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A general convergence condition of the Newton-Raphson 
algorithm applied to compressible hyperelasticity
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Abstract. This paper presents the implementation of the Blatz-Ko hyperelastic compressible model in a
finite element program to deal with large deformation problems. We show analytically and numerically
that the minimum number of increment steps in the Newton-Raphson algorithm depends on material
properties and applied loads. We also show that this dependence is related to the orientation preservation
principle. So we propose a convergence criteria based on the sign of eigenvalues of the deformation
gradient matrix.
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1. Introduction 

Today, the compressible hyperelasticity causes many interrogations. In particular, existence and

uniqueness of the solution are not always satisfied (Ciarlet 1988). In addition, loss of ellipticity of

equilibrium equations (Horgan 1996) can involve numerical difficulties near the breaking values of

loading (Wineman 1995). In addition, for the Blatz-Ko hyperelastic compressible model (Blatz and

Ko 1962), the violation of orientation preservation can cause the incremental Newton-Raphson

algorithm to diverge (Peyraut 2003a). Indeed, if a deformation with a negative determinant of the

deformation gradient matrix cannot be reached by a continuous process starting from the reference
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configuration, it is possible to reach it with a numerical discontinuous process. More precisely, if the

loading increment is too large, the incremental Newton-Raphson algorithm can cause a

discontinuous jump between two branches of the equilibrium curve. In this case, the successive

tangents do not allow a return to the acceptable branch where the physical solution is located. The

Newton-Raphson algorithm then fails to converge (i.e., the iteration count is infinite or the iterative

process stops with an error message), otherwise the algorithm would converge to a physical non-

admissible solution on the non-admissible branch.

In order to prevent Newton-Raphson divergence, we propose to control the orientation

preservation by using the sign of the eigenvalues of the deformation gradient matrix. A negative or

null eigenvalue is indeed symptomatic of an orientation preservation loss. Within the framework of

the finite element theory, this control must be carried out at the Gauss points and for each Newton-

Raphson’s iteration. Its implementation in the finite element software FER is presented in this paper.

We have successfully tested this numerical orientation preservation control in two cases. The first

one concerns the one dimensional case of a hyperelastic cube subjected to a compressive force in a

rigid container. Friction in contact with the side walls is supposed to be negligible and cube bases

perfectly stuck on the container bottom. The results are in very good agreement with the optimal

loading step number analytically calculated in (Peyraut 2001). This optimal loading step number is

as small as possible to minimize computing time but sufficiently large to ensure the Newton-

Raphson algorithm to converge. The second case relates to the more general case of a 3D structure.

This structure is made of a rectangular hyperelastic specimen subjected to a uniform pressure on its

upper and lower sides. As in the first case, the numerical results are in very good agreement with

the optimal loading step number analytically calculated in (Peyraut 2003b).

2. Blatz-Ko constitutive law

Rubber or other polymer materials are said to be hyperelastic. Usually, these kind of materials

undergo large deformations. Let x and X denote the position vectors of a particle P in the current

and reference configurations of a deformable body (Fig. 1).

If we consider the framework of large deformations in stationary mode (static calculation) with

Lagrangian description, the motion of this body is specified by a smooth vector function x = Φ(X).

It is usual to introduce the displacement vector U such that

Fig. 1 Configurations
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x = Φ(X) = X + U (1)

In the context of finite elements, displacements of structures U are given by the product of shape

functions and nodal displacements:

U = N u (2)

where N is the matrix of shape functions and u is the vector of nodal displacements. In order to

describe the geometrical transformation at the particle P, the deformation gradient tensor is

introduced by

(3)

Because of large displacements and rotations, Green-Lagrangian strain is adopted for the nonlinear

relationships between strains and displacements. One notes C the stretch tensor or the right Cauchy-

Green deformation tensor (C = FT
F). The Green-Lagrangian strain tensor E is defined by

E = (C − I)/2 (4)

In the case of hyperelastic law, there exists an elastic potential function W (or strain energy

density function) which is a scale function of one of the strain tensors, whose derivative with

respect to a strain component determines the corresponding stress component. This can be expressed

by

(5)

where S is the second Piola-Kirchoff stress tensor.

In the particular case of isotropic hyperelasticity (Ciarlet 1988), Eq. (5) can be written by

(6)

where Id is the unity tensor and Ii (i = 1, 2, 3) denote the invariants of the right Cauchy-Green

deformation tensor C:

I1 = Cii ; I2 = (I1
2 − Cij Cij)/2 ; I3 = det (Cij) (7)

The Blatz-Ko constitutive law is used to model compressible foam-type polyurethane rubbers (Blatz

and Ko 1962). The strain energy density function is given as follows

(8)

where μ = E/ 2(1 + ν) is the shear modulus. E and ν are respectively Young’s modulus and

Poisson’s ratio. It is worth noting that the Poisson’s ratio is equal to 0.25 in the particular case of

Blatz-Ko material. By deriving the energy density (8) with respect to the three invariants, we obtain

(9)

Reporting the result in Eq. (6) and using the Cayley-Hamilton theorem gives
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(10)

where B = FF
T is the left Cauchy-Green deformation tensor associated to F.

Classically, the Cauchy stress (or true stress) tensor σ can be calculated from the second Piola-

Kirchoff stress tensor S as follows:

(11)

3. Finite element formulation of nonlinear structures

In the linear analysis, a linear relation is assumed between strains and displacements. However, if

there are large displacements and strains, such as in the case of rubber applications, the nonlinear

relation between strains and displacements on one hand and between stresses and strains on the

other hand cannot be ignored. Also, the equilibrium equation of internal and external forces should

be considered in the deformed configuration. The geometrically nonlinear analysis may be described

by using the total or the updated Lagrangian formulations. The total Lagrangian formulation is

derived with respect to the initial configuration. The updated Lagrangian formulation is derived with

respect to the current configuration. In other words, the total Lagrangian formulation constructs the

tangent stiffness matrix with respect to the initial configuration. On the other hand, the updated

Lagrangian formulation constructs the tangent stiffness matrix with respect to the current

configuration. The updated Lagrangian formulation is computationally effective (Bathe 1979)

because it does not include the initial displacement matrix. In the total Lagrangian formulation, the

initial configuration remains constant. This simplifies the computation (Wood 1977). Therefore, the

total Lagrangian formulation was selected in this work for the finite element discretization

(Belytschko 2000). According to Eqs. (2-4), the Green-Lagrangian strain includes formally linear

and nonlinear terms in function of nodal displacements

E = (BL + BNL(u)) u (12)

where BL is the matrix which relates the linear strain term to the nodal displacements, and BNL(u),

the matrix which relates the nonlinear strain term to the nodal displacements. From Eq. (12), the

incremental form of the strain-displacement relationship is

δE = (BL + BNL(u)) δu (13)

Using the principle of virtual displacement, the virtual work δW is given as

 (14)

where V0 is the volume of the initial configuration and Fext, the vector of external loads.

From Eqs. (5-10), one obtains

δ S = D δ E = D (BL + BNL(u)) δ u (15)

where D is the current fourth order stress-strain tensor. The stress-strain tensor’s coefficients are

obtained by deriving (10) with respect to the Green-Lagrange strain tensor E:

S μF
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(16)

Substituting δ E from Eq. (13) into Eq. (14) results in

(17)

where the vector of internal forces is defined by

(18)

Since δ u is arbitrary, a set of nonlinear equations can be obtained as

Fint – Fext = 0 (19)

Eq. (19) is strongly non-linear, because of finite strains and large displacements of solid. A typical

solution procedure for this type of nonlinear analysis is obtained by using the Newton-Raphson

iterative procedure (Belytschko 2000)

(20)

where i and i + 1 are the iteration numbers at which the equations are computed.  is the tangent

stiffness matrix, u, the vector of nodal displacements, ∆u, the vector of nodal displacements

correction, and , the vector of internal forces. Taking the derivative of Fint with respect to the

nodal displacements u gives the tangent stiffness matrix as

(21)

In addition, this expression can be written by substituting Eq. (11) into Eq. (13) as

(22)

In Eq. (22), the first term is the elastic stiffness matrix KE, the second term is the geometric

stiffness (or initial stress stiffness) matrix Kσ , and the third term is the initial displacement stiffness

matrix KU. This formulation has been implemented in an object-oriented finite element code named

FER.

4. Orientation preservation control in Newton-Raphson iterative procedure

Usually, the orientation preservation is tested with the determinant of the deformation gradient F.

If det(F) is positive, the orientation is preserved and if det(F) is null or negative, the orientation

preservation is lost. In this section, we will show that a control based on the F eigenvalues is more
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efficient. In order to demonstrate that, let us consider the three F eigenvalues, noted λ1, λ2 and λ3.

These eigenvalues can be positive, negative, null or complex (in this last case, two eigenvalues are

necessarily conjugated and the third one is real). At the current iteration of Newton-Raphson

procedure, seven cases can occur:

- Case 1: all eigenvalues are positive: λ1 > 0 ; λ2 > 0 ; λ3 > 0

- Case 2: two eigenvalues are conjugate complex numbers and the third one is positive (for

instance: )

- Case 3: two eigenvalues are negative and the third one is positive (for instance: λ1 < 0 ; λ2 < 0 ;

λ3 > 0)

- Case 4: there exists at least one null eigenvalue (for instance: λ1 = 0)

- Case 5: two eigenvalues are positive and the third one is negative (for instance: λ1 > 0 ; λ2 > 0 ;

λ3 < 0)

- Case 6: all eigenvalues are negative λ1 < 0 ; λ2 < 0 ; λ3 < 0

- Case 7: two eigenvalues are conjugate complex numbers and the third one is negative (for

instance: )

The determinant of F is the product of eigenvalues

(23)

This determinant is strictly positive for cases 1 to 3 and negative or null for cases 4 to 7. That

means that orientation will not be preserved if one of cases 4 to 7 occurs. The current iteration of

the Newton-Raphson algorithm is then not acceptable and the procedure must be stopped.

Case 3 is also not available although the determinant of F is positive. Indeed, it corresponds to a

surface reversal without physical meaning (see appendix for details about the reversal problem). So,

Case 3 can not be accepted.

In conclusion, the current iteration must be rejected if cases 3-7 are detected. These cases are

characterized by a negative or null eigenvalue of F. In order to prevent Newton-Raphson

divergence, we then propose to control the orientation preservation by using the sign of the

eigenvalues of deformation gradient F. Within the framework of the finite element theory, this

control must be carried out at the Gauss points and for each Newton-Raphson’s iterations. The

procedure control is written as follows in the finite element software FER (Box 1).

Box 1. Orientation preservation control in Newton-Raphson solution procedure

λ1 λ 2;λ3 0>=

λ1 λ 2;λ3 0<=

det F( ) λ1λ2λ3=
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The approach presented on Box 1 does not depend on the material constitutive law because only

eigenvalues of the deformation gradient are required. This approach is thus very general and could

be applied not only to Blatz-Ko materials but also to other materials of slightly or largely

compressible behavior.

From a computational point of view, the proposed approach is the most efficient method to deal

with the orientation preserving problem in the framework of Newton-Raphson algorithm. The restart

process (Step h) is indeed performed with a load step number selected so as to approach as closely

as possible to the orientation preserving limit. Beyond this limit, negative volume, negative area or

negative length can occur. Step h provides thus an optimal load step number associated with the

minimal computational cost. If the optimal load step number is reduced just by one, Newton-

Raphson algorithm will diverge as it will be shown in sections 5.1 and 5.2.

5. Numerical examples

5.1 One dimensional example

In this section, we study the particular case of a hyperelastic cube subjected to a compressive

pressure p in a rigid container. Friction in contact with the sidewalls is supposed to be negligible

and cube bases perfectly stuck on the container bottom (Fig. 2). The displacements in the (x, y)

plane are then equal to zero:

(24)

Besides, the vertical displacement uz only depends on z in a linear form:

(25)

where U represents the vertical displacement on the top of the cube (z = H). The studied problem is

consequently one-dimensional.

The loss of orientation preservation can cause the incremental Newton-Raphson algorithm to

diverge (Peyraut 2001). In order to ensure at the same time the convergence and orientation

preservation, a progressive increase of the loading step number n constitutes a possible strategy.

This strategy consists in restarting the computation with an increase of n if Newton-Raphson

ux uy 0= =

uz z( ) U

H
----z=

Fig. 2 Compression of a cube in a rigid container
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divergence is detected. But this strategy is expensive because previous calculations are lost. It is

thus interesting to seek the optimal incremental loading number n allowing convergence without

restarting. In order to find this optimal loading number, we first study the relation between

displacements and loading. This relation can be obtained thanks to the minimization of the total

potential energy

(26)

The first integral is calculated over the volume Ω of the cube while the second is calculated on

the top surface S of the cube. If we use the displacement field given by Eqs. (24, 25) in connection

with Eq. (8), the energy density is

(27)

We then deduce the total potential energy:

(28)

By minimizing it, it is easy to find that U is the solution of the following equation:

K(U ) = −p (29)

where K is a non-linear function of U

(30)

These equations show that the equilibrium curve is made of two branches as shown in Fig. 3. On

this figure, the solution of Eq. (29), with −p equal to −1 MPa, is represented by a circle.

On the first branch, corresponding to U higher than −H, orientation is preserved. Indeed, it

follows from Eqs. (24, 25) that the deformation gradient matrix is given by
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Fig. 3 Load-displacement curves
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(31)

The eigenvalues of F are thus

(32)

We then deduce from Eq. (23) and Eq. (32) that

(33)

On the other hand, the orientation preservation is lost on the second branch corresponding to U

lower than −H. The vertical asymptote u = −H thus constitutes the border separating the branch

with a positive determinant, which corresponds to a physical solution, and the branch with a

negative determinant. It is noted on Fig. 3 that incremental Newton-Raphson algorithm causes a

discontinuous jump between these two branches if the loading increment is too large. Successive

tangents allowing no return to the acceptable branch where the physical solution is located, the

Newton-Raphson algorithm fails to converge (i.e., the iteration count is infinite or the iterative

process stops with an error message).

Convergence is thus related to the position of intersection between tangent at the origin with the

curve K(U ) = f and horizontal line of loading (Fig. 4). If this intersection is located at a first

coordinate strictly higher than −H, the algorithm will converge. If the first coordinate of the

intersection is lower or equal to −H, the algorithm will diverge.

The case corresponding to −H thus separates convergence and divergence areas. It is shown in

(Peyraut 2001) that the loading step number n associated with this specific case is given by

(34)

where int represents the integer part of a real number.
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Fig. 4 Three possible cases for loading
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It is also shown in the same reference that this loading step number is optimal because it gives the

best compromise between two antagonistic objectives. The first objective is convergence of

Newton-Raphson algorithm. To achieve this goal, the loading step number must be large. The

second objective is minimization of time computation. For this purpose, the loading step number

must be small since it represents the loading iteration count. Numerical simulation is performed

with the data: μ = 220711.2 Pa; p = 5 MPa; H = 0.5 m. From Eq. (34), at least 8 load steps are

necessary to obtain convergence of the solution. Fig. 5 shows the admissible branch of the load-

displacement curve obtained analytically and numerically with n = 8.

Table 1 gives the eigenvalues of F calculated numerically when n = 7 and n = 8. One observes

that with n = 7, there exists one negative eigenvalue. As mentioned in Section 4, the Newton-

Raphson algorithm does not converge with n = 7.

Fig. 6 Evolution of eigenvalues of F

Table 1 F eigenvalues

F eigenvalues λ1 λ2 λ3

numerical with n = 7 (FER) 1 1 −0.187159

numerical with n = 8 (FER) 1 1 0.0560817

Fig. 5 Admissible load-displacement curve
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Fig. 6 shows the evolution of F eigenvalues with respect to the cumulative Newton-Raphson

iteration in the case of n = 8. 40 iterations were performed to achieve the solution. It is worth

noting that eigenvalue is reduced from 1 to 0.0560817 in the first iteration. As shown in Table 1,

with n = 7, this value is reduced to −0.187159 and then the determinant of F becomes negative. The

algorithm does not converge as predicted by the approach proposed in Section 4.

5.2 Three dimensional example

In this section, we study the three dimensional example of a rectangular specimen subjected to a

uniform pressure p on the upper and lower sides (Fig. 7). A negative value of p is associated with a

compressive loading and a positive value with a tensile loading. Dimensions of the rectangular

specimen are 2h1 × 2h2 × 2H.

Because of symmetry, only 1/8 of the structure (Fig. 8) is modeled. The origin is located at the

intersection of the specimen axis and the median plane.

To take into account symmetry, we have selected the following boundary conditions:

(35)

The displacements then depend on x, y and z in a linear form:

ux 0 y z, ,( ) uy x 0 z, ,( ) uz x y 0, ,( ) 0= = =

Fig. 7 Tensile (p > 0) or compressive (p < 0) loading

Fig. 8 1/8 of the structure
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(36)

where Ux, Uy and Uz represent respectively the displacement on the lateral sides (x = h1; y = h2) and

on the top side of the specimen (z = H).

As mentioned in section 5.1, the loss of orientation preservation can cause the incremental

Newton-Raphson algorithm to diverge. In order to find the optimal incremental loading number n,

which allows convergence without restarting, we proceed as in section 5.1. We first study the

relation between displacements and loading. This relation can be obtained thanks to the

minimization of the total potential energy:

(37)

It can be easily deduced from Eq. (37) that

(38)

where Kx, Ky and Kz are non-linear functions of Ux, Uy and Uz:

(39)

(40)

The curves of Eqs. (39,40) are represented on Figs. 9 and 10 with the following numerical data:

H = 25 cm ; h1 = 2.5 cm ; h2 = 1.25 cm ; μ = 220711.2 Pa. We notice that these curves are

perfectly correlated with numerical results performed with the finite elements software FER. The

curve of Uy vs. p is not represented because it has exactly the same form as Ux.
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Fig. 9 Horizontal displacement Ux = ux(h1) vs loading p
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Fig. 10 shows that the equilibrium curve related to the vertical displacement is made of two

branches. The admissible branch is represented by the solid line and the non-admissible branch by

the curve in dotted lines. On the non-admissible branch, corresponding to Uz lower than −H, the

orientation preservation is lost. Indeed, it follows from Eq. (36) that the deformation gradient matrix

is

(41)

We deduce from Eq. (41) the eigenvalues of F:

(42)

If Uz is lower than −H, the third eigenvalue of F is negative. According to the conclusion of

Section 4, the orientation is not preserved. As in section 5.1, the vertical asymptote Uz = −H

constitutes a border between an admissible branch and a branch which is not. It is shown in

(Peyraut 2003b) that the optimal loading step number, which allows convergence with a minimal

computation cost, can be chosen by using the border between these two branches

(43)

where int represents the integer part of a real number.

In order to correlate Eq. (43), numerical simulations have been performed with the data: E =

551778 Pa; p = −6014380.2 Pa; H = 0.25 m, h1 = 0.025 m, h2 = 0.0125 m. The pressure p has been

chosen such as the ratio −p/E is equal to 10.9. From Eq. (43), at least 11 load steps are necessary to

F

1
Ux

h1

------+   0  0

0  1
Uy

h2

------+     0

0  0  1
Uz

H
------+   

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

λ1 1
Ux

h1

------+=  ; λ2 1
Uy

h2

------+=  ; λ3 1
Uz

H
------+=

n int
p

E
---– 1+=

Fig. 10 Vertical displacement Uz = uz(H) vs loading p
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obtain the convergence of the solution. Fig. 11 shows the admissible branch of load-displacement

curves obtained analytically and numerically with n = 11.

Table 2 gives the eigenvalues of F calculated numerically when n = 10 and n = 11. One observes

that with n = 10, there exists at least one negative eigenvalue. As mentioned in Section 4, the

Newton-Raphson algorithm does not converge with n = 10.

Fig. 12 shows the evolution of eigenvalues of F with respect to the cumulative Newton-Raphson

iteration in the case of n = 11. 52 iterations were performed to achieve the solution. It is worth

noting that the eigenvalue is reduced from 1 to 0.0090909 in the first iteration. As shown in Table 2,

with n = 10, this value is reduced to −0.214827 and then the determinant of F becomes negative.

The algorithm does not converge as predicted by the approach proposed in Section 4. It is also

noticed that the first and second eigenvalues are identical because of the symmetry of the problem.

Table 2 F eigenvalues

F eigenvalues λ1 λ2 λ3

numerical with n = 10 (FER) 1.44574 1.44574 −0.214827

numerical with n = 11 (FER) 1.24773 1.24773 0.00909091

Fig. 12 Evolution of F eigenvalues

Fig. 11 Admissible load-displacement curve
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6. Conclusions 

In this paper, we have shown that the orientation preservation violation constitutes a potential

cause of divergence for the Newton-Raphson algorithm. We also show that a control by eigenvalues

of the deformation gradient matrix F is efficient to detect a loss of orientation preservation.

These points are successfully shown in two cases. Convergence can be obtained by choosing a

sufficiently small the initial load step number. For the chosen examples, this number is analytically

determined and validated by numerical results.

For a more general case, there does not exist, a priori, analytical formulas allowing the choice of

the initial load step. In this case, a new approach is proposed which consists of integrating

numerically the risks of divergence related to the orientation preservation violation in a traditional

Newton-Raphson algorithm. This integration is achieved by controlling the eigenvalues of the

deformation gradient matrix and by restarting the Newton-Raphson procedure. Further studies and

software development are being undertaken for implementing an automatic process to determine the

optimum load step number without restart.
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Appendix: Reversal problem

Usually, the orientation preserving problem occurs with a negative volume. But it can also occur in the case
of a positive volume but a negative area. This leads to the reversal problem which is not physically meaning-
ful. To explain this problem let us consider three infinitesimal and orthogonal vectors  and  (Fig. A1).
In order to simplify the presentation, assume that these three vectors, whose lengths  and  are
strictly positive, are parallel to the axes

(A.1)

∂a ∂b, ∂c

∂a ∂b, ∂c

∂a ∂a e1=  ; ∂b ∂b e2 ; ∂c ∂c e3==
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Let us consider the undeformed surface S0 supported by  and  and oriented by the normal

(A.2)

The deformed surface S is then supported by the vectors da and db

(A.3)

Moreover, this surface is directed by the deformed normal defined by

(A.4)

Lastly, as λ1 and λ2 are negative, the product of λ1 by λ2 is positive. The deformed and undeformed nor-
mals are then identical:

n = n0 (A.5)

Surfaces S and S0 have thus the same normal. In addition, according to (A.1) and (A.3), directions of 
and da are opposite. We have the same conclusion concerning  and db. It means that surface S results
from S0 by a reversal procedure (Fig. A2). This reversal procedure has no physical meaning. It then should be
proscribed.

∂a ∂b

n0

∂a ∂b∧

∂a ∂b∧
------------------------- e3= =

da F∂a λ1 ∂a e1 ; db F∂b λ2 ∂b e2= = = =

n
da db∧

da db∧
------------------------- sign λ1λ2( )n0= =

∂a

∂ b

Fig. A2 Surface reversal

Fig. A1 Three infinitesimal and orthogonal vectors parallel to the axes




