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Abstract. Using the nonlinear load transfer function for pile side soil and the linear load transfer
function for pile end soil, a combined approach of the incremental load transfer matrix method and the
approximate differential equation solution method is presented for the nonlinear analysis of interaction
between flexible pile group and soil. The proposed method provides an effective approach for the solution
of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To
verify the accuracy of the proposed method, a static load test for a nine–pile group under a rigid platform
is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the
results from the proposed method match very well with those from the experimental test and are better in
comparison with the finite element method. 
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1. Introduction

Composite pile foundation, also known as small settlement pile foundation, is a kind of

transition between natural and pile foundation. The most often seen flexible piles in composite

foundations are: soil pile, ash-soil pile, lime pile, cement coal-ash granular pile, etc. As

composite foundations are widely used in engineering practice, a question of how to determine
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the load carrying capacity and the settlement of the composite foundation become one of the

most important problems in geotechnical engineering. In-situ static load test is considered as the

most reliable method. However, the characteristics of composite foundations are that the pile and

its surrounding soil both take load; therefore, relatively large area of loaded test is needed to get

desired results. Large load test is relatively more expensive. Therefore, it is desirable to search

for simple and satisfactory computational approaches that meet engineering accuracy. It is well

known that, under foundation load, the loads carried by each flexible pile are different (Canetta

and Nove 1989, Hooper 1973. Poulos and Davis 1980). How to determine the distribution of load

for each pile and its surrounding soil under the foundation and the transfer rule for each pile are

important research topics in the field of soft foundation engineering. Presently, the finite element

method is the most commonly used method in the analysis of this type of composite foundation.

In general, there are two types of finite element methods used in this field: the first one is the

traditional “group pile” finite element method (Canetta and Nove 1989, Haddadin 1971, Balaam

et al. 1977). This method requires separate elements for a pile and its surrounding soil in the

reinforced area. Meanwhile, in order to simulate the pile-soil interaction between their

boundaries, one can put a contact element at the interface. The advantage of this method is that it

can analyze the loading mechanism of the soft foundation reinforced by flexible piles. However,

for large-scale soft foundation reinforced by pile group, because of huge degrees of freedom

involved, the calculation becomes very complicated and time consuming. The second method is

the composite constitutional finite element method (Randolph and Worth 1978). This method

regards the reinforced area as an inhomogeneous composite material made of piles and their

surrounding soil, then the constitutional equations that govern the whole soft foundation

reinforced by the flexible piles can be established. Finally, the finite element method is used to

solve the equations. This method divides the foundation into discrete elements without

consideration of the existence of the piles, therefore, the method can not take into account the

interaction between the piles and their surrounding soil.

Juran and Riccobono (1991) concluded through experiment that the load transfer mechanism of a

single pile is quite different under side load condition. They also stated that because the

development of the load capacity of the soil between piles, the piles under composite foundations

behave differently from a single free pile. Other researchers using Geddes stress coefficient studied

the interaction between the pile box (mat) foundation and the surrounding soil according to the

compatibility of the displacement of the pile and soil (Randolph and Worth 1979).

Because the load transfer method can reflect the nonlinear characteristics of the pile side soil

relatively well (Liu et al. 2004), a case where nine piles under a stiff platform will be considered

herein and the load transfer method will be used to analyze the nonlinear interaction between the

piles and soil. For pile side soil, nonlinear load transfer function will be used. And for pile end soil,

linear load transfer function will be adopted. This paper for the first time presents a combined

approach of the incremental load transfer matrix method and the approximate differential equation

solution method for the analysis of the title problem. To verify the accuracy of the proposed

method, a static load test is carried out for a nine-pile group under a rigid platform. The finite

element analysis is also conducted for comparison purposes. It is found that the results from the

proposed method match very well with the data from the test and are in closer agreement with the

measurements than those from the finite element method. 
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2. Pile side load transfer function and basic assumptions

2.1 Load transfer function

The skin friction (shear stress) at the shear surface between the pile and pile side soil can be

described by the hyperbolic curve model as follows (Juran and Riccobono 1991, Xiao et al. 2002,

2003):

 (1)

where w(z) is the relative displacement at the shear surface, a0 and b0 are the parameters of the load

transfer of the pile side soil.

Differentiating Eq. (1) can obtain the shear stiffness of the shear surface:

(2)

2.2 Basic assumptions

To study the interaction between pile #1, 2 and 3, zones I, II and III are divided and shown in

Fig. 1. From the load and geometric symmetry, it is observed that the shear stress on the boundary

of zone I is equal to zero (Alamgir et al. 1996). Also, the shear stresses on boundary BE, BC, FC,

HC for zones II and III are neglected. Considering the nonlinear behavior of the load transfer and

the shear stiffness k(z) change with z, each pile and the corresponding pile side soil are divided into

N sections. In each section the local coordinate is established as zmi (i = 1, 2, …, N; m = 1, 2, 3),

τ z( ) w z( )
a0 b0w z( )+

-----------------------------=

k z( )
a0

a0 b0w z( )+[ ]2
-----------------------------------=

Fig. 1 (a) System of the pile-soil, (b)(c) Stresses acting on element of pile and soil, respectively



578 Jie Liu, Q. S. Li and Zhe Wu

where m represents the number of pile. hmi is the length of the i-th pile (i = 1, 2, …, N). Also, the

total load is the summation of the load increment acting on each subject, i.e., 

.

1) Neglecting the radial displacement of the pile side soil and the vertical displacement of soil

outside the foundation; assuming the axial deformations of the pile and pile side soil are

uniform.

2) Assuming the foundation is rigid, i.e., the vertical displacements at the bottom of the

foundation are identical for each pile.

3) Assuming the relationships between the friction increment caused by various load increments

for each section of the pile and its side soil and the relative displacement increment at the shear

surface are linear, i.e., 

(3)

(4)

where  are respectively the increments of friction on the i-th pile section and

its surrounding soil induced by the j-th level load at the m-th pile.  are

respectively the increments of axial displacement on the i-th pile section and its surrounding soil

induced by the j-th level load at the m-th pile. kpmi and ksmi are respectively the shear stiffness (kN/

m3) between the i-th pile and its surrounding soil, and the shear stiffness of the soil for the m-th pile

under the j-th level of load. In the increment method of nonlinear analysis, usually they are

substituted with the shear stiffness under the ( j − 1)th load increment; its value is obtained from the

total relative displacement of both sides of the shear surface using Eq. (2). In this paper, the

following two formulas are used to obtain kpmi and ksmi under the j-th load increment.

For pile side:  (5)

Outside the boundary of the subject of the study: (6)

where a0, b0, a1 and b1 are the parameters of the transfer function of the pile surrounding soil. 

where  and  are the axial displacement increments of the m-th pile induced by

the j-th load increment at the bottom of the i-th section of the pile and its surrounding soil,

respectively.

4) The resistance forces at the pile end and its surrounding soil are assumed to follow the linear

models, 
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(7a)

(7b)

where kb is the stiffness of compression of the soil at the pile end. sb is the displacement at the pile

end, and ss is the displacement of the pile surrounding soil at the pile end.

3. Nonlinear analysis of the interaction between piles and soil

3.1 The interaction between number 1 pile and soil

The pile-soil system depicted in area I is selected as the study object. If the load increment 

is added to the object, then in the i-th segment of the pile at cross-section z1i the increment of the

internal force  will be induced. Considering the differential segment dz1i of the i-th

segment, as shown in Fig. 1(b), using the Hook’s law and the equilibrium condition, the differential

equation is:

(8) 

(9)

where Ep is the elastic modulus of the pile and r1 is the radius of the pile.

The same analysis can be applied to the soil around the pile. The increment of the internal force

 is induced by the increment load, the governing differential equation for the surrounding

soil shown in Fig. 1(c) is,

(10)

(11)

where ; Es is the deformation modulus of the surrounding soil; the

definitions of a and b are given in Fig. 1.

Combining Eqs. (8) and (10), one obtains

(12)

where .

Solving Eq. (12), we obtain,

(13)

where   is undetermined coefficient.
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Substituting Eq. (13) into Eq. (10), we have,

(14)

where  is undetermined coefficient.

From the differential equation theory it can be seen that Eq. (8) cannot be solved exactly by

Eqs. (13) and (14). Therefore, an approximation method, the sub-domain method is used herein to

solve Eq. (8). Eqs. (13) and (14) satisfy the following two integral equations, then they will satisfy

Eq. (8) approximately.

(15)

(16)

Substituting Eqs. (13) and (14) into Eqs. (15) and (16), we have,

(17)

(18)

where ;

;

;

;

Substituting Eqs. (13) and (14) into Eqs. (9) and (11), we obtain the increment of the axial forces

 and .

3.2 Pile-soil interaction of number 2 and 3 piles

Using the same approach as that presented in section 3.1, we obtain the axial displacement

increments of the pile number 2 and its surrounding soil.
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(21)

(22)

where  is undetermined coefficient.

;

;

;

;

;

;

(k = 1, 2; i = 1, 2, …, N)

Using the Hook’s law and Eqs. (19) and (20), the increments of the axial force on the i-th

segment and its surrounding soil of the number 2 pile,  and , can be found.

Substituting the subscript 2 with 3, the increments of the axial displacement ,

 and the increments of the axial force ,  on the i-th segment of the

number 3 pile and its surrounding soil can be found.

The axial displacement increments and force increments can be written in the following matrix

form,

(23)
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Substituting the subscript 2 with 3 in  is obtained.

where ;

;

;

;

;

The boundary conditions of the i-th segment and its surrounding soil are,

(24)

where  and  are respectively the displacement increment and the axial force

increment of the m-th pile at the i-th segment under the j-th load increment. r2 and r3 are the radius

of the piles 2 and 3, respectively.  and  are respectively the displacement

increment and the axial force increment of the surrounding soils of the m-th pile at the i-th segment

under the j-th load increment.

Substituting Eq. (24) into Eq. (23), we have,
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where  are the state increment vector of the m-th pile at the i-th segment

under the j-th load increment.

Substituting Eq. (25) into Eq. (23), we have,

(26)

where ;

;

The continuity condition for each segment is,

(27)

where  is the state increment vector of the (i+1)-th segment under the j-th load increment

at the bottom of the pile and its surrounding soil.  is the state increment vector of

the i-th segment under the j-th load increment at the top of the pile and its surrounding soil.

From Eqs. (26) and (27), we have,

 (28)

where ;

;

 (m=1, 2, 3);

 (m = 1, 2, 3)

 and  are respectively the settlement increments of the m-th pile under the i-th load

increment.  and  are respectively the load increments at the top of the m-th pile under

the j-th load increment.  and  are the displacement increments at the bottom of the m-th

pile and its surrounding soil under the j-th load increment; Abm and Asm are the cross section areas of

the m-th pile and the surrounding soil, respectively.
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From Eqs. (26) and (27), the total displacement and internal force can be obtained as follows,

(29)

From Eq. (28), the load distributed to each pile and its surrounding soil Ppm and Ptm and the

settlement at the top of the pile and its surrounding soil spm and stm under the j-th load can be

obtained,

(30)

The proposed method can be used to determine the load-settlement curves for each pile and its

surrounding soil under any platform load. Also it can be used to obtain the relationship between the

cross-section axial force and the skin friction changing with depth.

4. Experimental and computational results

4.1 Experiment condition and content

Soil was uniformly distributed at the site for each case considered herein. Underground water

depth was below 4.5 m. The soil was powder clay. Its physical coefficients were dry density

γd = 14.6 kN/m3, and liquidation limit wL = 30%, plastic index Ip = 118.%%, natural water content
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Fig. 2 Static load test of pile cap
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w = 20%, natural density γ = 17.5 kN/m3. The on-site experiment conducted included rigid platform

test (nine piles under the platform, as shown in Fig. 2) and foundation soil load test. A rectangular

rigid plate L1 × L2 = 3.0 × 3.0 m was used for generating the loading. The flexible piles were a type

of condensed cement-soil pile with 20% cement. From the experiment it was found that its 14 day

compress strength with no lateral force qu = 4.6 MPa, and Young’s modulus Ep = 365 MPa. The

manually dug and compacted pile was 3.50 m long with 0.35 m in diameter. The spacing between

piles was 1.05 m. The center of the side pile to the edge of the platform was 0.45 m. At the axis of

number 1, 2 and 3 piles, plastic pipes with diameter 3.0 cm were buried. The wall of the pipes was

attached with strain gages. They located at 0.0 m, 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m and

3.5 m from the top of the piles (as shown in Fig. 2).

4.2 Results from the finite element analysis and the proposed method

In order to examine the accuracy of the proposed method, both experimental measurements and

the finite element analysis were conducted to find the distribution of the pile friction along the

length of the pile. When the finite element method was used, the calculation area was selected

according to the previous studies (Schweigher and Pande 1986, Butterfield and Banerjee 1971).

Also the load exerted on the loading plate was equivalent to the uniform load. The linear elastic or

the Duncan hyperbolic curve model was used as the constitution model of the soil. The Young’s

modulus of the soil Es was obtained from the soil load test and was found to be Es = 3.67 MPa; the

Poisson ratio was selected as 0.3. The Young’s modulus of the plate was 2.06 × 105 MPa; the

Poisson ratio of the pile and the plate was selected as 0.2. For Duncan hyperbolic curve model, the

coefficients were c = 16.0 kPa and ϕ = 24o. Other parameters included: elastic modulus number

K = 150, unloading modulus number Kur = 368, elastic modulus index n = 0.35, ratio of destruction

Rf = 0.85, experiment constants of Duncan hyperbolic curve model were G = 0.238, F = 0.15 and

d = 3.16. Using the proposed method, a pile and its surrounding soil were divided into 7 segments.

The parameters of the transfer function of the pile surrounding soil were: kb = 1.35 × 104 kPa/m,

a0 = 1.04 × 10−4 m/kPa, b0 = 4.95 × 10−2 kPa−1, a1 = 1.174 × 10−4 m/kPa, b1 = 5.0 × 10−2 kPa−1. Fig. 3

shows the results obtained from the proposed method and from the on-site test, when the load

exerted on the pile cap was P0 = 880 kN. It can be seen that: the most intense changes in the axial

force occurred in the number 3 pile along the pile length, while the slowest changes occurred in the

Fig. 3 Distribution of the axial force in pile section
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number 1 pile. This means that the pile friction is the largest for the number 3 pile and smallest for

the number 1 pile. Also, it can be seen that the reaction on the top of the number 3 pile is the

largest; the number 2 pile is the second; and the number 1 pile is the smallest. The ratios of these

reactions are pile 1: pile 2: pile 3 = 1: 1.62: 1.88. Fig. 4 shows the results from the proposed

method and Duncan hyperbolic curve model for P0 = 880 kN. It can be seen that the pile friction is

the largest for the number 3 pile, the number 2 pile is next and the number 1 pile is the smallest.

Fig. 5 presents the results obtained by the proposed method is the closest to the experimental data,

thus verifying the accuracy of the proposed mothod. 

5. Conclusions

1. Using the nonlinear load transfer function for pile side soil and the linear load transfer function

for pile end soil, a combined approach of the incremental load transfer matrix method and the

approximate differential equation solution method was presented in this paper for nonlinear

analysis of the interaction between flexible pile group and soil. 

2. It was found that the distribution of pile friction was different for piles at different locations

Fig. 4 Distribution of the skin friction along pile

Fig. 5 Load-settlement curve of the piles cap
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under the rigid platform. The friction and the reaction in the corner of a pile is the largest, on

the side is next and in the middle is the smallest.

3. The proposed method provides a new approach for the solution of the nonlinear interaction

between flexible pile group and soil. The numerical example shows that the results determined

from the proposed method match quite well with the experimental data and are in closer

agreement with the measurements than those obtained from the finite element method, thus

illustrating the proposed method is accurate and efficient. 
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