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Abstract. In the shear-lag analysis of structures deterministic procedure is insufficient to provide
complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects
considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm
to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated
the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo
simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm.
The algorithm is verified using independently generated finite element data. The proposed algorithm is
then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The
results show that the proposed algorithm based on the central composite design is the most promising one
in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect
of each of the random variables on the statistical moment of structural stress response.

Key words: probabilistic analysis; response surface method (RSM); finite element method (FEM);
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1. Introduction

Box-section beams have been used in many civil engineering structures such as bridge decks,

shear/core walls and framed tubes. When structures are subjected to loads, the distribution of the

longitudinal normal stresses induced in the flanges of box-section beams is generally non-uniform,

especially in a wide flange of box-section beams. The longitudinal stress in a flange near the web is
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much larger than that far from the web, as shown in Fig. 1. This is usually referred to as positive

shear lag phenomenon. However, for some cases, the stress near the web may be much smaller than

that far from the web. This is usually called the negative shear lag phenomenon. 

The shear lag effects have been extensively studied (Song and Scordelis 1990, Kwan 1996, Luo

and Li 2000, Luo et al. 2002, Lee et al. 2002). These studies were based on the assumption of

complete determinacy of structural parameters. This is usually referred to as deterministic analysis.

In reality, however, there are uncertainties in design variables. These uncertainties include geometric

properties (cross-sectional properties and dimensions), material mechanical properties (modulus and

strength, etc.), load magnitude and distribution, etc. Thus the deterministic analysis cannot provide

comprehensive understanding of the characteristics of shear lag phenomena. Therefore, the shear lag

behavior of structures should be studied under a probabilistic viewpoint. 

Probabilistic analysis provides a tool that incorporates structural modeling uncertainties in

structural analysis by describing the uncertainties as random variables. Several techniques exist to

perform structural probabilistic analyses. These techniques may be divided into three categories,

based on their essential philosophy, as: (1) Monte Carlo simulation (MCS), (2) Stochastic finite

element method (SFEM), and (3) response surface method (RSM).

MCS is the most common and traditional method for a probabilistic analysis. Extensive reviews of

the method are found in (Melchers 1999, Haldar and Mahadevan 2000). In brief, the method uses

randomly generated samples of the input variables for each deterministic analysis, and estimates

response statistics after numerous repetitions of the deterministic analysis (Haldar and Mahadevan

2000). The main advantages of the method are: (1) engineers with only a basic working knowledge

of probability and statistics can use it (Haldar and Mahadevan 2000); (2) it always provides correct

results when a very large number of simulation cycles are performed (each simulation cycle

represents a deterministic analysis). However, the method has one drawback: it needs an enormously

large amount of computation time.

SFEM is another method for the probabilistic analysis of structures with random system

parameters. The method has been developed to study the shear-lag behavior of random box-section

beam structures. Yang et al. (2001) used the perturbation technique with finite segment method to

solve the shear-lag problem of random box-girders. In their study, the influence of each of the

random variables on the overall probabilistic analysis is not investigated. On the other hand, the

SFEM used in their work has drawbacks. First, it needs to derive the governing equations of the

system from knowledge of the statistical properties of the system. The derivation of governing

equations can present severe mathematical and numerical difficulties for complex structures.

Second, the existing deterministic analysis code available to design engineers lacks the capability

like the deviation of governing equations of the system. Therefore, to use the method, it is

necessary to modify the existing deterministic analysis code. 

Fig. 1 Positive shear lag
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To overcome drawbacks of MCS and SFEM, RSM has recently been proposed to perform

probabilistic analysis of structures. Yiu and Zhang (2000) used the RSM to solve the stability

analysis of steel space structures with system parametric uncertainties. Shi and Xiong (2000) used

the same technique for predicting the distributions of the buckling load of fiber metal laminates.

Despite the fact that the RSM has been available for many years now, it has, to the author’s

knowledge, not yet been used for probabilistic shear-lag analyses of structures. 

A RSM analysis consists of two steps: (1) selecting the function type to represent the response

surface; and (2) selecting a convenient experiment design to obtain an accurate response surface.

The selection of the function type is not a difficult problem. A quadratic polynomial is sufficient in

many cases of engineering analysis. The main difficulty is to choose adequately an experiment

design (Soares et al. 2002). This is because that the experiment design has an important influence

on the accuracy and the cost of computing the response surface. Unfortunately, there have been no

precise guidelines or theories on the selection of the grid of experimental design points in the

probabilistic shear-lag analysis of structures.

The purpose of this paper is to explore the RSM for probabilistic shear-lag analysis, to investigate

the effects of various experimental designs on the accuracy and the cost of computing the response

surface, and to investigate the effects of each of the random variables on the overall probabilistic

analysis of structures. 

2. Deterministic shear-lag analysis 

FEM is considered to be the most powerful and convenient numerical method for deterministic

shear-lag analysis. A brief description of the FEM is presented next.

The static equilibrium equation of linear elastic structure is:

(1)

(2)

(3)

where , and are the global stiffness matrix, global response vector and

global force vector, respectively;  and  are the strain and stress vectors,

respectively;  and  are the strain-displacement matrix evaluated at the integration

point and elasticity matrix, respectively. {X} is an array of design variables. The stiffness, force,

strain, stress and responses in the above equations are functions of either any design variable in

{X}, or in combination, which may be Young’s modulus and/or Poisson’s ratio, load etc. In the

present study 8-node shell elements in ANSYS (2002) are used to discretize the structure. 

In design practice of box-section beams, an idea of “bending effective width” is introduced to

consider the shear-lag effects. The bending effective width (Bb) can be expressed in the following

form:

(4)

where σ = top flange stress; B = width of the flange; σmax = maximum top flange stress.
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3. Stochastic shear-lag analysis 

It is quite evident that for deterministic analysis, any design variable is deterministic quantity for

all discretized elements of the structure. However in stochastic analysis, design variable will be

randomly varying in each distcretized element of the structure, i.e., {X} will be a random vector. If

the design variable {X} becomes uncertain in nature, [K] as well as {δ} will be stochastic. As a

result, it will make [ε] random. Subsequently, any stress vector [σ] will be obtained as a random

vector. Since the stresses in the box-section beams are uncertain, the bending effective width (Bb) in

Eq. (4) is also stochastic.

4. Systematic RSM for stochastic shear-lag analysis

As shown in Eq. (3), the structural response (such as maximum stress at a specific point) can not

be expressed explicitly in terms of the basic random variables. To solve this problem, a systematic

RSM is proposed. The proposed method is a hybrid method, consisting of conventional response

surface method (RSM), finite element method (FEM) mentioned above, and Monte Carlo simulation

(MCS). Some of the important components of the proposed method are briefly discussed in the

following sections.

4.1 Conventional response surface method (RSM)

The response surface method (RSM), which was originally developed by Box and Wilson (1951),

has been introduced in this study. The main idea of this method is to represent the structural

response by using a suitable approximation function. Once the approximation function is found

through such as finite element results, we can use the approximation function directly instead of

deterministic finite element analysis. Performing a finite element analysis may require several

minutes or hours of computation time; whereas the evaluation of a quadratic function requires only

a fraction of a second. Hence, the computing time can be saved greatly. Another advantage is that

the RSM makes it possible to use an existing deterministic finite element code without modifying it.

As described earlier, response surface method consists of two key elements: (1) the choice of the

function type to represent the response surface; and (2) the selection of experimental sampling

points (experimental design). They are briefly discussed next.

4.1.1 Representation of response surfaces

Response surfaces generally take a polynomial form. A quadratic polynomial is sufficient in many

cases of engineering analysis. For the sake of simplicity, a second-order polynomial without cross

terms is adopted here as

(5)

where  the ith random variable; k = number of random variables; and b0, bi, bii and

bij = unknown coefficients to be determined. The number of unknown coefficients in (5) is p = 2k + 1. 

The polynomial can be obtained by conducting FEM analysis at the experimental sampling points

and regression analysis.

ĝ X( ) b0 bi Xi

i 1=

k

∑ bi i X i

2
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k
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4.1.2 Experiment design

Experiment design is a technique to determine the location of the sampling points. There are

several versions for experiment design available in literature (Montgomery 1991, Myers 1971).

Three experimental design techniques, i.e., D-optimum design, central composite design and full

factorial design, are considered in this study. The coded values in the three experimental designs for

k = 3 are listed in Tables 1-3, respectively. A comparison of the design point requirements by the

three experimental design techniques is listed in Table 4. From this table, it can be seen that the D-

optimum design requires the least number of sample points, indicating that it is the most efficient

technique, and full factorial design requires the maximum number of sample points, indicating that

it is the least efficient technique. The central composite design has intermediate efficiency. 

Table 2 Experimental sampling points of central composite design in coded values for k = 3

Sample No. X1 X2 X3

1 0 0 0

2 −1 −1 −1

3 +1 −1 −1

4 −1 +1 −1

5 +1 +1 −1

6 −1 −1 +1

7 +1 −1 +1

8 −1 +1 +1

9 +1 +1 +1

10 −α 0 0

11 +α 0 0

12 0 −α 0

13 0 +α 0

14 0 0 −α

15 0 0 +α

Note: α = 2
k4

Table 1 Experimental sampling points of D-optimum design in coded values for k = 3

Sample No. X1 X2 X3

1 0 0 0

2 −1 0 0

3 +1 0 0

4 0 −1 0

5 0 +1 0

6 0 0 −1

7 0 0 +1

8 +1 +1 0

9 +1 0 +1

10 0 +1 +1
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4.2 Monte Carlo simulation for probabilistic results

Direct Monte Carlo simulation is the most common and traditional method for a probabilistic

analysis, but its use in the shear-lag analysis of structures with parameter uncertainties may not be

practical, since it takes an enormous amount time. To overcome the drawback of direct Monte Carlo

simulation, we use Monte Carlo simulation together with a RSM method to obtain the probabilistic

results in this paper as will be demonstrated in the numerical example.

Table 3 Experimental sampling points of full factorial design in coded values for k = 3

Sample No. X1 X2 X3

1 −1 −1 −1

2 0 −1 −1

3 1 −1 −1

4 −1 −1 0

5 0 −1 0

6 1 −1 0

7 −1 −1 1

8 0 −1 1

9 1 −1 1

10 −1 0 −1

11 0 0 −1

12 1 0 −1

13 −1 0 0

14 0 0 0

15 1 0 0

16 −1 0 1

17 0 0 1

18 1 0 1

19 −1 1 −1

20 0 1 −1

21 1 1 −1

22 −1 1 0

23 0 1 0

24 1 1 0

25 −1 1 1

26 0 1 1

27 1 1 1

Table 4 A comparison of the design point requirements by the three experimental design techniques

Number of variables D-optimum design Central composite design Full factorial design

2 6 9 9

3 10 15 27

4 15 25 81

5 21 43 243

7 36 143 2187

k 3kk 1+( ) k 2+( )/2 2
k

2k 1+ +
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5. Numerical examples

To illustrate the application of the proposed method, shear-lag effect of a simply supported beam

under point loads at midspan is analyzed probabilistically. The dimensions of the simply supported

beam are L = 0.8 m; B = 0.16 m; H = 0.06 m; tf = tw = 0.006 m, where L = length of the simply

supported beam; B = width of the flange; H = depth of the simply supported beam; tf = thickness of

the flange; and tw = thickness of the web. These small dimensions were chosen to save

computational efforts. The other parameters such as modulus of elasticity E, Poisson’s ratio μ and

point load P are taken as the random variables. The mean values (μ), standard deviations (σ) and

coefficients of variation (COV) of the parameters are listed in Table 5. The random variables are

assumed normally distributed. As the objective of this study is to propose an efficient method for

the probabilistic shear-lag analysis of structures, all random parameters in the analysis are based on

arbitrary but typical values. On the other hand, since the determination of the interrelation of the

random parameters is a difficult task, using the independence assumption can greatly simplify the

probabilistic analysis. Therefore, all random parameters in the paper are treated as stochastically

independent from each other.

5.1 Finite element modeling 

The three-dimensional finite element program ANSYS (2002) was used to study the shear-lag

behavior of the simply supported beam with parametric uncertainties. The simply supported beam is

Fig. 2 Finite element model of simply supported beam

Table 5 Statistics of the random variables for a simply supported beam

Variable Mean Standard deviation Distribution Sources

E 2.842 GPa 0.2842 GPa Normal
Yang et al. (2001)

μ 0.4 0.048 Normal

P 800 N 120 N Normal Assumed
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discretized with eight-node shell elements (SHELL 93). Fig. 2 shows the finite element model of

simply supported beam. 

5.2 Verification of the proposed method

The success of the proposed method depends on the accuracy and efficiency of the constructed

responses by Eq. (5). Three constructed methods (experimental design methods) mentioned

previously (D-optimum design, central composite design, designated as CCD method in the figures,

and full factorial design) are considered. To check the accuracy of the constructed responses by

Eq. (5), the variations of the maximum top flange stress at mid-span section constructed in Eq. (5)

versus the variables, E, μ and P, are shown in Figs. 3-5, along with the ‘measured’ data points from

the deterministic finite element analyses. From these figures, it can be seen that the response

surfaces constructed by using the central composite design and the full factorial design are almost

Fig. 3 Maximum top flange stress at mid-span
section versus elastic modulus E (μ = 0.4,
P = 800 N)

Fig. 4 Maximum top flange stress at mid-span
section versus Poisson’s ratio μ (E = 2.842
GPa, P = 800 N)

Fig. 5 Maximum top flange stress at mid-span section versus point load P (E = 2.842 GPa, μ = 0.4)
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identical and they show more favorable agreement with the finite element data than the response

surface constructed using the D-optimum design. However, the design points required for full

factorial design are very large compared to the central composite design, making it very inefficient

computationally. The full factorial design method may not be practical for constructing the response

surfaces when the number of random variables to be considered is large.

Considering both the accuracy and efficiency, the central composite design is the best choice for

constructing the response surfaces. Therefore, only the central composite design using a second-

order polynomial without cross terms is used to predict the statistics of the maximum top flange

stress and bending effective width in the subsequent study.

5.3 Effect of length of the simply supported beam 

The comparison of the means (μ), standard deviations (σ) and coefficients of variation (COV) of

the maximum top flange stress and bending effective width at mid-span section for different length

of the simply supported beam is listed in Tables 6 and 7, respectively. From these tables, it can be

seen that: (1) the parameter uncertainties have significant effects on the variations of the maximum

top flange stress. Therefore, it is important to consider parameter uncertainties in shear-lag analysis

of structures if accurate stress results are obtained. It is also worth noting that the variations of

bending effective width is small and can be neglected in the stochastic shear-lag analysis of

structures. Therefore, only stress results are listed in the following stochastic shear-lag analysis of

structures; (2) the length of the simply supported beam has a significant effect on μ and σ values,

while an opposite effect is observed for COV values. As expected, the μ and σ values increase with

the increase of the span length of the simply supported beam.

5.4 Effect of probability distribution type of random input variables

The means (μ), standard deviations (σ) and coefficients of variation (COV) of the maximum top

flange stress at mid-span section are computed for the lognormal distributed input variables with the

same mean and coefficient of variation as the normal distributed input variables listed in Table 5.

Table 6 Statistical results of the maximum top flange stress at mid-span section for different 
length (L) of the simply supported beam

L
(m)

Statistical results

μ (MPa) σ (MPa) COV

0.4 9.6171 1.4510 0.1509

0.8 12.1794 1.8335 0.1505

Table 7 Statistical results of the bending effective width at mid-span section for different
length (L) of the simply supported beam

L
(m)

Statistical results

μ (m) σ (m) COV

0.4 0.05837 0.0005080 0.008703

0.8 0.08147 0.0007194 0.008830
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The computational results are listed in Table 8. As shown, the results associated with the lognormal

distribution are almost the same as those associated with the normal distribution.

5.5 Sensitivity of statistics of the maximum top flange stress to random input variables

The statistics of the maximum top flange stress is influenced by the characteristics of the

structural parameters used in the probabilistic analysis. To study the effect of the structural

parameters on the statistics of the maximum top flange stress, a number of parametric studies have

been carried out. The mean values and the coefficients of variation (COV) as listed in Table 5 are

used, except for the parameters whose COV are varied over the range 0.06-0.14. Similar to the

previous analyses, three random parameters are also considered.

Fig. 6 shows the mean values of the maximum top flange stress at the mid-span section versus

COV. It can be seen that the mean values of the maximum top flange stress is not sensitive to the

coefficients of variation of all three random parameters, E, μ and P.

Fig. 7 shows the standard deviations of the maximum top flange stress at the mid-span section

versus COV. The standard deviations of the maximum top flange stress are highly influenced by the

coefficients of variation of the random parameter P. The results show that the greater scatter of this

parameter, the larger the standard deviations of the maximum top flange stress. This means that the

accurate determination of the distribution of such a parameter is very important in obtaining

accurate probabilistic results. In contrast, the coefficients of variation of the other two parameters, E

and μ do not significantly affect the standard deviations of the maximum top flange stress.

Table 8 Comparison of the means (μ), standard deviations (σ) and coefficients of variation (COV) of the
maximum top flange stress at mid-span section for normal and lognormal distributed input variables

Different types 
of distribution

Normal distribution Lognormal distribution

μ (MPa) σ (MPa) COV μ (MPa) σ (MPa) COV

Results 12.1794 1.8335 0.1505 12.1794 1.8341 0.1506

Fig. 6 Mean values of the maximum top flange
stress at mid-span section versus COV

Fig. 7 Standard deviations of the maximum top
flange stress at mid-span section versus COV
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6. Conclusions

An efficient and accurate algorithm for the probabilistic shear-lag analysis of structures has been

developed in this paper. The proposed algorithm is a hybrid method, consisting of response surface

method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in

the structural parameters can be taken into account in this algorithm. The three unique features of

the proposed algorithm are that (1) conventional RSM can be extended to analyze shear-lag effects

of structures with parameter uncertainties, (2) the deterministic algorithm is extended to consider the

uncertainty in the random variables and (3) it is possible to use an existing deterministic finite

element code without modifying it. The algorithm is verified using independently generated finite

element data.

The proposed algorithm has been applied to the probabilistic shear-lag analysis of a simply

supported beam. Three experimental design methods (D-optimum design, central composite design

and full factorial design) are considered in the proposed algorithm. The results show that the

proposed algorithm based on the central composite design is the most promising one in view of its

accuracy and efficiency. The proposed algorithm can obtain more information about the maximum

top flange stress and bending effective width than the commonly used deterministic method, and it

provides an improved understanding of shear-lag effects of structures with parameter uncertainties.

The parameter uncertainties have significant effects on the variations of the maximum top flange

stress. Therefore, it is important to consider parameter uncertainties in shear-lag analysis of

structures if accurate stress results are to be obtained. It is also worth noting that the variations of

bending effective width are small and can be neglected in the stochastic shear-lag analysis of

structures.

A parametric study was conducted to investigate the effect of each of the random variables on the

statistical moment of the maximum top flange stress. The results indicate that the mean values of

the maximum top flange stress is not sensitive to the coefficients of variation of all random

parameters, E, μ and P. However, the standard deviations of the maximum top flange stress are

highly influenced by the coefficients of variation of the random parameter P. The standard

deviations of the maximum top flange stress increases significantly with the increase of the

coefficient of variation of the random parameter P. In contrast, the coefficients of variation of the

other two parameters, E and μ do not significantly affect the standard deviations of the maximum

top flange stress.

The method developed in the current research provides a convenient alternative way to analyze

shear-lag effects of structures with parameter uncertainties. While the method used in this study

focuses on the solution of positive shear-lag problem of structures with parameter uncertainties, it

can easily be extended to evaluate negative shear-lag effects of structures with parameter

uncertainties. 
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