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Abstract. In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system
based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical
solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the
nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the
present element is studied. The large-deflection analyses are performed for simple supported and clamped
circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional
displacement finite element method. A parametric study is also conducted in the research. The accuracy of
the shell element is investigated using numerical computations. Comparisons of numerical solutions are
made with theoretical results, finite element analysis and the available numerical results. Excellent
agreements are shown.
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1. Introduction

In the analysis of circular or annular plates, it is much more convenient to use polar coordinate

system than rectangular Cartesian coordinate system. Circular plates have wide application in civil

and mechanical engineering fields, such as the deformation of loading on foundations (Khathlan

1994) and the large-deflection analysis of glass plates (Vallabhan 1994). It was found that thin

window-glass plates undergo large-deflections of ten times their thickness before they are failed by

brittle fracture. Hence, it was necessary for a complete elastic, large-deflection analysis of glass

plates to assess the behavior and design of thin-glass plates. The large-deflection analyses of circular

plates bending under rectangular Cartesian coordinate system have been presented. Hong (1999)

described a finite element method for the large-deflection analysis of axisymmetric shells and plates

on a nonlinear tensionless elastic foundation. Takezono (1980) analyzed the elasto/viscoplastic

behavior of thin circular plates under large strains using the finite element method based on the

membrane shell theory. Generally, the obtained numerical solutions for circular plates agreed fairly

well with the experimentally determined values. Michiya (1993) analyzed a uniformly loaded

circular plate with a clamped edge based on a three-dimensional finite deformation theory, while

Kondo and Pian (1981) analyzed the changes in geometry of the studied structures. Dumir (1987)
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considered the clamped and simply-supported plates with radially movable and fixed edges,

analyzing the geometrically nonlinear, axisymmetric static and transient response of cylindrically

orthotropic thin circular plates, resting on Pasternak elastic foundations subjected to uniformly

distributed loads. Earlier, Dumir and Shingal (1986) were concerned with the geometrically

nonlinear axisymmetric static and transient analysis of the moderately thick, cylindrically

orthotropic circular plates subjected to uniformly distributed load and discrete central load. The

analysis of shear deformation and rotary inertia was presented. Krayterman and Fu (1985) used the

integral collocation method (ICM) to analyze the large deflected circular plates with clamped

radially held and not held outer edge under uniform pressure. Turvey and Salehi (1997)

implemented elastic large deflection analysis using dynamic relaxation algorithm.

HMFEM is one of multifield finite element methods that were originated by Pian (1964) to

compensate for the shortages in the traditional finite element method. An excellent review above

hybrid/mixed finite element researches was presented by Pian (1996). Hitoshi (1980) proposed a

formulation of the mixed finite element method and applied a plane triangular element to the large-

deflection analysis of the circular plate problem. Most of the researches, however, which were

implemented under polar coordinate system, were about small deformation analysis, while majority

of the large-deflection analyses were carried out under the rectangular coordinate system. There

have been only a few investigations of the nonlinear analysis of circular plate bending using a polar

coordinate system. This is mainly because the problems of a polar coordinate system can be

transformed and carried out under a rectangular Cartesian system. However, the nonlinear behaviour

is often dependent on the geometry of a structure and the applied load. As the error of domain

approximation is ignored, see Fig. 1, a refinement element is necessary in the numerical analysis in

order to achieve a high accuracy solution. 

In this paper, a new element in the polar coordinates was suggested. The geometric nonlinear

analysis of circular plate bending was performed using HMFEM. The incremental form of

Hellinger/Reissner variational principle proposed by Pian (1976) was used to investigate simply

supported and clamped circular plates under uniform loading conditions. The method employed to

account for the elastic deformations was discussed. This research was an extension of a small-

deflection analysis for the circular plate bending problem (Duan 1998). Numerical results were

compared with theoretical solutions and those obtained by other researchers.

Fig. 1 Approximation of analysis domain under Cartesian coordinate system
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2. Shell element

The positive directions of in-plane forces Nr, Nϕ and Nrϕ , bending moments Mr, Mϕ and Mrϕ , and

transverse shear forces Qr and Qϕ in polar coordinates are defined in Fig. 3. Based on the theory of

circular plate bending (Szilard 1974), the in-plane forces, bending moments and transverse shear

forces can be written as:

(1)

where σr, σϕ , τrϕ , τzr and τzϕ are the surface stress components.
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Fig. 2 Coordinate system of element

Fig. 3 Directions of tensile forces, bending moments and shearing forces for circular plate
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The strain and displacement relationships for large deflection circular plate can be written as:

(2)

where r and ϕ are the polar coordinates of circular plate, εr, εϕ and γrϕ are strains in the radial and

tangential directions and the shearing strain in the middle plane. ur and uϕ are the in-plane

displacements, and w is the deflection of plate. 

The plate constitutive equations for isotropic materials are written as:

(3)

where E, υ, h, ,  and  are Young’s  modulus,

Poisson’s ratio, the plate thickness, the shear modulus, the bending rigidity and the differential

operator.

Thus, the governing differential equation can be obtained from Eqs. (2) and (3),

(4)

εr

∂ur

∂r
--------

1

2
---

∂w

∂r
-------⎝ ⎠

⎛ ⎞
2

+=

εϕ
1

r
--- ur

∂uϕ

∂ϕ
--------+⎝ ⎠

⎛ ⎞ 1

2r
2

-------
∂w

∂ϕ
-------⎝ ⎠

⎛ ⎞
2

+=

γrϕ
1

r
---

∂ur

∂ϕ
-------- uϕ–⎝ ⎠

⎛ ⎞ ∂uϕ

∂r
--------

1

r
---

∂w

∂r
-------⎝ ⎠

⎛ ⎞ ∂w

∂ϕ
-------⎝ ⎠

⎛ ⎞
+ +=

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

Nr
Eh

1 υ
2

–

-------------- εr υεϕ+( )=

Nϕ

Eh

1 υ
2

–

-------------- υεr εϕ+( )=

Nrϕ Gεrϕ=

Mr D
∂

2
w

∂r
2

---------- υ
1

r
2

----
∂

2
w

∂ϕ
2

----------
1

r
---

∂w

∂r
-------+⎝ ⎠

⎛ ⎞
+–=

Mϕ D υ
∂

2
w

∂r
2

----------
1

r
2

----
∂

2
w

∂ϕ
2

----------
1

r
---

∂w

∂r
-------+⎝ ⎠

⎛ ⎞
+–=

Mrϕ 1 υ–( )D 1

r
---

∂
2
w

∂r∂ϕ
------------–

1

r
2

----
∂w

∂ϕ
-------+⎝ ⎠

⎛ ⎞
=

Qr D
∂

∂r
----- ∇r

  2
w( )–=

Qϕ

D

r
----

∂

∂ϕ
------ ∇r

  2
w( )–=⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

G
1

2 1 υ+( )
---------------------= D

Eh
3

12 1 υ
2

–( )
-------------------------= ∇r

2 ∂
2

∂r
2

-------
1

r
2

----
∂

2

∂ϕ
2

--------
1

r
---

∂

∂r
-----+ +=

D

h
----∇r

2∇r

2
w r ϕ,( ) ∂

2
w

∂r
2

---------
1

r
---

∂ Φ
∂r

--------
1

r
2

----
∂

2Φ

∂ϕ
2

----------+⎝ ⎠
⎛ ⎞ 1

r
---

∂w

∂r
-------

1

r
2

----
∂

2
w

∂ϕ
2

---------+⎝ ⎠
⎛ ⎞∂

2Φ

∂r
2

---------- 2
∂

∂r
-----

1

r
---

∂Φ
∂ϕ
-------⎝ ⎠

⎛ ⎞ ∂

∂r
-----

1

r
---

∂w

∂ϕ
-------⎝ ⎠

⎛ ⎞
–

q

h
---+ +=

1

E
---∇r

2∇r

2Φ r ϕ,( ) 1

r
---

∂
2
w

∂r∂ϕ
------------

1

r
2

----
∂w

∂ϕ
-------–⎝ ⎠

⎛ ⎞
2

1

r
---

∂
2
w

∂r
2

---------
∂w

∂r
-------–

1

r
2

----
∂

2
w

∂r
2

---------
∂

2
w

∂
2
ϕ

---------–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧



Efficient geometric nonlinear analyses of circular plate bending problems 409

This is a nonlinear partial-differential equation of fourth order for r and ϕ.

Boundary Conditions: (5)

(6)

Based on the incremental form of Hellinger/Reissner variational principle (Pian 1976):

(7)

where  and T 0 are initial stress, strain, displacement, body force components and

initial surface traction.  and ∆T are incremental stress, strain, displacement, body

force components and incremental surface traction.  and  are surfaces upon which traction

vectors are employed and described for the nth element, and Vn is volume. D and S are differential

operator matrix and material stiffness components, respectively.
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(11)

in where ∆Q, Rσ and Rε are incremental nodal forces from the applied loads and nodal forces. H, G

and R are the flexibility and leverage matrices defined respectively by,

, ,

Taking variation of the variation function πR with respect to parameter vectors, the following

equation is obtained

(12)

in which the element stiffness matrix K(e) is expressed as

,

3. Hybrid/mixed finite element analysis in the polar coordinates

In this paper, a four-nodal nonlinear hybrid/mixed circular plate element with five degrees of

freedom at each node is proposed. Three translations (u, v, w) along x, y and z directions and two

rotations (θ1, θ2) are formulated in the current research. We assume the incremental displacement

vectors as

(13)
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where stress parameters β1 and β2 are expressed as  and β2 = {β6, β7, β8,

β9, β10, β11, β12, β13, β14, β15, β16}
T,  respectively.

The geometric mapping relations of local Cartesian coordinate system and polar coordinate system

as shown in Fig. 2 can be written as:

(15)

in which (r, ϕ) and (ξ, η) are polar coordinate system and local Cartesian coordinate system,

respectively. The sampling points of integration functions are shown in Fig. 2(a).

We note that

(16)

is nonsingular. Then the geometric mapping relations (Eq. (15)) is invertible.

(17)

4. Stability investigate

In this section, the stability of solution in thin plate limit was investigated. The Babuska-Brezzi

stability condition (Babusa 1973) can be written as:
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5. Numerical applications

 

According to the theoretical formulation presented in Section 2, numerical analyses were

performed for various types of loading and boundary conditions using HMFEM. The obtained

numerical results were compared with the theoretical results and other available numerical results.

5.1 Clamped circular plate

A circular plate bending problem with clamped edges was analyzed for geometrically nonlinear

behavior under dimensionless uniform loading using hybrid/mixed shell element. The relevant

model is shown in Fig. 4. Because of symmetry, only a quarter of the circular plate was investigated

Fig. 4 Circular plate model and meshes
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and meshes were divided, as shown in Fig. 4. The value of Poisson’s ratio υ = 0.3 and a ratio of

h/r = 0.02 were used in the analysis. The results of HMFEM using mesh (a), mesh (b) and mesh (c),

numerical results from 4-node quadrilateral shell element (SHELL63) of ANSYS analysis program

using mesh (d), mesh (e) and mesh (f) (Kohnke 1998), linear solution and nonlinear reference

theory solutions (Timoshenko and Woinowsky-Krieger 1959) are shown in Fig. 5. From the

comparison of results, it is clear that the results of HMFEM that converge to theoretical solution are

considered accurate even for a relatively coarse mesh. However, element SHELL63 uses over 20

times element numbers and degree-of-freedom numbers than the present hybrid/mixed shell element

to obtain the same accuracy. This implies that present element cannot only improve the accuracy of

solution, but also save analysis time when the same accuracy is required.

In this section, three different values of Poisson’s ratio, i.e., υ = 0.25, 0.30, 0.35 were used in the

analysis for a plate with ratio h/a = 0.02. Mesh (c) of the model shown in Fig. 4 was employed and

values of υ = 0.3 and h/r = 0.02 were implemented in the analysis. The numerical results of

HMFEM using mesh (c) and reference theory solution (Timoshenko and Woinowsky-Krieger 1959)

are compared, as shown in Fig. 6. The numerical results indicate that the solutions of HMFEM are

accurate. The numerical results obtained in this analysis agree well with the theoretical values. It is

clear that the present hybrid/mixed shell element is also suitable for using in other structural

materials except all structural steels.

Fig. 5 Load-deflection curves for circular plate bending
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The deflection curves for different values of the thickness-to-diameter ratio h/2r are shown in Fig. 7.

A comprehensive analysis of the uniformly loaded circular plates with clamped and hinged

boundary conditions was given and the effects of all governing parameters, including the ratio of

plate radius-to-thickness r/h were discussed. It is clear that the dimensionless load deflection is

independent of the h/2r ratio unless it is a thick plate. The results of HMFEM plotted in Fig. 7 also

show that the large-deflections of plates are less sensitive to h/2r and that the present hybrid/mixed

element has no shear locking phenomenon.

5.2 Circular plate subjected to partially distributed load

In this section, the large-deflection problem of the circular plate was analyzed for clamped edge

condition under partially uniformly distributed and concentrated loads using the present hybrid/

mixed shell element. The relevant model is shown in Fig. 8. The radiuses of the circular plate and

the distributed load over inner circle are R and r, respectively. Because of symmetry of structure and

Fig. 6 Load-deflection curves for circular plates with different Poisson’s ratios 

Fig. 7 Comparison of load-deflection curves for thin ~ thick circular plates
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load, only a quarter of the circular plate was investigated in the numerical analysis. Values of

υ = 0.3 and h/r = 0.02 were implemented using the present shell element under the polar coordinate

system. The circular plates subjected to different loadings ratios with r/R = 0~0.6 were studied. In

particular, r/R = 0 expresses that a concentrated load is subjected. The accuracy of solution was

investigated and the load-deflection curves of the circular plate were plotted and compared with

reference theory solutions (Chia 1980), as shown in Fig. 9. It is seen that the different loads have a

greater effect on the large deflection of the circular plate and the largest deflection is shown for the

case of concentrated load. The analysis results obtained using HMFEM agree well with theoretical

solutions for all cases including uniform distributed and concentrated loads. 

Fig. 9 Comparison of solutions for clamped plate under partially distributed load

Fig. 8 Circular plate under partially distributed load
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5.3 Simply supported circular plate

A circular plate bending problem with simply supported edges was analyzed for geometrically

nonlinear behavior under uniform loading using HMFEM. The model is shown in Fig. 10. Poisson’s

ratio, υ = 0.25, 0.30, 0.35 and h/r = 0.02 were performed in the analysis. The numerical results of

HMFEM and reference theory solution (Stippes and Hausrath 1952) were compared and shown in

Fig. 11. It is clear that a good agreement of the numerical solutions was also obtained for the

simply supported circular plate. The numerical analysis of HMFEM further shows that it can also

be used for all structural steels and other structural materials.

Fig. 11 Load-deflection curves of simply supported plate

Fig. 10 Simply supported circular plate
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5.4 Ellipse plate 

In the preceding section, the circular plates with clamped and simply supported boundary

conditions and uniformly distributed, partially distributed and concentrated loads were discussed.

Furthermore, an ellipse plate under a uniformly distributed load, as shown in Fig. 12, was also

investigated. As a representative study, the ellipse plate with a/b = 0.5 ratio was considered in the

Fig. 12 Ellipse plate under uniform load

Fig. 13 Load-deflection curves of ellipse plate
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analysis. The numerical results of large deflection were obtained and compared with previously

published results (Well and Newmark 1956), as shown in Fig. 13. An excellent agreement was

achieved. By comparing the results of circular plate shown in Fig. 5, it is seen that the different

shape of ellipse plates have an effect on the large deflection of the ellipse plate.

5.5 Annular plate subjected to line force

Above all analyses have shown that the high accurate results have been obtained using the

presented analysis method. In order to exhibit that the method is also efficient for any load cases, an

annular plate subjected to line force is investigated, as shown in Fig. 14. Young’s modulus of

21 × 106, Poisson’s ratio of 0.0, thickness of 0.03, outer radius of 10 and internal radius of 6 are

employed in the analysis. The meshes of 3 × 12 shown in Fig. 14 are implemented in the analysis

using HMFEM. The numerical solutions are presented and compared with the reference solution

(Sansour and Kollmann 2000) in Fig. 15. It is seen that a good agreement is presented.

Fig. 14 Annular plate subjected to line force

Fig. 15 Load-deflection curves of annular plate subjected to line force
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6. Conclusions

In this paper, a hybrid/mixed nonlinear shell element was developed in polar coordinate system.

Non-dimensional parametric and large-deflection analyses of circular plates were presented using

HMFEM. Large-deformation behaviour of circular plates was assessed for various circular plates

such as simply supported and clamped circular plates under full uniform or partly distributed

uniform and concentrated loads. The non-linear characteristic relations concerning load and

deflection factors were numerically analyzed and presented. The comparisons of numerical solutions

with theoretical results and finite element analysis showed good agreements. It is seen that the

present study provides an efficient analysis method for circular plate bending problems in structural

engineering.
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