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Wave passage effect of seismic ground motions on the 
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Abstract. Seismic random responses due to the wave passage effect are extensively investigated by
using the pseudo excitation method (PEM). Two examples are used. The first is very simple but also very
informative, while the second is a realistic suspension bridge. Numerical results show that the seismic
responses vary significantly with wave speed, especially for low velocity or large span. Such variations
are not monotonic, especially for flexible structures. The contributions of the dynamic and quasi-static
components depend heavily on the seismic wave velocity and the natural frequencies of structures. For the
lower natural frequency cases, the dynamic component has significant effects on the dynamic responses of
the structure, whereas the quasi-static component dominates for higher natural frequencies unless the wave
speed is also high. It is concluded that if insufficient data on local seismic wave velocity is available, it is
advisable to select several possible velocity values in the seismic analysis and to choose the most
conservative of the results thus obtained as the basis for design.
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1. Introduction

A rigorous seismic analysis of spatially extended structures should account for the spatial

variability of the ground motion. This results from the complex nature of the earth’s crust, which

causes earthquake motions to vary along the length of extended structures (Harichandran and

Vanmarcke 1986, Loh and Yeh 1988, Kiureghian 1996). Thus seismic responses may significantly

deviate from those based on the simple assumption that the free-field ground motions are spatially

uniform. Moreover, long extended structures are generally important facilities, e.g. long-span

bridges, gymnasiums, dams, or nuclear power plants. Therefore, their aseismatic capabilities are

† Associate Professor, E-mail: zhangyh@dlut.edu.cn
‡ Professor, E-mail: jhlin@dlut.edu.cn
‡† Professor, Corresponding author, E-mail: williamsfw@cf.ac.uk
‡‡ Associate Professor, E-mail: bcqsli@cityu.edu.hk

DOI: http://dx.doi.org/10.12989/sem.2005.20.6.655



656 Y. H. Zhang, J. H. Lin, F. W. Williams and Q. S. Li

highly relevant to public safety and so in the last twenty years much research has gone into

establishing practical seismic analysis and design methods for them (e.g. Werner et al. 1979,

Yamamura and Tanaka 1990, Berrah and Kausel 1992, Kiureghian and Neuenhofer 1992, Heredia-

Zavoni and Vanmarcke 1994, Kiureghian and Neuenhofer 1995, Lee and Penzien 1983, Lin et al.

1990, Tubino et al. 2003, Dumanoglu and Soyluk 2003, Lin et al. 1992, 1997, 2004). Essentially,

three basic methods have been developed, i.e., the time history method, the response spectrum

method and the random vibration method.

The time history method involves solving the equations of motion directly and its chief

disadvantages are that the results obtained rely heavily on the set of time histories selected and that

the analysis requires extensive computational effort, which restricts the possibility of analysis with

alternative sets of records (Werner et al. 1979).

Many researchers have instead used the random vibration method, the chief advantage of which is

that it provides a statistical measure of the response which is not controlled by an arbitrary choice

of the input motions (Lee and Penzien 1983, Lin et al. 1990, Tubino et al. 2003, Dumanoglu and

Soyluk 2003). For example, Lee and Penzien (1983) investigated the seismic response of structures

and piping systems subjected to multiple support excitations in both the time and frequency

domains. Lin et al. (1990) simplified a surface-mounted pipeline as an infinitely long Bernoulli-

Euler beam attached to evenly spaced ground supports, and solved its random seismic responses.

Tubino et al. (2003) provided mathematical and physical interpretations of the effects of partial

correlation of the seismic ground motion on the response of multi-supported multi-DOF systems by

introducing suitable equivalent spectra and by representing the seismic ground motion by the proper

orthogonal decomposition. Dumanoglu and Soyluk (2003) investigated the relative importance of

ground motion variability effects on the dynamic behavior of a plane model of a cable-stayed

bridge. However, none of these methods can deal with very complex structures due to their being

relatively computationally inefficient.

To change this situation, several attempts have been made to develop an extended response

spectrum method for such problems, as an approximation to the random vibration method, based on

the classical response spectrum method (Yamamura and Tanaka 1990, Berrah and Kausel 1992,

Kiureghian and Neuenhofer 1992, Heredia-Zavoni and Vanmarcke 1994). For computational

simplicity, these methods usually ignore some important factors. For example, the support motions

have been grouped into independent subgroups with perfect correlation between the members of

each subgroup (Yamamura and Tanaka 1990), while alternatively, a modified spectrum method has

been developed for the design of extended structures which considers the spatial variability effect

arising from the incoherence alone (Berrah and Kausel 1992). A much refined method was

suggested by Kiureghian and Neuenhofer (1992), but because they present the dynamic component

of the response in the form of a fourfold summation, the computational effort required for complex

structures is very large, especially when a large number of modes must be included in the analysis.

Heredia-Zavoni and Vanmarcke (1994) reduced this formulation to a threefold summation, but the

resulting precision still needs further investigation (Kiureghian and Neuenhofer 1995).

In the present paper, an efficient and strictly random vibration method, called the pseudo

excitation method (PEM) (Lin et al. 1992, 1997, 2004), is used to investigate the influence of the

wave passage effect of ground motion on the seismic responses of extended structures. In order to

focus attention on the spatial variation effects, transient dynamic phenomena that may prejudice or

compromise a simple interpretation of the most relevant physical and analytical aspects are ignored

and the ground motion is modelled as a stationary multi-variate, one-dimensional random process.
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The wave passage effect is investigated extensively in preference to the incoherence effect, because

it has been shown, in most cases, to have greater influence on the seismic response of long-span

cable-stayed bridges (Lin et al. 2004). Additionally, computation with the wave passage effect is

much simpler and much more easily accepted by engineers. Therefore, in this paper we have paid

more attention to the engineering application of the wave passage effect.

In the stationary random analysis of PEM, the determination of random response of a structure is

converted into the determination of the response of the structure to a series of harmonic loads, i.e.,

so-called pseudo excitations. Advantages of this method are that less computation effort is required

and that the cross-correlations both between normal modes and between excitations are

automatically included. The theory used is not original to this paper, but it is relatively new and so

for completeness of the paper it is summarised with adequate detail in the next two sections. The

results then follow. They are original and are used to draw many general and useful conclusions.

The first set of results presented is for the internal forces of a single-degree-of-freedom system with

two elastic supports and consists of the expected maximum response values for different apparent

wave velocities and natural frequencies, with the latter progressively altered by changing the elastic

support stiffness. In addition, the relative importance of the influences of the quasi-static and

dynamic response components is discussed. Then, a realistic long-span suspension bridge is

analyzed with different apparent wave velocities, to enable the influence of the wave passage effect

to be further discussed.

2. Model of random field considering wave passage effect

The seismic ground motion is assumed to be a normal stationary random process. If a structure

has N supports, the cross power spectral density function of the ground accelerations  and

 at the kth and lth supports can be written as

(1)

in which: ω is the circular frequency;

(2)

is the coherency function of the accelerations at the kth and lth supports; Skk(ω) and Sll(ω) are the

power spectral density functions of the accelerations at the kth and lth supports, which represent the

local effect, and; exp[iθkl(ω)] represents the wave passage effect (neglecting the local site effect),

which can be written as

(3)

Here:  is the projection in the earthquake propagation direction of the distance dkl between the

two supports, and; vapp is the apparent earthquake wave velocity. Suppose that the wave front

reaches the origin of the coordinate system, i.e., the reference point, at T = 0, and then reaches the

ground joints at times T1, T2, …, TN, respectively. Without losing generality, we can assume ,

thus

u··k t( )
u·· l t( )

Skl ω( ) γkl ω( ) Skk ω( )Sl l ω( )=

γkl iω( ) ρkl iω( )exp iθkl ω( )[ ], ρkl iω( ) 1≤=

exp iθkl ω( )[ ] exp iωdkl

L
/vapp–[ ]=

dkl

L

Tl Tk≥
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(4)

and

(5)

The ground motion accelerations of all the supports can be written as the N dimensional vector

(where superscript T denotes transpose)

(6)

and their statistical characteristics can be expressed by the power spectral density matrix

(7)

When only the wave passage effect is considered, , and .

Thus, Eq. (7) can be written as (where superscript * denotes conjugate)

(8)

in which 

(9)

3. Pseudo excitation method considering wave passage effect

For the structure with N supports, the equations of motion can be written in the matrix form

(10)

in which: uG is the m-dimensional vector of enforced support displacement components, e.g., so that

m = 3N; u is an n-dimensional vector containing all nodal displacements except those at the

supports; FG represents the enforced forces at all supports; the n × n matrices M, C and K are

respectively the mass, damping and stiffness matrices associated with u; the m × m matrices MG, CG

and KG are the mass, damping and stiffness matrices associated with uG and; MC, CC and KC are the

n × m coupling matrices shown. Note that when the lumped mass matrix approximation is adopted,

MC is null. In order to solve Eq. (10), u is decomposed into the two parts
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(11)

where us and ud are respectively the quasi-static and dynamic displacement vectors, which satisfy

the equations

(12)

(13)

Seismic waves can be divided into body waves and surface waves. Body waves include the

longitudinal waves (alternatively called the pressure, primary or P waves) and the transverse waves,

which are alternatively called the shear, secondary or S waves. Surface waves include Rayleigh

waves and Love waves. For P waves, the soil particles move parallel to the travelling direction of

waves, whereas for S waves they move normal to this direction. For horizontal shear waves i.e., SH

waves, all particles move horizontally and for vertical shear waves, i.e., SV waves, they all move

vertically.

Assume that xyz is a right-hand co-ordinate system for which both the x and y axes lie in the

horizontal plane. The anti-clockwise angle between the x axis and the horizontal travelling direction

of waves is β. Thus, the acceleration components along the coordinate axes, , can be expressed

in terms of the components parallel or normal to the wave traveling direction, , as

(14)

in which EmN is an m × N block-diagonal matrix.

(15)

Hence when all three translations and no rotational components are considered for each support,

m = 3N and each sub-matrix Ei becomes [cosβ  sinβ  0]T, [−sinβ  cosβ  0]T and [0  0  1]T for the P,

SH and SV waves, respectively.

Using Eq. (14), Eqs. (12) and (13) can be rewritten as

(16)

(17)

Let any general response quantities of interest be denoted by z(t), which could therefore be a

nodal displacement vector, an internal force vector, a stress vector or a strain vector. Then for a

linear system z(t) can be expressed as a linear function of the nodal and support displacements, i.e.,

(18)

where TT and  are transfer matrices which usually depend on the geometry and stiffness

properties of the structural system. The dynamic displacement vector can then be written in the

convolution integral form
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(19)

in which, h(τ) is the impulse response function matrix. Thus, using Eqs. (14), (16) and (19), Eq. (18)

becomes

(20)

Then the power spectrum density matrix of z(t) can be obtained as

(21)

 

   

in which H(ω) is the frequency response function matrix of the structure and is given by

(22)

The four terms summed to give the first equality of Eq. (21) can be grouped into three parts.

These are: the first term corresponds to the contribution of the dynamic component; the fourth term

corresponds the contribution of the quasi-static component and; the sum of the second and the third

terms represents the contribution of their cross-correlation.

Substituting Eq. (8) into Eq. (21), the power spectrum density matrix of z(t) is expressed by

(23)

where

(24)
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after which solving the deterministic equation

(26)

gives the pseudo dynamic displacement vector  as

(27)

Then, the pseudo quasi-static displacement vector is easily obtained by solving the linear algebraic

equation

(28)

which can be written in the form

(29)

and the pseudo displacement components of support motion along the coordinate axes 

(30)

Therefore, the pseudo response  can be expressed as

(31)

Comparing Eq. (31) with Eqs. (23) and (24), it is not difficult to obtain the relationship

(32)

The required spectral moments of the responses can then be obtained, and so the extreme values can

be estimated (Davenport 1961).

The above has summarised the key details of pseudo excitation method associated with multi-

support seismic analysis, i.e., the method used to obtain the results which follow. It is clear that no

approximation has been introduced into the derivation of the pseudo excitation method in order to

compute various kinds of power spectrum density functions. Because the harmonic analysis function

is available in almost all FEM programs, it is very simple to compute the auto- and cross-PSDs, e.g.

for displacements, internal forces and strains, etc.

4. Numerical examples

Two examples are presented. The first one is very simple and is used because it enables wide

ranging general conclusions to be drawn with minimum demands on the reader. It also allows the

natural frequencies to be altered very easily, which cannot be done so easily for more realistic
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problems. The second example is a realistic problem and shows the power of the PEM method used

as well as leading to further general conclusions.

Example 1 A single degree of freedom system with support excitations at each end is shown in

Fig. 1. The mass is m, the stiffness is k, the damping coefficient is c and the distance between the

two supports is L. The seismic wave motion is in the direction of the x axis and its velocity is v.

Firstly, the power spectral density of the internal force of the left-hand spring is derived

analytically by PEM, giving

(33)

where

(34)

(35)

(36)

represent, respectively, the contributions of the dynamic displacements, the quasi-static

displacements and the contribution of their coupling. Here:  and; T = L/v.

In the computation that follows, m = 1.0, ξ = 0.05, and the Penzien spectrum

(37)

is used (Clough and Penzien 1993). The spectrum parameters used were: ωg = 15.0 rad/s; ξg = 0.6;

ωf = 1.5 rad/s; ξf = 0.6 and; S0 = 0.00177 m2s−3 (Dumanoglu and Soyluk 2003).
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Fig. 1 A single degree of freedom system with two support excitations
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Given the power spectral density functions, the internal force spectral moments of the left-hand

spring, N1, and its extreme can be easily computed (Davenport 1961). Let  be the expectedN1

Fig. 2 Variations of internal forces with wave speed for different natural angular frequencies ω
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extreme value of N1, which consists of the three parts, ,  and , which respectively

represent the contribution of the dynamic displacements, the quasi-static displacements and their

coupling. Different values of the stiffness of the two springs were adopted to investigate the wave

passage effect. This gave the variation of ,  and  with velocity, or v/L, shown in Fig. 2.

(The contribution of the coupling part, , is very small compared with the contributions of 

and  and so for clarity it is not given in Fig. 2, because it can be deduced as .)

It can be seen that:

(1) The seismic responses vary significantly with wave speed, especially when v/L is very small,

i.e., for low velocity or large span. In general, these results and those for more complex problems,

e.g. Example 2 below, show that such variations are not monotonic, especially for flexible

structures.

(2) The contributions of the dynamic and quasi-static components depend heavily on the seismic

wave velocity and the natural frequencies of structures. For the lower natural frequencies, i.e., more

flexible structures, the dynamic component has significant effects on the dynamic responses of the

structure, whereas the quasi-static component dominates for higher natural frequencies unless the

wave speed is also high.

(3) For large values of v/L,  increases monotonically as v/L increases, while  decreases

monotonically and approaches zero as .

(4) When the system’s natural frequency is small, i.e., the structure is flexible, the internal force

responses obtained by neglecting the wave passage effect (i.e., by assuming ) err on the

safe side, but for the cases with larger natural frequencies they give extremely unsafe predictions of

the response for low wave speeds.

Example 2 Consider the suspension bridge shown in Fig. 3, which is 330 m long, 26.5 m wide,

has a main span of length 160 m and towers of height 42 m. Although small, this bridge is similar

to one recently built on a sensitive site because of its architectural merit. The finite element model

used had: 369 nodes, including 12 support ones; 484 elements and; 972 degrees of freedom. As
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Fig. 3 Finite element model of a suspension bridge
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Fig. 3 indicates, the bridge deck was modelled as a three-dimensional beam with appropriate

rigidities and with rigid arms which connected it to the bottoms of the hangers. Timoshenko theory

was used for this beam. Three-dimensional Timoshenko beam elements were also used to model the

two columns and both beams of each bridge tower, see Fig. 4, but with rigid arms of length 1 m

used to represent the haunches at the ends of the beams. The geometric nonlinearity due to the large

deformation of the cables was allowed for when determining the initial shape of the bridge and

three-dimensional taut string theory for extensible straight members was used to model both the

hangers and the cable portions between the attachment points of adjacent hangers. The total masses

of the deck, towers, piers, cables and hangers were, respectively, 2.17 × 107, 4.532 × 106, 6.874 × 106,

1.464 × 106 and 1.075 × 105kg. Other properties of the model are listed in Table 1.

Fig. 4 Configuration of the tower. The deck rests on beam 2.

Table 1 Properties of the model of the suspension bridge

Member EIi (Nm2) EIo (Nm2) GJ (Nm2) EA (N) µ (kg/m)

tower

1 1.71 × 1011 1.79 × 1011 2.26 × 1010 1.73 × 1011 12375.0

2 1.71 × 1011 1.79 × 1011 2.26 × 1010 1.73 × 1011 12375.0

3 1.14 × 1011 1.14 × 1011 8.24 × 1010 2.19 × 1011 15625.0

4 1.14 × 1011 1.14 × 1011 8.24 × 1010 2.19 × 1011 15625.0

5 4.38 × 1011 4.38 × 1011 3.40 × 1011 4.29 × 1011 30625.0

6 4.38 × 1011 4.38 × 1011 3.40 × 1011 4.29 × 1011 30625.0

deck 4.81 × 1010 1.31 × 1013 8.25 × 1010 5.78 × 1011 41250.0

cables - - - 2.826 × 1010 2241.2

hangers - - - 1.769 × 1090 73.1

Key: EIi = rigidity for flexure in the xz(yz) plane of the deck (tower);
EIo = rigidity for flexure in the plane perpendicular to that of EIi;
GJ = torsional rigidity;
EA = extensional rigidity and;
µ = mass per unit length
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The first 50 modes were used in the mode superposition analysis and Table 2 lists the first 15

natural frequencies and gives an indication of their mode shapes. Hence the circular frequencies of

the bridge were 4.234 rad/s (i.e., the basic period was 1.48 s) for the fundamental vertical mode,

8.811 rad/s for the fundamental torsional mode and 9.876 rad/s for the fundamental horizontal

mode. 

The seismic spatial effects for P waves, SH waves and SV waves travelling in the longitudinal

direction of the bridge were investigated and the critical damping ratio was assumed to be 0.02 for

each mode. The Penzien spectrum model was again adopted and the values used for the parameters

were identical to those used in Example 1. The seismic analysis was executed for 53 apparent wave

speeds ranging from 300 to 6000 m/s. This range was chosen to give added interest to the results by

covering a wide spectrum of apparent wave speeds, although this bridge has relatively stiff soil for

which the range 1,000-5,000 m/s is most relevant. Figs. 5 and 6 give the shear forces and moments

obtained at supports 1, 2, 3 and 4 of Fig. 3. Supports 1, 2, 3, and 4 were chosen because, for P

waves, they are the most critical part of the bridge. It can be seen that the wave velocities have

significant influence on the seismic responses, especially for lower wave velocities. When the wave

speed is low, e.g. 300 m/s, the seismic internal forces may exceed twice those due to uniform

ground motion, which corresponds to infinite wave speed. It can also be seen from Figs. 5 and 6

that the bridge responses might decrease or increase depending on the location of the structural

points and the response quantity of interest. This point of view is identical to that obtained by

Hawwari (1992) in a study of a more flexible suspension bridge model. Moreover, the shear forces

and moments at the four supports obtained by neglecting the wave passage effect may give

extremely unsafe predictions of the response, though the bridge is flexible (the fundamental natural

frequency is 4.234 rad/s). This seems inconsistent with point 4 of Example 1. The reason is that the

fundamental natural frequency is usually not the only main participating natural frequency that will

affect the structural responses severely. This can be seen from the corresponding PSD curves

described below.

Table 2 The first 15 natural frequencies (in rad/s) and mode shapes of the suspension bridge

Mode Frequency Type nh Mode Frequency Type nh

1 4.234 V 1p 9 12.157 T 2p

2 5.860 V 2p 10 14.360 V 4t

3 7.994 V 3p 11 14.419 L 6p

4 8.644 V 4p 12 14.992 V 7p

5 8.811 T 1p 13 15.296 H 2t

6 9.180 V 5p 14 15.392 H 3t

7 9.876 H 1t 15 15.916 L 8p

8 11.178 V 3t

Key: V = vertical mode, with deck and cables moving in phase;
T = torsional mode, i.e., deck twists and cables move vertically but out of phase;
H = sway mode, with deck and cables moving in phase;
L = longitudinal mode, with considerable out-of-plane tower flexure;
nh = number of half waves mode has between the piers (p) or towers (t)
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For a P wave, the PSD curves of the shear force at support 2 in the x direction are shown in

Fig. 7(a), and the corresponding PSD curves of the bending moment in the xz plane are shown in

Fig. 7(b). Clearly, when the wave velocity is infinite, the PSD curves have two peaks near 14.419

Fig. 5 Variation of the shear forces at supports 1-4 due to different wave velocities. The support number and
wave type are shown within each graph, for which the vertical axis gives the shear force (SF) and the
horizontal axis gives the wave velocity.
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rad/s and 15.916 rad/s, which are the first and the second longitudinal natural frequencies of the

structure. For the wave velocity of 1000 m/s, there is also an additional peak at about 1.5 rad/s,

which is the first filter frequency ωf of the ground motion and is much lower than the fundamental

Fig. 6 Variation of the moments at supports 1-4 due to different wave velocities. The support number and
wave type are shown within each graph, for which the vertical axis gives the moment (M) and the
horizontal axis gives the wave velocity.
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frequency of the bridge. This peak reflects the influence of quasi-static displacements. Thus it can

be seen that at the lower wave velocity of 500 m/s the amplitudes of these three peaks varied very

considerably, which reflects similar influences of wave speed on the dynamic and quasi-static

displacements as those observed above for Example 1. It is to be expected that the PSD plots

corresponding to SH and SV waves would have peaks close to, respectively, the H and V modes of

Table 2, i.e., close to 9.876 rad/s for the SH waves and, for the SV waves, close to 4.234, 5.860,

7.994, 8.644, 9.180, 11.178, 14.360 and 14.992 rad/s. Fig. 8 confirms this prediction. However, in

these two cases, the contributions of quasi-static displacements are not as significant as those in

Fig. 7.

When designing a complex structure, it is usually difficult to judge the main participating natural

frequencies that will affect the structural responses severely. Moreover, the seismic wave velocity

may vary significantly with different circumstances. Therefore, for practical designs, if data on the

local seismic wave velocity is unavailable or insufficient, it is advisable to select several possible

velocity values in the seismic analysis and then to use the most conservative results for design. This

can be done very conveniently when using PEM.

Fig. 7 Power spectral density of the shear force and moment at support 2 due to a P wave
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5. Conclusions

In the present paper, the seismic random responses due to the wave passage effect have been

extensively numerically investigated, based on PEM. The results have shown that the wave passage

effect has a significant influence on structural responses. In particular, the internal force responses

have been shown to vary significantly with the apparent wave velocity, especially when the wave

velocity is rather low or the span is very long. Such variations do not vary monotonically, especially

for flexible structures. The quasi-static and the dynamic components both depend heavily on the

seismic wave velocity and the natural frequencies of the structure. A simple example has shown that

the dynamic component has a very significant effect on the dynamic responses of structures with

low natural frequencies, whereas the quasi-static component dominates for structures with higher

frequencies unless the wave speed is also high.

For complex structures, it is usually difficult to judge the main participating natural frequencies

that will affect the structural responses severely. In addition, the seismic wave velocity may vary

significantly with different circumstances, and the results presented for a suspension bridge show

Fig. 8 Power spectral density at support 2 for the shear force due to an SH wave and the moment caused by
an SV wave
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that the response varies considerably with wave speed. Therefore unless relatively precise data is

available, it may be advisable for designers to select a range of possible velocities and to base their

design on the most conservative result thus obtained. Because of the high speed of PEM, this is not

unduly time consuming, e.g. the computations for the suspension bridge of Example 2 took less

than one minute per apparent wave speed selected when using a Pentium-3 personal computer with

main frequency 900 MHz and a memory of 256 M.
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