Crack sizes in the range a/t = 0.22 to 0.57

for aluminium and 0.20 to 0.50 for mild steel, where a is edge crack size and t is pipe wall

thickness, were examined. The cracks were generated through wire-cut machining. The wire

diameter was 0.15 mm.

4.1 Deflection method

To facilitate determination of K through deflection measurements, deflections at the load point B

and at free end C (Fig. 2) were measured for specimens with and without crack. For testing

specimens with crack, fixing of the pipe was so done that the crack is always located at the fixed

end D (Fig. 2). As expected the vertical or transverse deflections at locations B and C are the same.

This procedure was repeated for all the specimens. For both aluminium and mild steel four crack

sizes were examined and for each crack size, three crack positions were considered for displacement

measurements. In each case a load of 98.1 N (≈10 kg) was applied in the transverse direction. For

each crack size three span lengths LDB are considered. For each LDB, one stiffness is obtained. Since

the rotational spring stiffness does not depend on span length LDB, the average of these three values

is taken as the representative rotational spring stiffness. These are shown in Table 1. The similar

results, for mild steel, are shown in Table 2.

4.2 Vibration method

The problem of determination of the spring stiffness (K) can be handled in two ways. First, given

a crack location β and natural frequency, K can be obtained straightway from Eq. (8) or (10).

Second, the problem can be posed as a problem of determination of both K and crack location β

from the knowledge of the frequencies. Since there are two unknowns (K and β ) in this case, at

least two relations are required between them for their determination. These are obtained through

Eq. (8) or (10) using any two, may be the first two, natural frequencies. The intersection points of

these two relations give all the possible combinations of K and β. A third relation between K and β,

obtained through the third or any other unused natural frequency, is employed to decide on the

unique pair. The intersection can be obtained graphically or through a numerical scheme like the bi-
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Table 1 Measured rotational spring stiffness for aluminium pipes through deflection measurements 

a/t L
c1/LAB

Empty pipe
Water filled pipe

 at pressure p = 0

Water filled pipe

 at pressure  p = 491 kPa

Water filled pipe

 at pressure  p = 981 kPa

δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

0.2286

0.245 7846 8674 25.650

24.478

7850 8745 24.081

23.975

7848 8626 27.091

26.032

7850 8649 25.788

 27.3510.517 2030 2377 24.805 2031 2369  25.881 2033 2365 26.111 2032 2349 27.099

0.767 220 307 22.979 224 316 21.964 221 302 24.894 219 288 29.165

0.3429

0.245 7846 9380 13.846

13.251

7850 9429 13.650

13.567

7848 9374 13.812

13.592

7850 9458 12.814

13.5960.517 2030 2694 13.010 2031 2659 13.930 2033 2670 13.609 2032 2650 13.901

0.767 220 375 12.898 224 378 13.121 221 372 13.354 219 362 14.073

0.4571

0.245 7846 10073 9.538

9.219

7850 10154 9.355

9.367

7848 10042 9.606

9.451

7850 10087 9.211

9.3650.517 2030 2978 9.113 2031 2950 9.519 2033 2954  9.413 2032 2951 9.348

0.767 220 442 9.005 224 443 9.226 221 437 9.335 219 430 9.537

0.5714

0.245 7846 10498 8.009

7.967

7850 10510 8.103

8.021

7848 10448 8.106

8.225

7850 10395 8.096

8.1490.517 2030 3124 7.896 2031 3124 8.004 2033 3077 8.304 2032 3079 8.205

0.767 220 470 7.997 224 478 7.955 221 465 8.264 219 466 8.147

Table 2 Measured rotational spring stiffness for mild steel pipes through deflection measurements

a/t Lc1/LAB

Empty pipe
Water filled pipe
at pressure p = 0

Water filled pipe

at pressure  p = 491 kPa

Water filled pipe
at pressure  p = 981 kPa

δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage δ
nc

 δ
c

K Kaverage

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

10–6m 10–6m
(kNm/
rad)

(kNm/
rad)

0.20
0.513 804  1127 29.764

28.533
807 1188 25.451

26.207
809 1160 27.560

26.486
806 1174 26.222

25.053
0.683 210 357 27.301 212 362  26.963 214 373 25.411 213 382  23.884

0.30
0.513 804 1350 17.607

16.961
807 1428  15.615

16.062
809 1363 17.460

17.044
 806  1394  16.411

15.362
0.683 210  456 16.314 212  457 16.508 214 457  16.627 213 495  14.313

0.40

0.343 1892  3505 11.005

 11.604

1896 3454  11.501

 11.764

1895  3372 12.081

 11.989

1893 3512 11.033

10.6920.513 804  1598 12.108 807 1637 11.683 809 1608  12.107  806 1681 11.028

0.683 210  553  11.700 212 546  12.109 214 557 11.780 213 616 10.016

0.50

0.343 1892 3864  9.002

9.001

1896  3760 9.613

 9.728

1895  3855  9.104

 9.199

1893  3941 8.722

8.4800.513 804 1860  9.104 807 1806  9.707 809 1848  9.310 806  1953 8.413

0.683 210 661  8.898 212 622  9.864 214  654  9.183 213  699 8.305
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section method. In the present study, the second strategy in conjunction with the graphical method

has been employed. Therefore, while applying the method, the variation of K with β, corresponding

to each of the three frequencies is obtained. The intersection of the three curves gives the required

rotational spring stiffness and crack location. In case the three curves do not intersect exactly at a

point, the center of gravity of the triangle formed by three-paired intersections is taken to obtain the

most accurate K and β (Nandwana and Maiti 1997).

To measure the natural frequencies an accelerometer (Type 4374, Bruel & Kjaer, Denmark) with a

mass of 0.65 gram, the lowest available in the laboratory, was glued on the specimen top during its

testing using wax at a distance of 0.15 m from fixed end. The output of the accelerometer was

amplified by a charge amplifier (Type 2635, Bruel & Kjaer, Denmark) and analyzed through a FFT

analyzer (Type A&D-3524, Japan). The frequencies corresponding to the first few natural

frequencies were obtained.

During the testing a pipe was lightly tapped by an impulse hammer in the transverse direction.

The first few natural frequencies of specimens without and with crack were measured. The

experimental data for the second, third and fourth frequencies are shown in Tables 3 to 6. The first

 
Table 3 Predicted stiffness and crack location for aluminum pipes through frequency measurements

Segment

Actual data Natural frequencies (Hz) Predicted data 

β a/t ω2 ω3 ω4 K
(kNm/rad)

β % error 
in β

Empty pipe

No crack
65.16
68.67*

232.50
234.97*

614.69
624.78*

1 0.245 0.2286 64.90 232.45 609.80 24.624 0.251 −0.60

0.3429 64.70 232.40 606.00 13.733 0.252 −0.70

0.4571 64.55 232.36 602.50 9.759 0.255 −1.00

0.5714 64.35 232.25 599.00 7.392 0.254 −0.90

0.517 0.2286 65.11 229.20 614.30 23.833 0.491 2.60

0.3429 65.08 227.00 613.85 14.067 0.495 2.20

0.4571 65.04 224.04 606.50 8.917 0.461 5.60

0.5714 65.00 222.00 602.10 7.067 0.458 5.90

0.767 0.2286 65.15 228.70 604.20 20.781 0.775 0.80

0.3429 65.14 228.00 601.75 14.084 0.825 −5.80

0.4571 65.13 227.05 598.60 8.963 0.846 −7.90

0.5714 65.11 225.75 596.45 7.267 0.858 −9.10

2 0.412 0.2286 65.00 232.15 604.20 23.426 0.385 2.70

0.3429 64.90 231.95 591.00 12.762 0.436 −2.40

0.4571 64.81 231.60 583.66 8.565 0.425 1.30

0.5714 64.75 231.50 580.63 7.892 0.415 0.30

0.706 0.2286 65.13 232.40 608.75 24.019 0.642 6.40

0.3429 65.12 232.35 605.80 13.561 0.665 4.10

0.4571 65.11 232.28 602.45 9.856 0.674 3.20

0.5714 65.09 232.22 598.20 8.428 0.658 4.80
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Table 3 Continued

Segment

Actual data Natural frequencies (Hz) Predicted data 

β a/t ω2 ω3 ω4 K
(kNm/rad)

β % error 
in β

Water filled pipe at no pressure p = 0

No crack
60.00
60.78*

206.25
207.97*

572.34
552.97*

 1 0.245 0.2286 59.75 206.20 568.00 27.028 0.255 −1.00

0.3429 59.53 206.15 564.85 12.425 0.221 2.40

0.4571 59.35 206.09 561.50 8.992 0.230 1.50

0.5714 59.25 206.00 560.45 7.538 0.219 2.60

0.517 0.2286 59.95 203.55 571.84 25.408 0.492 2.50

0.3429 59.92 201.05 571.15 13.150 0.490 2.70

0.4571 59.90 198.00 570.80 8.495 0.501 1.60

0.5714 59.88 197.34 570.65 7.552 0.491 2.60

0.767 0.2286 59.99 204.40 562.84 25.867 0.785 −1.80

0.3429 59.98 202.84 554.60 12.025 0.825 −5.80

0.4571 59.97 201.98 553.95 8.283 0.830 −6.30

0.5714 59.96 200.75 552.35 7.481 0.815 −4.80

 2 0.412 0.2286 59.87 205.97 562.20 24.820 0.421 −0.90

0.3429 59.74 205.70 553.00 12.973 0.400 1.20

0.4571 59.63 205.45 544.10 8.957 0.391 2.10

0.5714 59.60 205.30 540.30 7.561 0.405 0.70

0.706 0.2286 59.96 206.12 566.18 28.042 0.592 11.40

0.3429 59.95 206.05 561.00 11.538 0.667 3.90

0.4571 59.94 206.00 559.50 9.450 0.648 5.80

0.5714 59.92 205.94 556.84 8.096 0.628 7.80

*-Natural frequency of pipe with no crack obtained by Eq. (7) or (9) using K = ∞.

frequency showed a minimal difference between the two cases, specimens with and without crack,

and it has not been included. The first two tables present results for aluminium; the last two show

the same for mild steel. The experimental and analytical frequencies for pipes with no crack are

required for the zero setting, while solving an inverse problem (Nandwana and Maiti 1997). The

frequencies of a pipe with no crack obtained by Eq. (7) or (9) using K = ∞ are shown in these

tables. 

The stiffnesses obtained through the inverse analysis are shown in Tables 3 and 4 for aluminium

and Tables 5 and 6 for mild steel pipes. Typical variation of K with β, where β = AD/AB for a

crack in segment AB (Fig. 1), is shown in Fig. 4. 

5. Results and discussion 

Based on the results (Tables 1 and 2) of the deflection method, it is found that the stiffness of
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Table 4 Predicted stiffness and crack location for aluminum pipes through frequency measurements

Segment

Actual data Natural frequencies (Hz) Predicted data 

β a/t ω2 ω3 ω4 K
(kNm/rad)

β % error 
in β

Water filled pipe at pressure p = 491 kPa

No crack 61.25
60.79*

207.19
208.19*

572.72
553.24*

1 0.245 0.2286 61.00 207.18 568.50 25.681 0.239 0.60
0.3429 60.82 207.16 564.85 14.068 0.244 0.10
0.4571 60.65 207.13 561.40 8.992 0.231 1.40
0.5714 60.58 207.10 560.35 8.106 0.252 −0.70

0.517 0.2286 61.23 203.10 570.88 25.136 0.488 2.90
0.3429 61.21 200.00 569.63 13.562 0.485 3.20
0.4571 61.18 198.56 568.80 9.117 0.480 3.70
0.5714 61.15 197.00 567.45 7.183 0.498 1.90

0.767 0.2286 61.24 204.78 563.45 21.082 0.845 −7.80
0.3429 61.23 202.67 556.00 11.254 0.836 −6.90
0.4571 61.22 201.00 549.40 8.769 0.825 −5.80
0.5714 61.21 200.55 549.00 7.257 0.830 −6.30

2 0.412 0.2286 61.12 206.90 562.60 24.062 0.406 0.60
0.3429 61.00 206.65 553.30 12.977 0.409 0.30
0.4571 60.85 206.45 544.00 9.387 0.398 1.40
0.5714 60.70 206.33 540.20 8.120 0.365 4.70

0.706 0.2286 61.21 207.05 565.31 25.421 0.586 12.0
0.3429 61.19 206.93 560.00 13.658 0.615 9.10
0.4571 61.16 206.85 555.10 10.028 0.581 12.50
0.5714 61.10 206.60 545.15 8.062 0.575 13.10

Water filled pipe at pressure p = 981 kPa

No crack 62.03
60.81*

208.91
208.42*

575.31
553.52*

 1 0.245 0.2286 61.79 208.89 571.00 28.420 0.240 0.50
0.3429 61.60 208.85 567.30 13.856 0.248 −0.30
0.4571 61.40 208.82 564.25 8.921 0.248 −0.30
0.5714 61.34 208.77 563.05 8.254 0.247 −0.20

0.517 0.2286 62.01 205.30 574.80 24.510 0.508 0.90
0.3429 62.00 200.65 574.23 12.258 0.522 −0.50
0.4571 61.98 197.20 573.75 8.852 0.510 0.70
0.5714 61.96 196.85 573.45 7.451 0.501 1.60

0.767 0.2286 62.02 206.50 566.00 21.085 0.825 −5.80
0.3429 62.00 204.42 559.65 11.684 0.842 −7.50
0.4571 61.98 203.60 555.75 8.725 0.836 −6.90
0.5714 61.97 202.85 553.20 7.315 0.856 −8.90

2 0.412 0.2286 61.90 208.60 565.15 24.583 0.409 0.30
0.3429 61.75 208.40 556.10 13.821 0.387 2.50
0.4571 61.66 208.12 546.00 8.927 0.390 2.20
0.5714 61.60 208.00 544.10 8.037 0.398 1.40

0.706 0.2286 61.99 208.77 567.92 23.892 0.598 10.80
0.3429 61.94 208.65 560.10 14.462 0.575 13.10
0.4571 61.90 208.50 553.75 10.412 0.568 13.80
0.5714 61.88 208.40 548.60 7.682 0.572 13.4

*-Natural frequency of pipe with no crack obtained by Eq. (7) or (9) using K = ∞.
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Table 5 Predicted stiffness and crack location for mild steel pipes through frequency measurements

Segment

Actual data Natural frequencies (Hz) Predicted data 

β a/t ω2 ω3 ω4 K
(kNm/rad)

β % error 
in β

Empty pipe

No crack 62.50
64.77*

211.56
223.18*

586.56
592.93*

1 0.343 0.40 61.55 207.40 546.00 10.565 0.311 3.20

0.50 61.40 204.45 540.68 8.534 0.324 1.90

0.513 0.20 62.45 200.00 584.10 24.996 0.507 0.60

0.30 62.41 197.20 583.50 16.417 0.501 1.20

0.40 62.35 195.85 582.95 12.721 0.495 1.80

0.50 62.28 192.10 579.80 9.483 0.485 2.80

0.683 0.20 62.48 202.50 576.15 23.426 0.624 5.90

0.30 62.47 199.00 573.46 16.333 0.601 8.20

0.40 62.46 192.02 569.05 10.264 0.596 8.70

0.50 62.44 190.78 567.46 9.288 0.598 8.50

2 0.485 0.20 62.28 210.87 559.00 24.109 0.496 −1.10

0.30 62.11 210.48 541.56 16.483 0.462 2.30

0.40 61.95 210.06 517.91 11.425 0.472 1.30

0.50 61.80 209.45 505.37 8.740 0.464 2.10

Water filled pipe at no pressure p = 0

No crack 58.75
62.79*

200.31
216.35*

564.38
574.78*

1 0.343 0.40 58.10 193.35 524.00 10.621 0.340 0.30

0.50 57.94 191.75 517.60 8.608 0.339 0.40

0.513 0.20 58.70 190.26 563.75 24.153 0.524 −1.10

0.30 58.66 185.71 561.28 15.430 0.508 0.50

0.40 58.64 178.60 559.87 10.724 0.502 1.10

0.50 58.60 175.57 557.82 8.847 0.501 1.20

0.683 0.20 58.73 193.00 558.87 29.667 0.590 9.30

0.30 58.72 188.12 547.63 17.167 0.601 8.20

0.40 58.71 184.36 538.28 11.267 0.621 6.20

0.50 58.69 179.77 534.59 8.592 0.596 8.70

2 0.485 0.20 58.52 199.67 537.68 25.752 0.467 1.80

0.30 58.40 199.35 520.00 16.575 0.452 3.30

0.40 58.21 198.90 497.20 11.426 0.471 1.40

0.50 58.08 198.40 479.55 8.560 0.463 2.20

*-Natural frequency of pipe with no crack obtained by Eq. (7) or (9) using K = ∞.

pipe filled with water under pressure (0, 491 kPa and 981 kPa), differ from that of the empty pipe

at the most by −2.38%, −6.35%, −11.74% for aluminium and 8.15%, 7.17%, 12.2% for mild steel

respectively. For the two water pressures (491 kPa and 981 kPa), the stiffnesses differ from that of
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the water filled pipe at no pressure by at the most −8.58% and −14.08% respectively for aluminium,

−6.11% and 12.83% respectively for mild steel. 

Based on the observations (Tables 3 to 6) of the vibration method, stiffness in the case of pipe

Table 6 Predicted stiffness and crack location for mild steel pipes through frequency measurements

Segment

Actual data Natural frequencies (Hz) Predicted data 

β a/t ω2 ω3 ω4 K
(kNm/rad)

β % error 
in β

Water filled pipe at pressure p = 491 kPa

No crack 58.91
62.79*

200.94
216.41*

564.69
574.85*

1 0.343 0.40 58.25 193.70 525.00 10.621 0.335 0.80

0.50 58.16 191.65 518.19 8.706 0.332 1.10

0.513 0.20 58.86 190.10 562.60 24.862 0.524 −1.10

0.30 58.82 185.75 562.18 14.333 0.507 0.60

0.40 58.79 181.56 561.65 10.851 0.519 −0.60

0.50 58.76 178.06 560.53 8.607 0.508 0.50

0.683 0.20 58.89 193.63 558.30 28.250 0.592 9.10

0.30 58.87 188.42 547.00 15.028 0.614 6.90

0.40 58.85 185.23 542.82 10.983 0.595 8.80

0.50 58.82 182.10 539.64 8.933 0.599 8.40

 2 0.485 0.20 58.68 200.26 538.00 24.867 0.465 2.00

0.30 58.55 199.85 524.63 16.205 0.448 3.70

0.40 58.36 199.45 502.05 11.658 0.452 3.30

0.50 58.23 199.00 482.16 8.767 0.460 2.50

Water filled pipe at pressure p = 981 kPa

No crack 59.38
62.80*

202.19
216.47*

565.94
574.93*

1 0.343 0.40 58.70 196.42 526.23 11.068 0.332 1.10

0.50 58.55 194.62 520.45 9.056 0.330 1.30

0.513 0.20 59.32 193.28 564.30 25.333 0.507 0.60

0.30 59.29 187.80 563.65 15.067 0.505 0.80

0.40 59.25 182.00 562.40 10.892 0.500 1.30

0.50 59.22 180.65 561.86 9.103 0.509 0.40

0.683 0.20 59.36 195.45 557.87 29.028 0.597 8.60

0.30 59.37 188.34 545.60 15.316 0.604 7.90

0.40 59.35 185.00 540.50 10.562 0.625 5.80

0.50 59.33 181.21 538.00 8.620 0.614 6.90

 2 0.485 0.20 59.15 201.55 539.40 26.067 0.459 2.60

0.30 59.02 201.25 520.20 16.626 0.472 1.30

0.40 58.83 200.68 504.13 11.901 0.455 3.00

0.50 58.73 200.30 484.00 8.830 0.473 1.30

*-Natural frequency of pipe with no crack obtained by Eq. (7) or (9) using K = ∞.
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filled with water under pressure (0, 491 kPa and 981 kPa), differ with that of the empty pipe at the

most by 6.63%, −6.92% −2.32% for aluminium and 4.75%, −13.02%, 6.71% for mild steel

respectively. For the two water pressures (491 kPa and 981 kPa), the stiffnesses differ from that of

the water filled pipe at no pressure by at the most −3.13% and −5.37% respectively for aluminium

and −16.96% and −7.92% respectively for steel. The stiffness obtained by the frequency method

differs from that obtained through deflection techniques by −6.29% and −5.98% for empty and

water filled aluminium pipes respectively. The similar differences for the mild steel pipes are

12.40% and 9.06% respectively. 

Fig. 4 Plot of stiffness K vs. crack location β for aluminium empty pipe. (a) 3-D view, (b) Enlarged portion
at crack location 
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The results by the two methods are therefore very close. The variations of rotational spring

stiffness with crack size are shown in Fig. 5. These results are combined to show the band in

variation in Fig. 6. Since, a closed form relation between the rotational spring stiffness and crack

size is not available, these plots can be very helpful in crack detection; crack size can be obtained

given a spring stiffness.

Variations of rotational spring stiffness K with crack location β (Fig. 4) helps to predict the crack

location as well. The results so obtained are presented in Tables 3 to 6. The maximum errors are

13.80% and 9.30% for aluminium and mild steel pipes respectively. The vibration method can

therefore be employed for the prediction of crack location.

The crack size has been predicted using Fig. 6. These are shown in Tables 7 to 10. The error in

size lies in the range −17.24% to 14.95% for aluminium and −16.90% to 13.00% for mild steel.

The accuracy of prediction of crack location and crack size are both dependent on the accuracy of

Fig. 5 Comparison of variation of stiffness K vs. crack size a/t for (a) aluminium and (b) mild steel pipes
obtained by two methods for different internal conditions

Fig. 6 Variation band of stiffness K vs. crack size a/t for (a) aluminium and (b) mild steel pipes



652 S. M. Murigendrappa, S. K. Maiti and H. R. Srirangarajan

Table 7 Accuracy of prediction of crack size in aluminium pipes

Segment

Actual Predicted crack data

β a/t K a/t % error in  a/t

(kNm/rad) Min. Max. Min. Max.

Empty pipe

1 0.245 0.2286 24.624 0.2250 0.2422   1.57  −5.95

0.3429 13.733 0.3335 0.3485   2.74  −1.63

0.4571 9.759 0.4240 0.4448   7.24   2.69

0.5714 7.392 0.6160 0.6386  −7.81 −11.76

0.517 0.2286 23.833 0.2292 0.2458  −0.26  −7.52

0.3429 14.067 0.3280 0.3430   4.35  −0.03

0.4571 8.917 0.4576 0.4855  −0.11  −6.21

0.5714 7.067 0.6457 0.6681 −13.00 −16.92

0.767 0.2286 20.781 0.2512 0.2680  −9.89 −17.24

0.3429 14.084 0.3278 0.3427   4.40   0.06

0.4571 8.963 0.4570 0.4848   0.02  −6.06

0.5714 7.267 0.6269 0.6497  −9.71 −13.70

2 0.412 0.2286 23.426 0.2315 0.2481  −1.27  −8.53

0.3429 12.762 0.3500 0.3672  −2.07  −7.09

0.4571 8.565 0.4763 0.5138  −4.20 −12.40

0.5714 7.892 0.5775 0.5965  −1.07  −4.39

0.706 0.2286 24.019 0.2285 0.2440   0.04  −6.74

0.3429 13.561 0.3361 0.3518   1.98  −2.60

0.4571 9.856 0.4211 0.4411   7.88   3.50

0.5714 8.428 0.4860 0.5300  14.95   7.25

 Water filled pipe at no pressure p = 0

1 0.245 0.2286 27.028 0.2160 0.2293   5.51  −0.31

0.3429 12.425 0.3571 0.3733  −4.14  −8.87

0.4571 8.992 0.4539 0.4820   0.70  −5.45

0.5714 7.538 0.6042 0.6264  −5.74  −9.63

0.517 0.2286 25.408 0.2225 0.2365   2.67  −3.46

0.3429 13.150 0.3433 0.3592  −0.12  −4.75

0.4571 8.495 0.4825 0.5216  −5.56 −14.11

0.5714 7.552 0.6031 0.6235  −5.55  −9.12

0.767 0.2286 25.867 0.2201 0.2343   3.72  −2.49

0.3429 12.025 0.3646 0.3823  −6.33 −11.49

0.4571 8.283 0.4998 0.5227  −9.34 −14.35

0.5714 7.481 0.6108 0.6308  −6.90 −10.40

2 0.412 0.2286 24.820 0.2245 0.2393   1.79  −4.68

0.3429 12.973 0.3465 0.3625  −1.05  −5.72

0.4571 8.957 0.4573 0.4849  −0.04  −6.08

0.5714 7.561 0.6026 0.6244  −5.46  −9.28

0.706 0.2286 28.042 0.2156 0.2263   5.69   1.01

0.3429 11.538 0.3755 0.3934  −9.51 −14.73

0.4571 9.450 0.4350 0.4575   4.83  −0.09

0.5714 8.096 0.5226 0.5830   8.54  −2.03
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Table 8 Accuracy of prediction of crack size in aluminium pipes

Segment

Actual Predicted crack data

β a/t K a/t % error in  a/t

(kNm/rad) Min. Max. Min. Max.

Water filled pipe at pressure p = 491 kPa

1 0.245 0.2286 25.681 0.2249 0.2390   1.62  −4.55

0.3429 14.068 0.3276 0.3426   4.46   0.09

0.4571 8.992 0.4539 0.4820   0.70  −5.45

0.5714 8.106 0.5188 0.5821   9.21  −1.87

0.517 0.2286 25.136 0.2201 0.2339   3.72  −2.32

0.3429 13.562 0.3360 0.3518   2.01  −2.60

0.4571 9.117 0.4485 0.4736   1.88  −3.61

0.5714 7.183 0.6345 0.6580 −11.04 −15.16

0.767 0.2286 21.082 0.2477 0.2642  −8.36 −15.57

0.3429 11.254 0.3822 0.3998 −11.46 −16.59

0.4571 8.769 0.4650 0.4956  −1.73  −8.42

0.5714 7.257 0.6277 0.6505  −9.85 −13.84

2 0.412 0.2286 24.062 0.2280 0.2436   0.26  −6.56

0.3429 12.977 0.3463 0.3625  −0.99  −5.72

0.4571 9.387 0.4373 0.4602   4.33  −0.68

0.5714 8.120 0.5182 0.5819   9.31  −1.84

0.706 0.2286 25.421 0.2223 0.2361   2.76  −3.28

0.3429 13.658 0.3340 0.3498   2.60  −2.01

0.4571 10.028 0.4154 0.4350   9.12   4.83

0.5714 8.062 0.5335 0.5834   6.63  −2.10

 Water filled pipe at pressure p = 981 kPa

1 0.245 0.2286 28.420 0.2151 0.2262   5.91   1.05

0.3429 13.856 0.3319 0.3469   3.21  −1.17

0.4571 8.921 0.4575 0.4853  −0.09  −6.17

0.5714 8.254 0.5030 0.5715  11.97   −0.02

0.517 0.2286 24.510 0.2252 0.2425   1.49  −6.08

0.3429 12.258 0.3600 0.3771  −4.99  −9.97

0.4571 8.852 0.4613 0.4899  −0.92  −7.18

0.5714 7.451 0.6112 0.6332  −6.97 −10.82

0.767 0.2286 21.085 0.2488 0.2656  −8.84 −16.19

0.3429 11.684 0.3725 0.3899  −8.63 −13.71

0.4571 8.725 0.4685 0.5000  −2.49  −9.39

0.5714 7.315 0.6225 0.6450  −8.94 −12.88

2 0.412 0.2286 24.583 0.2250 0.2404   1.57  −5.16

0.3429 13.821 0.3322 0.3470   3.12  −1.20

0.4571 8.927 0.4574 0.4852  −0.07  −6.15

0.5714 8.037 0.5325 0.5928   6.81  −3.75

0.706 0.2286 23.892 0.2291 0.2450  −0.22  −7.17

0.3429 14.462 0.3223 0.3373   6.01   1.63

0.4571 10.412 0.4045 0.4245  11.51   7.13

0.5714 7.682 0.5941 0.6145  −3.97  −7.54
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measurement of the natural frequencies. The accuracy of prediction of the crack location is

reasonably good, but the accuracy of the prediction of crack size is not that good. One reason for

this is that graphical relation between the rotational spring stiffness K and crack size a obtained

through experiment has been utilized to predict a from K. With the availability of a close form

relation between the two the accuracy will improve.

6. Conclusions

The modelling scheme proposed by Murigendrappa (2004) for analysis of free out-of-plane

Table 9 Accuracy of prediction of crack size in mild steel pipes 

Segment

Actual Predicted crack data

β a/t K a/t % error in  a/t

(kNm/rad) Min. Max. Min. Max.

Empty pipe

1 0.343 0.40 10.565 0.4041 0.4523  −1.02 −13.07

0.50 8.534 0.4974 0.5705   0.52 −14.10

0.513 0.20 24.996 0.2004 0.2221  −0.20 −11.05

0.30 16.417 0.2839 0.3090   5.37  −3.00

0.40 12.721 0.3480 0.3802  13.00   4.95

0.50 9.483 0.4458 0.5195  10.84  −3.90

0.683 0.20 23.426 0.2115 0.2338  −5.75 −16.90

0.30 16.333 0.2856 0.3106   4.80  −3.53

0.40 10.264 0.4145 0.4672  −3.62 −16.80

0.50 9.288 0.4548 0.5275   9.04  −5.50

2 0.485 0.20 24.109 0.2063 0.2285  −3.15 −14.25

0.30 16.483 0.2835 0.3085   5.50  −2.83

0.40 11.425 0.3790 0.4175   5.25  −4.37

0.50 8.740 0.4831 0.5573   3.38 −11.46

 Water filled at no pressure p = 0

1 0.343 0.40 10.621 0.4015 0.4490  −0.38 −12.25

0.50 8.608 0.4905 0.5662   1.90 −13.24

0.513 0.20 24.153 0.2060 0.2281  −3.00 −14.05

0.30 15.430 0.2985 0.3250   0.50  −8.33

0.40 10.724 0.3985 0.4446   0.38 −11.15

0.50 8.847 0.4765 0.5508   4.70 −10.16

0.683 0.20 29.667 0.1775 0.1955  11.25   2.25

0.30 17.167 0.2744 0.2986   8.53   0.47

0.40 11.267 0.3838 0.4238   4.05  −5.95

0.50 8.592 0.4923 0.5673   1.54 −13.46

2 0.485 0.20 25.752 0.1960 0.2163   2.00  −8.15

0.30 16.575 0.2825 0.3074   5.83  −2.47

0.40 11.426 0.4080 0.4175  −2.00  −4.37

0.50 8.560 0.4949 0.5690   1.02 −13.80
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transverse vibration of crack-free L-shaped pipes filled with fluid under pressure by invoking

suitable torsional springs at the knee permits study of similar pipes with crack. Such modelling

enables detection of crack provided the relationship between crack size and crack-equivalent

rotational spring is known. The crack size equivalent rotational spring stiffness is determined

experimentally by two methods, one based on displacement measurements and the other based on

the frequency measurement and inverse vibration analysis. The results by the two methods differ in

magnitude at the most by 6.29% and 12.4% for aluminium and steel pipes. The variation of

rotational spring stiffness with crack size is obtained for the range a = 0.22t to 0.57t for aluminium

Table 10 Accuracy of prediction of crack size in mild steel pipes 

Segment

Actual Predicted crack data

β a/t K a/t % error in  a/t

(kNm/rad) Min. Max. Min. Max.

Water filled at pressure p = 491 kPa

1 0.343 0.40 10.621 0.4020 0.4471  −0.50 −11.77

0.50 8.706 0.4846 0.5592   3.08 −11.84

0.513 0.20 24.862 0.2012 0.2230  −0.60 −11.50

0.30 14.333 0.3166 0.3450  −5.53 −15.00

0.40 10.851 0.3960 0.4395   1.00  −9.87

0.50 8.607 0.4908 0.5661   1.84 −13.22

0.683 0.20 28.250 0.1838 0.2016   8.10  −0.80

0.30 15.028 0.3043 0.3321  −1.43 −10.70

0.40 10.983 0.3921 0.4347   1.98  −8.67

0.50 8.933 0.4708 0.5458   5.84  −9.16

2 0.485 0.20 24.867 0.2010 0.2228  −0.50 −11.40

0.30 16.205 0.2874 0.3125   4.20  −4.17

0.40 11.658 0.3738 0.4105   6.55  −2.62

0.50 8.767 0.4819 0.5530   3.62 −10.60

 Water filled at pressure p = 981 kPa

1 0.343 0.40 11.068 0.3894 0.4313   2.65  −7.82

0.50 9.056 0.4654 0.5390   6.92  −7.80

0.513 0.20 25.333 0.1988 0.2190   0.60  −9.50

0.30 15.067 0.3041 0.3320  −1.37 −10.67

0.40 10.892 0.3945 0.4343   1.38  −8.57

0.50 9.103 0.4625 0.5354   7.50  −7.08

0.683 0.20 29.028 0.1789 0.1985  10.55   0.75

0.30 15.316 0.2996 0.3271   0.13  −9.03

0.40 10.562 0.4040 0.4525  −1.00 −13.12

0.50 8.620 0.4900 0.5659   2.00 −13.18

2 0.485 0.20 26.067 0.1963 0.2140   1.85  −7.00

0.30 16.626 0.2815 0.3063   6.17  −2.10

0.40 11.901 0.3675 0.4030   8.13  −0.75

0.50 8.830 0.4783 0.5514   4.34 −10.28
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and 0.2t to 0.5t for steel. These plots can be utilized for the prediction of crack sizes. Crack located

in both the segments is considered for the prediction. The maximum absolute error in the prediction

of location is 13.80%. The maximum absolute error in the prediction of crack size is 17.24% for

aluminium and 16.90% for mild steel. One of the reasons for this higher error in the case of crack

size is the employment of graphical relation between the spring stiffness and crack size obtained

experimentally.
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Appendix I: Aij and Bij involved in Eqs. (7) and (8).

Appendix II: Aij and Bij involved in Eqs. (9) and (10).
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