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Abstract. In this paper, the finite element method is applied to investigate the effect of the lateral
boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are
presented and discussed, and several parameters are identified to be important for conducting soil-structure
interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness
H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the
computational accuracy. The dimensionless parameter L/H is the most significant one among the
influencing factors. In other words, a greater depth of soil layer near the foundation should be considered
in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear
relationship approximately. It is also found that the wave propagation velocity in soil layer affects the
numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave
propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber
ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect
on the soil-structure interaction experiments on shaking table. The experimental precision can be improved
by reasonably choosing the elastic parameter and width of the rubber ring.
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1. Introduction

The soil-structure interaction in earthquake engineering has been studied extensively over the last

three decades. The key problem related to soil-structure interaction is how to deal with the infinite

half space of soil medium. Because the analytical or semi-analytical solutions for soil-structure

interaction based on the wave theory is very limited, numerical methods combining the finite

element method with the infinite element method or the infinite mapping technique with various

virtual boundary conditions have been developed for solving various kinds of complicated soil-

structure interaction problems (Liu et al. 2004, Dominguez 1978, Lysmer and Kulemeyer 1969,

Liao 1987, Zhang 1991, Lou and Liu 1986, Lou et al. 2000). Genes and Kocak (2002) studied the

large-scale soil-structure interaction system by the finite element method with the scaled boundary-

finite elements and it was found that the computation time was much saved for such a large-scale

problem. Aviles and Suarez (2002) determined the effective periods and damping of building-

foundation systems considering seismic wave effects. Kocak and Mengi (2000) developed a

relatively simple three-dimensional soil-structure interaction model and exhibited good numerical

performance comparing with other existing methods. Recently, Huang et al. (2003) presented a

study on numerical modeling of shear occurring along a soil-structure interface. Anandarajah et al.

(1995) examined the pile-soil-structure interaction of a two-storey building under earthquake

excitation through a series of model experiments and numerical analysis using the finite element

method. It was found that the numerical results agreed well with the experimental data. Since it is

usually difficult to conduct experimental works on soil-structure interaction, researches on this topic

have been mainly concentrated on numerical simulation and relatively less work has been done on

model tests. Furthermore, there was a lack of study carried out on how to determine the range of

soil layer required in model tests on shaking tables and how to adopt suitable far-field boundaries to

improve the experimental precision. Such problems will be studied in this paper. 

Generally, if the damping of soil is ignored, it is believed that the virtual lateral boundaries after

truncating the horizontal soil layer may result in the elastic wave reflection and its effect can not be

underestimated. However, in actual soil medium, the soil damping may absorb the wave energy and

weaken the wave reflection effect from the lateral boundaries. Influence of various locations of

lateral boundaries on the ground dynamical flexibility was discussed by Lou and Lin (1986) in

which the behavior of foundation was assumed to be linear viscoelastic. Quantitative relationship

between the lateral boundary location and the reflection effect was also given in their study. In this

paper, the effects of the lateral boundaries in homogenous soil on the seismic response of a

superstructure are numerically investigated. The outputs of this study can provide not only the

valuable information for numerical analysis of soil-structure interaction, but also the guidelines for

selecting the range of soil layer required in soil-structure interaction model test on shaking tables.

2. Numerical models

Fig. 1 shows the analytical model for soil-structure interaction including the two-dimensional

homogenous soil layer and a superstructure simplified as a single degree of freedom (SDOF)

system. The structure is built on the massless foundation with width b which is fully uncovered on

the ground. The rigid foundation is perfectly bonded to the surrounding soil. The natural frequency

of vibration ωc of the SDOF system representing the superstructure can be adjusted by varying the
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parameters M and EI. The fundamental frequency of shearing vibration in the horizontal direction of

the soil medium can be determined by

(1)

where vs and H are the shear wave propagation velocity and thickness of the soil layer, respectively.

In this paper, the finite element method is used to study the seismic response of the finite layered

soil-structure system. Two types of elements are adopted: one is the 4-noded plane element for the

discretization of the layered soil layer; the other is the beam element for the superstructure. The

global discrete equations of motion of the soil-structure system can be expressed as

(2)

where {u(t)} is the displacement vector of the soil-structure system relative to the base rock; [M],

[C] and [K] are the global mass, damping and dynamical-stiffness matrices, respectively; 

denotes the ground earthquake excitation and {e} is a matrix with diagonal elements of one and

other elements of zero.

Considering the connection requirements between the plane 4-noded element and beam element,

coordinate transformation between nodes on the rigid foundation can be built up. As an example,

the rigid foundation is assumed to cover two plane elements as shown in Fig. 2. The nodal

coordinate transformation matrix can be obtained accordingly in this case. Detailed procedures are

given below.

The nodal displacement components at the end of the beam are defined as  and the

associated nodal displacements of the quadrilateral element are (ui, vi, uj, vj, uk, vk). According to the

perfect bonding requirements between the rigid foundation and soil layer, the following six

constraint conditions are obtained:

(3a)

(3b)
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2H
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Fig. 1 The model for analyzing soil-structure interaction
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Thus, only 3 nodal degrees of freedom are independent among the total 9 nodal displacement

components. Selecting  as independent ones, one has the following nodal coordinate

transformation matrix at the joint. 

(4)

Note that the two other adjacent rectangular elements are affected by the coordinate

transformation besides the two elements directly bonded with the rigid foundation. Therefore, total 4

elements as shown in Fig. 2 need to be considered. One can obtain the modified elemental stiffness

matrices of these four elements one by one after introducing the transformation relationship as given

in Eq. (4). Finally, the global discrete equations of motion of the soil-structure system are revised

after assembling all the elements:

(5)

where
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Fig. 2 The connections between the structure and soil
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(6b)

(6c)

(6d)

In case more quadrilateral elements are directly jointed with the rigid foundation, the corresponding

coordinate transformation can be obtained similarly.

In order to examine the effect of the virtual lateral boundaries, the relative errors of the maximum

amplitudes of displacement and acceleration at the point A shown in Fig. 1 are considered in this

paper. The relative error of amplitude of vibration is defined as:

(7)

where ain and  are the peak values of vibration considering finite domain and infinite half space

of soil layer, respectively. In the present computation,  is obtained using Eq. (5) provided that the

lateral boundary is sufficiently far away from the rigid foundation. Numerical tests with various

locations of the lateral boundaries are conducted to assure the stability and reliability of the results.

For instance, we can compute two peak values of vibration of the superstructure for two locations

of the lateral boundaries, i.e., L/b = N and L/b = N − 1. Comparing the two values, one can establish

the virtual viscous damping boundary at the latter location once the relative error is less than a

certain value (for example, 1%). 

The viscous damping boundary condition (Liao 1987) is given here:

, in the horizontal direction (8a)

, in the vertical direction (8b)

Note that only an additional diagonal damping matrix is needed in Eq. (5) after considering the

viscous damping boundary (Li et al. 1998). The equation forms and computational procedures are

not affected. The corresponding solutions of the structural responses using the above technique are

regarded as “exact values” in this paper.

3. Influences of various parameters

The relative error of dynamic response of the simplified soil-structure interaction system as shown

in Fig. 1 can be computed by Eq. (7) as mentioned in the previous section. It is a function of

multiple parameters, such as, the natural frequency of vibration of the superstructure ωc , mass M,

height of the superstructure h, wave propagation velocity vs and thickness H of the soil layer,

damping ratio β of the soil medium and the rigid foundation width b. Thus, we have

(9)

It is well known that the earthquake propagation wave is composed of multiple frequency
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characteristics and is time-dependent. In the linear condition, the total seismic response of a

structural system can be regarded as the summation of the dynamical response under every

harmonic component within the seismic wave. Therefore, in the present computation, the input

seismic wave acting on the bottom of the soil layer is assumed to be a sinusoidal wave with

amplitude of 0.2 g. It is noticed that the relative error e of the structural response is not dependent

on the amplitude of the input seismic wave for a linear elastic system.

In this paper, the shear wave propagation velocity and thickness of the soil layer are taken to be

vs = 350 m/s and H = 30 m, respectively. Various ranges of the finite soil layer with L/b = 5, 10, 20

and 30 are considered in the computation. Figs. 3 and 4 show the relative errors of the acceleration

response at point A under the sinusoidal wave with various frequency values of ω. Note that in Fig. 3

the natural frequency of the superstructure is lower than that of soil with ωc /ωs = 0.5. On the

contrary, Fig. 4 shows the case that the natural frequency of the superstructure is greater than that of

soil with ωc /ωs = 2.0. In the computation, we take: h = 100 m, b = 20 m.

It is observed from Figs. 3 and 4 that  reaches the maximum value when ω/ωs is close to 1. It

is also found that the maximum value of  is achieved as ω/ωs tends to unity even when the shear

wave propagation velocity of the soil layer approaches to 150 m/s. Similar conclusion can be drawn

when the thickness of the soil layer varies. Therefore, we will investigate the relative error of the

structural response under this input frequency ω/ωs hereafter. 

3.1 Effect of the relative thickness H/b and shear wave propagation velocity of soil layer

Fig. 5 shows the variations of the relative error of the acceleration response at point A with the

e

e

Fig. 3 The relative error of the acceleration response at point A under the sinusoidal wave considering various
locations of the lateral boundary (ω

c
/ω

s
= 0.5)

Fig. 4 The relative error of the acceleration response at point A under the sinusoidal wave considering various
locations of the lateral boundary (ω

c
/ω

s
= 2.0)
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dimensionless locations L/b where the lateral boundaries are installed. Various sets of the relative

thickness H/b and shear wave propagation velocity vs of the soil layer are considered. In case

vs = 150 m/s, it is found that the relative error  is less than 5% for H/b = 0.5, L/b ≥ 8; H/b = 1.0,

L/b ≥ 15; and H/B = 1.5, L/b ≥ 23. In case vs = 350 m/s, it is observed that the larger value of L/b is

required to assure the relative error  less than 5%. This illustrates that larger range of soil layer

needs to be taken in shaking table tests as the thickness of soil layer increases.

3.2 Effect of the parameter L/H

The same data presented in Fig. 5 are rearranged by setting the parameter L/H as the horizontal

coordinate as shown in Fig. 6. It is seen from Fig. 6 that the effects of H/b and vs on the relative

error e can be ignored in comparing with those of L/H. The relationship between e and L/H can be

clearly observed and fitted. For example, to ensure  less than 5%, the soil layer range with

L/H = 7~9 is required; while for the case of  less than 10%, only L/H = 6~8 is sufficient.

e

e

e

e

Fig. 5 Effect of L/b on the relative error e

Fig. 6 Effect of L/H on the relative error
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3.3 Effect of the structural resonance

When the natural frequency of the superstructure is lower than that of the soil medium (ωc < ωs),

it is found that the structural system resonates with the largest response when the frequency of the

input sinusoidal wave is close to the natural frequency of the soil-structure system. Fig. 7 shows the

relative error caused by truncating the infinite soil layer into the finite domain layer when the soil-

structure system resonates. However, it is shown from Fig. 7 that the error of the relative

acceleration response is relatively small when the frequency of the input sinusoidal wave is equal to

the natural frequency of the system. In general, e is less than 5%.

It is known that the natural frequency ω0 of the soil-structure system is usually lower than that of

the superstructure ωc, i.e., ω0 < ωc. In this case with ω0/ωc < 1, it is found that the value of e is not

the largest as shown in Fig. 3. Comparing the results presented in Fig. 7 and those plotted in Figs. 5

and 6, it is found that the computational error duo to take the finite soil layer is the upper bound in

Figs. 3-6. In other words, the dimensionless parameter L/H is the most significant one among the

influencing factors. Fig. 7 also shows that the effect of H/b on e is much less than that of L/H. 

3.4 Effect of the height of the concentrated mass

As shown in Fig. 8, the effect of h/b on e is much less than that of vs. Generally speaking, the

Fig. 7 The relative error when the soil-structure system resonates

Fig. 8 The effect of h/b on the relative error e
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relative error increases as the shear wave propagation velocity of the soil layer becomes larger. Here

we assume the natural frequency of the superstructure is fixed.

3.5 Effect of earthquake excitations

Fig. 9 shows the relative error with the input selected as the EL Centro earthquake record. It is

noticed that the effect of H/b and vs on e can be ignored in contrast with that of L/H. It is also

clearly found that the relative error with the EL Centro record is much smaller than that with the

sinusoidal waves. However, its variation is relatively complex. Therefore, it is concluded that that

the relative error caused by the input sinusoidal waves is the upper bound. That is why we select

the sinusoidal waves as the earthquake excitation inputs in this study. 

3.6 Effect of damping ratio

In the present computations, the damping ratios ξ for the structure and ξg for soil material are

adopted as 0.035 and 0.08, respectively. According to Wolf’s study (1985), the equivalent damping

ratio  of a soil-structure interaction system is about 0.2 ( →0.2) when > 1 and , in

which  is the stiffness ratio of the structure and of the soil and = ωch/vs (ωc is the fixed-base

frequency of the structure, vs is the shear wave velocity and h is the height of the structure). In

other words, once > 1 and  is satisfied, the equivalent damping ratio varies in a very

small range and its value tends to be 0.2. Since the equivalent damping ratio can be regarded as a

constant in the cases always encountered in engineering practices, there will be no further

discussion about its effect on the computational errors in this study. 

4. Effect of the rubber ring in model tests on shaking tables

In numerical simulation of soil-structural interaction under seismic excitation, one can select

adequate range of soil layer or artificial lateral boundaries to control and reduce the numerical error

as discussed in the previous section. However, it is inevitable to truncate the finite range of soil

layer in the soil-structural interaction model tests on shaking tables. The available selection range is

very limited due to the bearing capacity of shaking tables. Therefore, it is necessary to reduce the

experimental error caused by taking the finite soil layer in this kind of model tests. Currently,

ζ ζ S H/b 1≥
S S

S H/b 1≥

Fig. 9 The relative error with the input as the EL Centro record
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circular rubber ring or cylinder with certain thickness is usually adopted to be the container of the

finite soil layer (Lou et al. 2000). Fig. 10 shows an example with the cross-section at the diameter

location of such a rubber ring. With the plane strain assumption, the effect of the rubber ring on the

accuracy of the model test is numerically examined using this example.

In this example, the shear wave propagation velocity of the soil layer is kept to be 150 m/s, while

the soil layer thickness is assumed to be 1.5 m or 0.75 m. The concentrated mass is taken to be

450 kg or 45 kg. Variation of the shearing modulus of the rubber ring is considered to study its

influence. It is taken to be 6.7 × 10x MPa in this study where x is a variable. In the finite element

discretization of the rubber ring, only one element is used along the horizontal direction. In the

height direction, the division is consistent with the soil layer. Two kinds of constraints are adopted

for the nodes at the rubber ring. One is free so that the node can deform arbitrarily; the other is that

the vertical nodal degree of freedom is fixed so that the node can only have horizontal

deformations. It is also required for the latter constraint that only shearing deformation is permitted.

Figs. 11-14 show the variations of the relative errors of the acceleration response at the top of the

superstructure with the shearing modulus of the rubber ring. Note that the power x in the shearing

Fig. 10 The sketch of the soil-structure model test on a shaking table with the rubber ring

Fig. 11 Comparison of the relative errors with and without the rubber ring (H = 0.75 m, h = 1.5 m)



Numerical studies on the effects of the lateral boundary on soil-structure interaction 431

modulus 6.7 × 10x MPa is taken as the horizontal coordinate and the relative error as the vertical

coordinate in these figures. 

In Figs. 11-14, various loading cases are considered as explained below. 

Load case 1: M = 450 kg, no rubber ring, the lateral boundary nodes at the soil layer are totally

free.

Fig. 12 Comparison of the relative errors with and without the rubber ring (H = 0.75 m, h = 0.5 m)

Fig. 13 Comparison of the relative errors with and without the rubber ring (H = 1.5 m, h = 1.5 m)

Fig. 14 Comparison of the relative errors with and without the rubber ring (H = 1.5 m, h = 0.75 m)
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Load case 2: M = 450 kg, no rubber ring, the vertical deformations of the lateral boundary nodes

at the soil layer are not allowed.

Load case 3: M = 450 kg, with the rubber ring, the vertical deformations of the lateral boundary

nodes at the rubber ring are not allowed.

Load case 4: M = 450 kg, with the rubber ring, the lateral boundary nodes at the rubber ring are

totally free.

Load cases 5 to 8 are corresponding to the cases 1 to 4, but the concentrated mass is replaced

with M = 45 kg.

In case of no rubber ring surrounding the soil layer, it is found from the figures that the relative

error of the acceleration response increases as the soil layer thickness increases provided that the

soil layer has a fixed length in the horizontal direction. For example, comparing the results in

Figs. 11-14 for the load case 6, the relative error e has the values of 7.5% and 14% when

H = 0.75 m and H = 1.5 m, respectively. The vertical constraint of the lateral boundary nodes has

certain influence on the relative error of the structural response. This can be observed by

comparisons of the load cases 1 and 2, 5 and 6 in the figures. The relative error can be improved

significantly by enforcing the vertical constraint of the lateral boundary nodes, especially when the

concentrated mass is lighter. With addition of the rubber ring, it is found that the shearing modulus

of the rubber has significant effect on the relative error e. In general, the relative error e becomes

larger when the rubber ring with low shearing modulus is used under the same boundary conditions.

Comparing the load case 3 with 4 or the load case 7 with 8 at about x = 2.0, it can be seen that the

vertical constraint at the boundaries of the rubber ring reduces the relative error e to a great extent.

Meanwhile, it is found that the relative error e is relatively small for the rubber with high shearing

modulus even if no constraints are enforced at the boundaries of the rubber ring. 

The computation error will increase if rubber rings with low shear modulus are added in the

system when the same boundary conditions are applied. It is shown from the cases 3 and 7 that the

computational error can be reduced significantly when vertical constrains are applied to the nodes of

rubber rings at about x = 2.0. When rubber rings have relative high values of shear modulus, the

relative error is very small even if no boundary constraints are applied to the nodes of rubber rings

in the cases 4 and 8. This observation is very useful in the design of the soil-structure interaction

model test on shaking tables. Actually, after the finite domain of soil layer is adopted, the effects of

the ignored far field soil on the soil-structure interaction system exhibit in the following aspects:

a) The frequency characteristics of soil, especially its fundamental natural frequency, are altered.

Therefore, larger range of soil is needed to assure the frequency characteristics especially those

of the lower modes to be consistent with those of infinite half space domain soil layer.

b) The radiation damping is ignored due to the existence of larger material damping of the soil

medium under vibration. Its effect is not significant in the elastic problems when the finite soil

layer reaches a certain range.

c) The elastic constraint between the far field soil and the near field one is neglected which also

affect the frequency characteristics of the soil layer. The rubber ring can compensate the elastic

constraint effect to a certain extent when the shearing modulus of the rubber is higher than that

of the soil layer.

d) When > 1 and , the seismic response of a structure is very close to that for the case

of half-space soil layer (Wolf 1985). That is to say, when the soil layer depth meets ,

the variation of the computational results is not significant even if the soil layer depth

increases. 

S H/b 1≥
H/b 1≥
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5. Conclusions

In this paper, the finite element method is applied to numerically study the effect of truncating the

infinite soil layer into the finite domain on the seismic responses of a superstructure. The outputs of

this study provide not only the valuable information for numerical analysis of soil-structure

interaction, but also the guidelines for selecting the range of soil layer required in the soil-structure

interaction model test on shaking tables.

Major conclusions are drawn in the following.

a) The dimensionless parameter L/H is the most significant one among the influencing factors

since it basically reflects the relationship of geometry proportion. In order to control the error

in a certain level, larger range of soil layer should be considered as the soil layer thickness

increases, which can be regarded as a nearly linear relationship.

b) The shearing wave propagation velocity of soil medium has certain effects. In other words, in

case of higher speed of the wave propagation larger range of finite soil layer is required.

c) The rubber ring has great influence on soil-structure interaction model test on shaking tables. It

is important to reasonably choose the elastic parameter and width of the rubber ring. The

simulation results provide useful information for this purpose.
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