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Natural vibration characteristics of a clamped circular 
plate in contact with fluid
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Abstract. This study deals with the free vibration of a circular plate in contact with a fluid; submerged
in fluid, beneath fluid or on fluid. An analytical method based on the finite Fourier-Bessel series
expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element
analysis using commercial program with a good accuracy. The normalized natural frequencies are obtained
in order to estimate the relative added mass effect of fluid on each vibration mode of the plate. Also, the
location of plate coupled with fluid and the cases of free and bounded fluid surface are studied for the
effect on the vibration characteristics.

Key words: circular plate; Fourier-Bessel series; Rayleigh-Ritz method; fluid-coupled system; normalized
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1. Introduction

Recently, there have been many studies on the vibration of circular plate in contact with a fluid.

The fluid-contacting structures have been used in mechanical engineering, such as in nuclear reactor

internal components. Natural frequencies of the components have attracted extensive interest when

exploring the structural responses to various excitations, such as seismic and pump pulsation

excitations. Especially, various structures such as coaxial cylindrical shells and multiple plates

coupled with a fluid, are used as a shield against irradiation damage by the neutron fluence (Jhung

1996). However, it is very difficult to identify the dynamic characteristics of these structures

analytically. 

It is generally known that the natural frequencies of structures in contact with a fluid, or

immersed in a fluid, decrease significantly compared to the natural frequencies in air. This problem

is referred to as the fluid-structure interaction problem. For this problem, many investigators have

obtained some approximate solutions that have been used to predict the changes in the natural
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frequencies of a structure in a fluid (Bauer 1995). In recent literature, there has been renewed

interest in the problem of plates vibrating in contact with water (Kwak 1991, Amabili 2001, Cheung

and Zhou 2002). This is stimulated by new technical applications and also by the availability of

powerful numerical tools based on the finite element and boundary element methods which make

numerical solutions of fluid-structure interaction problems possible. However, the use of the finite

element method or the boundary element method requires enormous amounts of time for modeling

and computation. 

This paper deals with the coupling effect of contacting fluid on the free vibration characteristics of

circular plate. It is assumed that an incompressible, irrotational and frictionless fluid is bounded in

the radial direction. The dynamic displacements of the plates are expanded in terms of the

eigenfunctions of the plate in air with unknown weighing coefficients and then the Rayleigh-Ritz

method is applied. The coefficients are determined by the boundary conditions along the edges of

the plate and the compatibility requirement on the surface of the plate in contact with the fluid.

Finally, the frequency equation for the coupled natural frequencies can be derived. The natural

frequencies of the fluid-coupled system can be obtained by theoretical calculations and verified by

three dimensional finite element analysis. The fluid–coupled natural frequency of the wet mode is

normalized with respect to the natural frequency of the dry mode in order to estimate the relative

hydrodynamic mass effect on each wet mode of the circular plate. Investigated also is the effect of

the location of plate coupled with a fluid on the coupled natural frequency of the wet mode.

2. Theoretical development

2.1 Formulation

Considering a single circular plate submerged in a fluid-filled rigid cylinder as shown in Fig. 1,

where R, h, H1 and H2 represent the radius and thickness of the plate, and height of upper and lower

fluid respectively, the following assumptions are made for the theoretical development:

Fig. 1 Plate submerged in fluid
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(a) the fluid motion is so small that it is considered to be linear,

(b) the fluid is incompressible, inviscid and irrotational,

(c) the material of plate is linearly elastic, homogeneous and isotropic.

The equation of motion for transverse displacement, w, of this plate in contact with fluid is:

, j = 1, 2 (1)

where D = Eh3/12(1 − μ2) is the flexural rigidity of the plate; ρ, μ, pj and E are density, Poisson’s

ratio, hydrodynamic pressure on the plate and Young’s modulus of the plate, respectively. The upper

fluid is referred to with a subscript “1” while the lower fluid is denoted by a subscript “2”. The

solution of Eq. (1) takes the following form of combinations for plate deformation with respect to

polar coordinates (r, θ ):

(2)

where qm is unknown coefficient and n and m are the numbers of the nodal diameters and circles of

the plate, respectively. For the plate with clamped boundary condition, the displacement along the

edge of the plate, r = R, must be zero and therefore dynamic displacement of Eq. (2) will be

reduced to:

(3)

where λnm is the frequency parameter for the plate in air, which is also determined by the boundary

conditions and is related to the circular frequency of the plate in air ω. Jn and In are the Bessel

function and the modified Bessel function of the first kind, respectively. For the fixed boundary

condition, the eigenvalues λnm for the plate in air can be obtained from the zero slope and zero

moment boundary conditions as follows (Bauer 1995):

(4)

2.2 Velocity potential

The fluid region contained in cylindrical rigid vessel is bisected into two parts, an upper fluid and

a lower fluid by the circular plate. The three dimensional oscillatory fluid flow in the cylindrical

coordinates can be described by the velocity potential. The facing side of the circular plates is

contacted with inviscid and incompressible fluid. The fluid movement due to vibration of the plate

is described by the spatial velocity potential that satisfies the Laplace equation:

, j = 1, 2 (5)

It is possible to separate the function Φ with respect to r by observing that in the radial direction

the vessel which supports the edges of the plate are assumed to be rigid, as in the case of the

completely contact circular plate. Thus:

D∇4
w ρhw,tt+ pj

j 1=

2

∑=

w r θ t, ,( ) cos nθ( ) qmWnm r( )exp iωt( )
m 1=

∞

∑=

Wnm r( ) Jn λnmr( ) Jn λnmR( )
In λnmr( )
In λnmR( )
---------------------–=

Jn λnmR( )In 1+ λnmR( ) Jn 1+ λnmR( )In λRR( )+ 0=

∇2
Φj x r θ t, , ,( ) 0=
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 (6)

Substituting Eq. (6) into Eq. (5) generates the general solution of Eq. (5) as (Jeong and Kim 2005): 

(7)

For the bounded fluid, the boundary condition along the cylindrical vessel wall assures the zero

fluid velocity in the radial direction given by:

(8)

Insertion of Eq. (7) into Eq. (8) determines βns for every n and s by the following transcendental

equation:

(9)

When it is assumed that all the vessel walls are rigid and the plate thickness is negligible comparing

with the vessel height, the velocity potential must satisfy the followings:

for the upper fluid (10)

for the lower fluid (11)

Application of Eqs. (10) and (11) into Eq. (7) gives reduced forms of Eq. (7) for the upper and

lower fluid:

(12a)

(12b)

2.3 Method of solution

In order to determine the unknown coefficients Ens1 and Ens2 of fluid motion in Eqs. (12a) and

(12b), the compatibility conditions at the interface of the upper and lower fluids in contact with the

plate are used. Since the plate thickness is neglected, the compatibility conditions at the fluid

interface with the plate yield:

(13a)

(13b)

Substitution of Eqs. (2), (3), (12a) and (12b) into Eqs. (13a) and (13b) gives:

Φj x r θ t, , ,( ) iωφ j r θ x, ,( )exp iωt( )=

φ j r θ t, ,( ) cos nθ( ) Jn βnsr( ) Ensjsinh βnsx( ) Fnsjcosh βnsx( )+{ }
s 1=

∞

∑=

∂φ j/∂r
r R=

0=

Jn′ βnsR( ) 0=

∂φ1 r θ H1, ,( )/∂x 0=

∂φ2 r θ H2–, ,( )/∂x 0=

φ1 r θ x, ,( ) cos nθ( ) Ens1Jn βnsr( )
s 1=

∞

∑ sinh αnsx( ) cosh αnsx( )/tanh αnsH1( )–{ }×=

φ2 r θ x, ,( ) cos nθ( ) Ens2Jn βnsr( )
s 1=

∞

∑ sinh αnsx( ) cosh αnsx( )/tanh αnsH2( )+{ }×=

w ∂φ1/∂x
x 0=

=

w ∂φ2/∂x
x 0=

=
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(14a)

(14b)

Expanding Jn(λnm r) and In(λnm r) of Eqs. (14a) and (14b) into Bessel-Fourier series of the form

(Hagedorn 1994, Sneddon 1951) will give:

(15a)

(15b)

where the Bessel-Fourier coefficients anms and bnms are

(16a)

(16b)

Therefore, the velocity potential of the fluid can be written in terms of unknown constants qm

instead of the unknown coefficient Ensj.

  (17a)

  (17b)

where Λnms is a derived coefficient:

(18)

When the gravity is neglected, it is useful to introduce the Rayleigh quotient in order to calculate

the coupled natural frequencies of the circular plate submerged in the ideal fluid.

(19)

where Vd is the potential energies of the plate and Td and TF are the reference kinetic energies of the

plate and the fluid, respectively. In order to perform numerical calculations for each fixed n value, a

sufficiently large finite M number of terms must be considered in all the previous sums of the

expanding term, m. For this purpose, a vector q of the unknown parameters is introduced as:

qm Jn λnmr( ) Jn λnmR( )
In λnmr( )
In λnmR( )
---------------------–

m 1=

M

∑ Ens1βnsJn βnsr( )
s 1=

∞

∑=

qm Jn λnmr( ) Jn λnmR( )
In λnmr( )
In λnmR( )
---------------------–

m 1=

M

∑ Ens2βnsJn βnsr( )
s 1=

∞

∑=

Jn λnmr( ) anmsJn βnsr( )
s 1=

∞

∑=

In λnmr( ) bnmsJn αnsr( )
s 1=

∞

∑=

anms

2 βnsR( )2 λnmR( )Jn′ λnmR( )

βnsR( )2 n
2

–[ ] βnsR( )2 λnmR( )2–[ ]Jn βnsR( )
--------------------------------------------------------------------------------------------------------=

bnms

2 βnsR( )2 λnmR( )In′ λnmR( )

βnsR( )2 n
2

–[ ] βnsR( )2 λnmR( )2+[ ]Jn βnsR( )
--------------------------------------------------------------------------------------------------------=

φ1 r θ x, ,( ) cos nθ( ) qm

m 1=

M

∑ Λnms

s 1=

∞

∑ Jn βnsr( ) sinh βnsx( ) cosh βnsx( )/tanh βnsH1( )–{ }×=

φ2 r θ x, ,( ) cos nθ( ) qm

m 1=

M

∑ Λnms

s 1=

∞

∑ Jn βnsr( ) sinh βnsx( ) cosh βnsx( )/tanh βnsH2( )+{ }×=

Λnms

4R βnsR( ) λnmR( )3Jn′ λnmR( )

βnsR( )2 n
2

–[ ] βnsR( )4 λnmR( )4–[ ]Jn βnsR( )
--------------------------------------------------------------------------------------------------------=

ω
2 Vd

Td TF+

-----------------=
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(20)

Now, it is necessary to know the reference kinetic energies of the plate and containing fluids in

order to calculate the coupled natural frequencies of the circular plate in contact with fluids. Using

the hypothesis of irrotational movement of the fluid, the reference kinetic energy of the fluids can

be evaluated from its boundary motion.

(21)

Now, where ρo is the mass density of the fluid. Application of Eqs. (13a) and (13b) into Eq. (21)

reduces to Eq. (22):

(22)

where κθ = 2π for n = 0 and κθ = π for n > 0. Insertion of Eqs. (2), (3) and (17) into Eq. (22) gives

the reference kinetic energy of the fluid :

(23)

where the M × M symmetric matrix G for the fixed n is given by Eqs. (15a,b), (16a,d) and (22) as

follows and it is called added virtual mass incremental (AVMI) matrix (Kwak and Kim 1991, Chiba

1994).

, i, k = 1, 2, …, M (24)

with

(25a)

(25b)

Bns = tanh(βns H1), for the upper fluid (25c)

Bns = tanh(βns H2), for the lower fluid (25d)

The reference kinetic energy of the circular plate is presented:

(26)

Insertion of Eq. (2) into Eq. (26) gives the kinetic energy of the plate as: 

q q1  q2  q3 … qM{ }T
=

TF
1

2
---ρo

∂φ1 r 0,( )
∂x

----------------------φ1 r 0,( )cos
2

nθ( )r rd θd
0

R

∫
0

2π

∫=

+
1

2
---ρo

∂φ2 r 0,( )
∂x

----------------------φ2 r 0,( )cos
2

nθ( )r rd θd
0

R

∫
0

2π

∫

TF
1

2
---ρoκθ wφ1 r 0,( )r rd

0

R

∫ wφ2 r 0,( )r rd
0

R

∫+[ ]–=

TF ρoκθq
T
Gq=

Gik

8R
3
βnsR( )ΞisΞksBns

βnsR( )2 n
2

–[ ]
------------------------------------------------

s 1=

∞

∑–=

Ξis

λniR( )3Jn′ λniR( )

βnsR( )4 λniR( )4–[ ]
----------------------------------------------=

Ξks

λnkR( )3Jn′ λnkR( )

βnsR( )4 λnkR( )4–[ ]
-----------------------------------------------=

Td

ρhκθ

2
------------ w

2
r rd

0

R

∫=
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(27)

where Z is the M × M matrix given as

(28)

with δik of Kronecker delta. When Eq. (3) is inserted into Eq. (28) and the integration is carried out,

matrix Z is simply represented as:

(29)

The maximum potential energy of the plate can be computed as:

(30)

As the first term  of Eq. (30) is identical to  and the other terms of Eq. (30) are

negligible comparing with the first term, the maximum potential energy may be approximated by

(31)

where P is the M × M diagonal matrix given by

(32)

The correspondence between the reference total kinetic energy of each mode multiplied by its

square circular frequency and the maximum potential energy of the same node are used. In order to

find natural frequencies and mode shpaes of the plate in contact with fluid, the Rayleigh quotient

for the plate vibration coupled with ideal fluid is used. Minimizing Rayleigh quotient Vd /(Td + TF)

with respect to the unknown parameters qm, the non-dimensional Galerkin equation can be obtained:

(33)

Eq. (33) gives an eigenvalue problem and the natural frequencies ω can be calculated.

3. Analysis

3.1 Theoretical analysis

On the basis of the preceding analysis, the determinant of the left side in Eq. (33) is numerically

solved using MathCAD in order to find the natural frequencies of circular plate coupled with fluid.

In order to check the validity and accuracy of the results from the theoretical study, finite element

analyses are also performed and frequency comparisons between them are carried out for the fluid-

coupled system. 

Td ρhκθq
T
Zq=

Zik δ ik rWni1Wnk1 rd
0
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ρhZ ρoG+( )–{ }q 0{ }=



176 Myung Jo Jhung, Young Hwan Choi, Hho Jung Kim and Kyeong Hoon Jeong

The circular plate is connected to the fixed closed-type container which is made of carbon steel.

The plate is made of aluminum having a radius of 150 mm and a thickness of 3 mm (Fig. 1). The

physical properties of the material are as follows: Young’s modulus = 69.0 GPa, Poisson’s ratio =

0.3, and mass density = 2700 kg/m3. Water is used as the contained fluid, having a density of 1000

kg/m3. The sound speed in water is 1483 m/s, which is equivalent to the bulk modulus of elasticity

of 2.2 GPa (Table 1).

The frequency equations derived in the preceding sections involve an infinite series of algebraic

terms. Before exploring the analytical method to obtain the natural frequencies of the fluid-coupled

plate, it is necessary to conduct convergence studies and establish the number of terms required in

the series expansions involved. In the numerical calculation, the Bessel-Fourier expansion term s is

set to 200 and the expanding term m for the admissible function is set to 40, which gives an exact

enough solution by convergence. In general, the solution approaches the exact frequency from

above as the number of terms included in the series Eqs. (23), (27) and (31) increases, which may

increase the calculation time significantly. 

3.2 Finite element analysis

Finite element analyses using a commercial computer code ANSYS 6.1 (2001) are performed to

verify the analytical results for the theoretical study. The results from finite element method are

used as the baseline data. Three-dimensional model is constructed for the plate submerged in fluid

as shown in Fig. 2. Also, three different models are developed for plates in air, on fluid and beneath

fluid by eliminating upper fluid and/or lower fluid as shown in Fig. 3. The fluid region is divided

into a number of 3-dimensional contained fluid elements (FLUID80) with eight nodes having three

degrees of freedom at each node. The fluid element FLUID80 is particularly well suited for

calculating hydrostatic pressures and fluid/solid interactions. The circular plate is modeled as elastic

shell elements (SHELL63) with four nodes.

The perimeter nodes of the plate are coupled with the nodes of the container which are fixed in

all six degrees of freedom. The fluid movement at top and bottom of the container is considered to

be constrained in the vertical direction for the bounded surface fluid case. The vertical velocities of

the fluid element nodes adjacent to each surface of the wetted circular plate coincide to those of

plate so that the model can simulate Eqs. (13a) and (13b).

The Block Lanczos method is used for the eigenvalue and eigenvector extractions to calculate

1000 frequencies including fluid modes.

Table 1 Dimensions and material properties

Unit Plate Container Fluid

Young’s modulus Pa 69E9 172E9

Poisson’s ratio 0.3 0.3

Density kg/m3 2700 7800 1000

Sound speed m/sec 1483

Bulk modulus of elasticity Pa 2.2E9

Thickness mm 3

Diameter mm 300
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Fig. 2 Finite element model of plate submerged in fluid

Fig. 3 Four different types of finite element models
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Table 2 Comparison of frequencies between FEM and theory for plate in air

Mode Natural frequency (Hz) Error 
(%)n m’ FEM Theory

1

1 690 690 0.0

2 1971 1975 0.2

3 3885 3898 0.3

4 6427 6462 0.5

2

1 1131 1132 0.1

2 2739 2746 0.3

3 4971 4993 0.4

4 7828 7879 0.6

3

1 1653 1657 0.2

2 3591 3604 0.4

3 6142 6178 0.6

4 9315 9388 0.8

4

1 2255 2262 0.3

2 4527 4548 0.5

3 7399 7451 0.7

4 10886 10986 0.9

Table 3 Comparison of frequencies between FEM and theory for plate submerged in 
fluid with bounded surface

Mode Natural frequency (Hz) Error 
(%)n m’ FEM Theory

1

1 172 173 0.6

2 697 707 1.4

3 1639 1685 2.7

4 3006 3154 4.7

2

1 360 362 0.6

2 1085 1105 1.8

3 2245 2318 3.1

4 3847 4041 4.8

3

1 597 604 1.2

2 1534 1572 2.4

3 2917 3030 3.7

4 4746 5013 5.3

4

1 889 902 1.4

2 2046 2107 2.9

3 3656 3820 4.3

4 5712 6071 5.9
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4. Results and discussion

The frequency comparisons between analytical solution developed here and finite element method

are shown in Tables 2 and 3 for plates in air and submerged in fluid with bounded surface,

respectively. The symbol m’ in the tables represents the number of nodal circles of the wet mode

and the symbol n means the number of nodal diameter. The frequency differences of plate in air are

almost negligible as shown in Table 2. But the largest discrepancy of 5.9 % in m’ = 4, n = 4, as

shown in Table 3, is obtained for the plate submergerd in fluid with bounded surface. As the mode

number increases, the discrepancy becomes large, which can be reduced by using the sufficient

number of node in the radial direction in the finite element modelling. Also, the compressibility of

the fluid was found to reduce the natural frequency of the lower wet modes in the case of a fluid-

filled cylindrical shell (Jeong and Kim 1998). Therefore, discrepancies in Table 3 may, also, be

caused by the assumption that the water is incompressible in the theory. But the frequency

comparisons between theoretical and finite element analysis results are generally found to be in

good agreement within 6%.

Frequencies of plate coupled with various fluid conditions are represented in Figs. 4 and 5. In all

cases, as the number of nodal circles increases, frequencies increase, which were not shown in

cylindrical shells (Jhung et al. 2002, 2003). Typical mode shapes of radial modes are shown in

Fig. 6 and mode shapes which are too hard to predict and to be categorized in the frequency table

are shown in Fig. 7. Also, very different types of mode shapes with small participation factor are

appeared as shown in Fig. 8, which are expected to appear due to fluid. 

The effect of fluid on the frequencies of circular plate wetted with fluid can be assessed using the

normalized frequency defined as the natural frequency of a structure in contact with a fluid divided

by the corresponding natural frequency in air. The normalized natural frequencies have values

between one and zero due to the added mass effect of fluid. Figs. 9 and 10 show the normalized

Fig. 4 Frequencies of plate submerged in fluid with
bounded and free surface by FEM

Fig. 5 Frequencies of plate with upper and lower
fluid by FEM 
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Fig. 6 Typical mode shapes of plate for radial mode
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natural frequencies for the plate modes submerged in fluid and with lower and upper fluid,

respectively. The fluid affects the plate modes submerged in fluid more significantly than those with

only one side of fluid by comparing Fig. 9 with Fig. 10. Especially the plate with fluid of only one

side has almost the same effect irrespective of the location of fluid; on or beneath. But it is noted

that the modes of plate with upper fluid have a little more effect than those of plate with lower

fluid. As the number of nodal circles or diameters of the plates increases, the normalized natural

frequencies increase by the gradual reduction of the relative added mass effect. Therefore, an

increase of nodal lines or nodal circles causes an increase in the normalized natural frequencies for

all cases of modes. 

Fig. 7 Typical mode shapes of plate uncategorized
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Fig. 8 Typical mode shapes with small participation factor

Fig. 9 Normalized frequencies of plate submerged in
fluid with respect to in-air condition

Fig. 10 Normalized frequencies of plate with lower
and upper fluid with respect to in-air condition
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The fluid surface bounding effects are shown in Fig. 4. Generally the natural frequencies of the

free surface case are higher than those of the bounded surface case because the fluid is free to move

vertically and the added mass of the mass is reduced and eventually increase the natural frequency

of the wet modes, but the difference is very small. Especially it is to be noted that as the number of

diametrical mode increases the difference between them becomes small and eventually the

frequencies of the bounded surface began to be the same or higher than those of free surface

beyond m’ = 6. This can be predicted from the normalized frequency comparisons between bounded

and free fluid surface cases shown in Fig. 9, which show that the bounded surface case has more

fluid effect than the free surface case in the lower modes but as for the higher modes they have

almost the same fluid effect irrespective of the bounded or free fluid surface cases.

5. Conclusions

An analytical method to estimate the coupled frequencies of the circular plate in contact with fluid

is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify

the validity of the analytical method developed, finite element method is used and the frequency

comparisons between them are found to be in good agreement. The effect of the fluid on the plate

frequencies is found to be more severe in the plate submerged in fluid. Especially as number of

diametrical and circular modes decrease, the effect is more significant. Also, if there is a fluid only

one side of the plate the fluid effect is almost the same irrespective of the location of the fluid.

Finally, the frequencies of free surface case are almost the same as those of bounded surface case.
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