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Abstract. This study analyzes stress intensity factors for a number of periodic edge cracks in a semi-
infinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The
eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free
surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex
potential functions of the edge dislocations, a simple as well as effective method is developed to calculate
the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of
the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing
and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The
results of the present study reveal that the stress intensity factor of the periodic edge cracks is
significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth.
The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium
reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

Key words: stress intensity factor; eigenstrain; edge dislocation; periodic edge cracks; semi-infinite
medium.

1. Introduction

Eigenstrain (Mura 1987) is the generic name of such non-elastic strains as thermal expansion,

phase transformation, initial strains, plastic strains, and mismatch strains. The incompatibility of

these eigenstrains results in eigenstresses that are self-equilibrated internal stresses, conventionally

known as residual stresses. The free surface of a semi-infinite medium may undergo various kinds

of processes like cutting, grinding, milling, etc. as well as shot-peening and heat treatment

processes. Consequently, eigenstrain is developed at and near the free surface of the medium.

Again, the free surface may be exposed to temperatures different from that in other part of the

medium, which results in nonuniform temperature distribution near the free surface. This also

causes the eigenstrain to develop at and near the free surface. In order to understand and improve

the fracture characteristics of the medium, an accurate and reliable analysis of the effect of this

eigenstrain on the stress intensity factor is of great practical importance.
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So far, stress intensity factors of edge cracks in semi-infinite media have been studied extensively

for various loading conditions, such as, far field uniform load, uniform pressure over part of the

crack surface, point load, etc. The works of Stallibrass (1970), Hartranft and Sih (1973), Sneddon

and Das (1971), Sneddon (1946), and Afsar (1997) may be cited as a few examples. More recently,

Sekine and Afsar (1999) considered a single edge crack in a semi-infinite functionally graded

material (FGM) and investigated the effect of eigenstrain on the stress intensity factor followed by

the optimization of composition profile for desired brittle fracture characteristics in the FGM

medium. As an extension of their work, they carried out further researches to compute the material

distribution in a thick-walled FGM pipe (Afsar and Sekine 2001) and an FGM coating around a

circular hole in an infinite medium (Afsar and Sekine 2002) with an edge crack emanating from the

inner surfaces of the cylinder and hole, respectively.

In this study, we concentrate on the periodic edge cracks in a semi-infinite medium of

homogeneous material with distributed eigenstrain. It is recognized that eigenstrain is inherently

developed in an FGM body due to nonuniform coefficient of thermal expansion, as a result of

cooling from sintering temperature. However, it may also be developed in a semi-infinite medium

of homogeneous material due to various machining and heat treatment processes. This eigenstrain is

considered here for investigating its effects on the stress intensity factor for periodic edge cracks in

the semi-infinite medium of homogeneous material. In our present analysis, the eigenstrain is

assumed to be distributed over a region of finite depth that extends from the free surface. This

assumption is fairly reasonable as the various machining and heat treatment processes affect the

region whose depth from the free surface is indeed small. For such a problem, a simple as well as

effective method is developed to evaluate the stress intensity factors by using the method of

complex potential functions of edge dislocations representing the cracks. To demonstrate the

method, some numerical results are obtained and presented for different functional forms of

eigenstrain distribution. Furthermore, the effects of crack spacing and the intensity of the normalized

eigenstress on the stress intensity factor are investigated in details.

2. Model of the problem

Shown in Fig. 1 is a semi-infinite medium, which is subjected to a far-field uniform applied stress

. The region of finite depth w has an arbitrary distribution of eigenstrain ε*, which is a function

of y only. Shown in the figure are also a number of periodic edge cracks of equal length, all of

which are perpendicular to the free surface. The length of the cracks and the distance between them

are denoted by a and d, respectively. A principal coordinate system x-y is considered, the origin of

which is located at the mouth of the central crack. Further, a secondary coordinate system xm-ym is

considered, the origin of which is located at the mouth of the crack other than the central one,

where m = ±1, ±2, ±3, ..., ±N. If we define two complex variables z = x + iy and zm = xm + iym that

represent the coordinate of a point with reference to the principal and secondary coordinate systems,

respectively, the following relationship holds between them

(1)

For the model outlined above, a method is developed to evaluate the stress intensity factor for plane

stress in order to investigate the effect of eigenstrain on the stress intensity factors.
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3. Stress intensity factor

3.1 Stress field in uncracked medium

First, we consider the semi-infinite medium without any cracks. The uncracked semi-infinite

medium is subjected to a uniform load  along with an arbitrary distribution of eigenstrain ε*( y)

in the region of finite depth w. The resultant stress field in the uncracked semi-infinite medium can

be determined by superposition of the stress due to the eigenstrain ε*( y) and the applied load .

The stress due to eigenstrain ε*( y) can be determined following the philosophy outlined by Sekine

and Afsar (1999). Since the depth w is very small compared to that of the lower region of the semi-

infinite medium, the eigenstrain ε*( y) in the region of finite depth w is completely suppressed by

the restraining effect from the lower region of the semi-infinite medium. Therefore, the stress

developed in the region of finite depth w due to the eigenstrain can be given by

(2)

where E is the Young’s modulus. The stress in the remaining part of the semi-infinite medium due

to the eigenstrain is negligible as the region beyond the finite depth w is of infinite dimension over

which the stress is distributed. Thus, the resultant stress field in the region of finite depth w is

( ) while the stress beyond w is approximately equal to the applied stress .

3.2 Cracked semi-infinite medium

The resultant stress field calculated for the uncracked semi-infinite medium in the foregoing is

disturbed due to the presence of the cracks. Therefore, it is necessary to determine the redistribution

of the stress field in the presence of the cracks. This redistributed stress field is computed by

representing the cracks by a continuous distribution of edge dislocations of density bx(s) as shown

in Fig. 2. First, we consider the central crack. Following the representation of the crack as shown in

Fig. 2, the complex potential functions for the edge dislocations can be written as (Afsar 1997)
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Fig. 1 Analytical model of the problem
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+ (3a)

(3b)

where

µ = Shear modulus of rigidity

bx(s), by(s) = Components of dislocation density function

κ = Kolosov’s constant

= 3 − 4ν for plane strain

=  for plane stress.

The stresses inside an isotropic elastic medium can be expressed in terms of the complex potential

functions  and  and their complex conjugates as follows (Muskhelishvili 1975):

(4a)

(4b)

where the prime represents differentiation with respect to z and the over bar represents the complex

conjugate.

Similarly, the stresses for the dislocations representing the mth crack can be given by

(5a)

(5b)
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Fig. 2 Representation of cracks by continuous distribution of edge dislocations of density bx(s) (0 ≥ s ≥ −a)
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where  and  are the complex potential functions for edge dislocations representing

the mth crack. These functions have the same expressions as those of Eq. (3), except that z is

replaced by zm. Finally, the resultant stresses due to the edge dislocations representing all the cracks

are obtained by the method of superposition as follows:

(6a)

(6b)

(6c)

Now, the redistributed stress field in the cracked medium can be determined by adding the stress

components in Eqs. (6) to the stress computed for the uncracked semi-infinite medium. The

redistributed stress field must satisfy the boundary conditions along the traction free crack surfaces,

i.e.,

(7a)

(7b)

The above boundary conditions are written for the central crack. 

Now, using Eqs. (1), (4)-(5), boundary conditions of Eq. (7), potential functions for the edge

dislocations representing the central and the mth cracks, and replacing y by –y, we obtain
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(9b)

(9c)

Eqs. (8a) and (8b) are two singular integral equations and it is seen that there is no coupling

between the burgers vectors bx and by which give the Mode I and Mode II stress intensity factors,

respectively. Since the right side of Eq. (8b) is zero, the burgers vector by induces no stress

intensity, i.e., the Mode II stress intensity factor is zero and hence only Eq. (8a) is treated in the

sequel.

4. Numerical method of solution

Analytical solution of the singular integral equation as given by Eq. (8a) is not possible.

Therefore, a numerical method is adopted to solve the equation. First the singular integral equation

is normalized over the interval [−1, +1] by using the substitutions 

(10a)

(10b)

(10c)

as

(11)
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 (12b)

(12c)

The dislocation density function  can be expressed as the product of a fundamental function

W(t), which characterizes the bounded-singular behavior of , and a bounded continuous

function  in the closed interval [−1, +1]. Thus

(13a)

In the present case, the fundamental function W(t) is given by

(13b)

Using the Gauss-Jacobi integral formula in the manner similar to that developed by Erdogan et al.

(1973), the singular integral equation can be converted to a system of linear algebraic equations to

determine the unknown  as 

(14)

where the integration and collocation points are, respectively, given by (Hills et al. 1996)

(15a)

(15b)

It can be readily shown that the Mode I stress intensity factors can be derived as (Hills et al.

1996)
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(17)

Using Eqs. (14) through (17), stress intensity factors can be calculated for a given applied load and

eigenstrain distribution.

5. Numerical results and discussion

In this section, some numerical results of stress intensity factors are calculated and presented

for various distributions of eigenstrain in the region of finite depth w of the semi-infinite medium.

The distributions of eigenstrain considered are parabolic 1 distribution: , parabolic 2

distribution: , parabolic 3 distribution: , linear distribution: ε* =

, and uniform distribution: . These distributions of eigenstrain are shown in Fig. 3.

Here, it is worthy to mention that although any arbitrary distribution of eigenstrain can be treated,

the above five distributions have been chosen merely as few examples. The uniform distribution of

eigenstrain, shown in Fig. 3, may occur in the coating of a homogeneous material on another

homogeneous substrate as a form of a misfit thermal strain. On the other hand, the non-uniform

distributions considered in Fig. 3 might be encountered in the case of functionally graded material

(FGM) coatings on a substrate of homogeneous material after cooling from sintering temperature. In
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Fig. 3 Distribution of eigenstrains in the region of
finite depth w

Fig. 4 Comparison of stress intensity factors for a
number of periodic edge cracks in a semi-
infinite medium under uniform tension
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the numerical calculation, the number of collocation and integration points n is taken as 100, for

which the values of the stress intensity factors, calculated by setting ε* = 0, agree well with those

obtained by Bowie (1973) and Benthem and Koiter (1973) as shown in Fig. 4. When ε* = 0, the

problem reduces to the semi-infinite medium subjected to applied load only. 

Fig. 5(a) exhibits the stress intensity factors as a function of normalized crack length a/w and

normalized crack spacing d/w. The stress intensity factors are normalized dividing them by the true

value of the stress intensity factor Ke = 1.12152 for a single edge crack in a semi-infinite medium

under a far field uniform load  only. The results of Fig. 5(a) correspond to the parabolic 1

distribution of eigenstrain as shown in Fig. 3. In calculating the stress intensity factor, we define a

σx

0

Fig. 5(a) Normalized stress intensity factors for the
‘Parabolic 1’ distribution of eigenstrain

Fig. 5(b) Normalized stress intensity factors for the
‘Parabolic 2’ distribution of eigenstrain

Fig. 5(c) Normalized stress intensity factors for the
‘Parabolic 3’ distribution of eigenstrain

Fig. 5(d) Normalized stress intensity factors for the
‘Linear’ distribution of eigenstrain
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parameter  in which ε0 is the eigenstrain at y = 0 and E is the Young’s modulus of the

material. The parameter γ, in fact, is the ratio of eigenstress at y = 0 to the applied stress . The

stress intensity factors shown in Fig. 5(a) are obtained for γ = 0.5 and infinite number of periodic

edge cracks, i.e., N = ∞. The eigenstrain is distributed over the region of finite depth w. Therefore,

the crack tip crosses the region of eigenstrain when a/w ≥ 1 showing points of inflection on the

curves of the stress intensity factor. Figs. 5(b) through 5(e) depict the normalized stress intensity

factors for parabolic 2, parabolic 3, linear, and uniform distributions of the eigenstrain, respectively.

The curves of all the figures have the same characteristics except that the stress intensity factors for

the uniform distribution of eigenstrain have quite sharp points of inflection at a/w = 1. Further,

Figs. 5(a) through 5(e) show, for a fixed value of a/w, that the stress intensity factor increases with

the increase of the crack spacing d/w. Increasing value of d/w implies that the cracks are getting

γ Eε
0
/σx

0
=

σx

0

Fig. 5(e) Normalized stress intensity factors for the ‘Uniform’ distribution of eigenstrain

Fig. 6 Comparison of results predicted by the formulations of a single edge crack and periodic edge cracks
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apart from each other, i.e., one crack becomes unaffected by the other and a single crack

phenomenon is attained. This can be better explained from Fig. 6, which shows the results of the

stress intensity factor predicted by the formulations of a single edge crack (Sekine and Afsar 1999)

along with those predicted by the present study. The results correspond to the linear distribution of

eigenstrain, as shown in Fig. 3, and γ = 0.5. It is observed that the curve of the stress intensity

factor for infinite number of periodic edge cracks approaches towards that for the single edge crack

as d/w increases. Thus, it is verified that the present method of calculating stress intensity factors

can be applied to the single edge crack problem by setting a large value of d/w.

Fig. 7(a) illustrates the effect of the distribution of eigenstrain on the stress intensity factors. The

results of the stress intensity factor are plotted for the five different distributions of eigenstrain as

Fig. 7(a) Effect of eigenstrain distribution on the
stress intensity factors (d/w = 0.5)

Fig. 7(b) Effect of eigenstrain distribution on the
stress intensity factors (d/w = 4)

Fig. 7(c) Effect of eigenstrain distribution on the stress intensity factors (d/w = 16)
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shown in Fig. 3. The results correspond to the crack spacing d/w = 0.5, γ = 0.5, N = ∞. The

uniform distribution of eigenstrain is associated with the minimum stress intensity factor while the

parabolic 3 distribution gives the maximum one. The average eigenstrain over the region of finite

depth w is the maximum for the uniform distribution of eigenstrain among all the five distributions.

This, in turn, induces the maximum magnitude of average compressive eigenstress. The

compressive eigenstress has reducing effect on the resultant stress intensity factor. Therefore, the

uniform distribution of eigenstrain gives the minimum stress intensity factor. On the other hand, the

parabolic 3 distribution of eigenstrain has the minimum average value of eigenstrain over the region

of finite depth w. This induces an average compressive eigenstress of the lowest magnitude

attributing the least in the reduction of the resultant stress intensity factor. The other three curves of

the stress intensity factor in Fig. 7(a) fall between the two curves corresponding to the uniform and

parabolic 3 distributions of eigenstrain. This is due to the fact that the average values of these three

distributions of eigenstrain fall between the average values of the uniform and parabolic 3

distributions of eigenstrain. Further, it is noted that, after certain value of the crack length (a/w > 1),

the stress intensity factor converges to the same value for all the distributions of the eigenstrain.

Figs. 7(b) and 7(c) also exhibit the effect of the distribution of eigenstrain on the stress intensity

factors, which are computed for the higher values of the crack spacing d/w. For the higher values of

d/w, two features are observed. First, the point at which the stress intensity factors converge for all

the distribution of eigenstrain moves to the right as the ratio d/w increases. Second, the concave

shape of the curves of the stress intensity factors gradually turns to the convex shape as the ratio d/w

increases. Therefore, it can be stated that, for higher value of crack spacing, most of the distributions

of eigenstrain causes the stress intensity factor to increase with the increase of crack length within

the finite region w.

Shown in Fig. 8(a) are the normalized stress intensity factors as a function of the parameter γ

and normalized crack length a/w. The results correspond to d/w = 0.5, N = ∞, and the linear

Fig. 8(a) Normalized stress intensity factors as a
function of normalized crack length and
the parameter γ for linear distribution of
eigenstrain (d/w = 0.5)

Fig. 8(b) Normalized stress intensity factor as a
function of normalized crack length and
the parameter γ for linear distribution of
eigenstrain (d/w = 8)
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distribution of eigenstrain. The higher value of γ indicates the higher magnitude of the eigenstrain

at y = 0. This implies that the compressive eigenstress at y = 0 has also a higher value. Thus, the

stress intensity factor has a lower value when γ is higher, since the compressive eigenstress

associated with the eigenstrain reduces the stress intensity factor. There is also another important

point to be noted that when γ exceeds unity, crack closure occurs for a certain length of the crack,

i.e., the crack surfaces are in contact and no stress intensity occurs. As an example, the stress

intensity occurs only when a/w exceeds 0.4 for γ = 1.5. Fig. 8(b) shows the similar results

corresponding to d/w = 8. Here, the curves of the stress intensity factors have the convex shape,

which is opposite to that in Fig. 8(a).

In Fig. 9, normalized stress intensity factors are plotted as a function of normalized crack spacing

d/w keeping the value of normalized crack length a/w constant (a/w = 0.5). In the lower range of

crack spacing, the stress intensity factor enhances as the distance d increases. After a certain value

of d, the stress intensity factor becomes constant that indicates that one crack has no effect on the

other, i.e., the single crack phenomenon is attained. This phenomenon has already been discussed

with reference to Fig. 6.

The stress intensity factors as a function of normalized crack length and number of cracks are

displayed in Fig. 10. The results correspond to the linear distribution of eigenstrain and d/w = 0.5, γ

= 0.5. The stress intensity factor is found to be decreased as the number of cracks increases. Fig. 11

portrays the stress intensity factors as a function of the normalized crack spacing and number of

cracks for linear distribution of eigenstrain and a/w = 0.5, γ = 0.5. In this case, it is also observed

that the stress intensity factor decreases as the number of cracks increases. It is noted from the

figure that, for higher value of crack spacing, the stress intensity factor becomes almost independent

of crack number. This phenomenon is observed because the effect of one crack on the other

diminishes as the crack spacing increases, and thus a single crack phenomenon is obtained.

Fig. 10 Normalized stress intensity factor as a
function of normalized crack length and
the number of crack for linear distribution
of eigenstrain

Fig. 9 Normalized stress intensity factor as a
function of normalized crack spacing and
the parameter γ for linear distribution of
eigenstrain
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6. Conclusions

A simple as well as an effective method is developed to analyze stress intensity factors for a

number of periodic edge cracks in a semi-infinite medium subjected to a far field uniform applied

load along with an arbitrary distribution of eigenstrain. The method can be applied to calculate the

stress intensity factors for a single edge crack by using a large value of the distance between the

cracks. From the numerical results, it is noted that the stress intensity factors significantly depend

on the distribution and the magnitude of the eigenstrain. The higher magnitude of average

eigenstrain has higher effect on the stress intensity factors. The positive eigenstrain induces a

compressive eigenstress that reduces the stress intensity factors. This reduction of the stress intensity

factors is attributed to the toughening of the material. Further, the stress intensity factor also

decreases as the number of cracks increases.
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Notation

: Applied stress
: Eigenstress

ε* : Eigenstrain
a : Crack length
d : Distance between the cracks
w : Depth from free surface
x-y : Principal coordinate system
xm-ym : Secondary coordinate system
z : Complex variable (= x + iy)
s : Distance along the crack line
E : Young’s modulus
µ : Shear modulus
κ : Kolosov’s constant
ν : Poisson’s ratio
bx, Bx : Dislocation density functions
Φ, Ψ : Complex potential functions
tq : Integration points
ξr : Collocation points

σ
x

0

σ
x
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γ : Ratio of eigenstress to applied stress
N : Number of cracks
KI : Stress intensity factor




