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Evaluation of T-stress for cracks in elastic sheets
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Abstract. The T-stress of cracks in elastic sheets is solved by using the fractal finite element method
(FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-
applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an
exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the
latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense
the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown
coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating
the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous
literature are identified and the new solutions for the T-stress calculations are presented.

Key words: eigenfunction expansion; interpolation; fractal; finite element; stress intensity factor; T-
stress.

1. Introduction

Recently, much attention has been given on the determination of the elastic T-stress for cracked

geometries (Karihaloo and Xiao 2001, Tan and Wang 2003, Chen et al. 2001). This stress

corresponds to the first, non-singular term of Williams eigenfunction expansion series (Williams

1957) of the linear elastic stress field at the crack tip. The experimental results of Williams and

Ewing (1972) and Ueda et al. (1983) on mixed mode loads showed that the inclusion of this term,

which acted parallel to the crack at its tip, of the stress distribution could improve the accuracy for

predicting the crack initiation angle and the critical stress intensity factor. Furthermore, this term

was found to have significant effects on fracture toughness (Smith et al. 2001), size and shape of

the crack-tip plastic zone (Larsson and Garlsson 1973, Rice 1974) and stability of the crack path

direction (Cotterell and Rice 1980, Karihaloo and Keer 1981, Melin 2002). The application of both

the stress intensity factor and the T-stress to include the constraint effect in failure investigations is

becoming increasingly popular (Sherry et al. 1995). It is important to provide T-stress solutions for

the cracked geometries under consideration. Several analytical and numerical methods have been

developed to evaluate the T-stress for the cracked configurations. Leevers and Radon (1982) used a

variational technique to determine the unknown coefficients in the eigenfunction expansion series.

Cardew et al. (1984) and later Kfouri (1986) used the path-independent interaction integral based on

Eshelby’s theory (1975) to calculate the T-stress. Sham (1991) and Wang (2002) employed the
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higher order weight function method to solve the T-stress. Recently, Karihaloo and Xiao (2001) used

the hybrid crack element, Tan and Wang (2003) used the quarter-point boundary element and Chen

et al. (2001) employed the p-version finite element method to determine the T-stress with various

cracked configurations. The compendiums of some common T-stress solutions have been presented

(Sherry et al. 1995, Fett 1998).

The fractal finite element method (FFEM) which had been used to determine the stress intensity

factors (Leung and Su 1994, 1995), in fact, can be re-applied to determine the elastic T-stress for

different configurations of cracks in elastic sheets. The accuracy and efficient of the FFEM to solve

the T-stress are validated by using four different numerical examples; all simulated with very coarse

finite element meshes. Some errors shown on the previous compendium of the T-stress solutions are

identified and the new interpolation functions for the determination of T-stress are presented.

2. A brief formulation of FFEM

The FFEM was originated in 1994 by Leung and Su to handle crack related problems. This

method was modified from the two-level finite element method (Leung and Wong 1989) of which

the principle was that, while the local interpolating shape function could reduce infinite number of

degrees of freedom (DOF) within a finite element to finite number of the nodal displacements, the

global interpolation function (the higher order Williams eigenfunction series) could further reduce

the number of nodal displacements to a small set of unknown coefficients. The FFEM extended this

concept by generating a self-similar mesh at the crack tip region (see Fig. 1) with infinite number of

DOF around the singular point. It was discovered that the global stiffness in each layer of the inner

model could be reduced via some algebra to that of the layer next to the outer finite element region

(Leung and Su 1995). An infinite DOF could then be condensed expeditiously without increasing

the order of the final equations as well as the computational time. The stress intensity factor was

obtained directly from the generalized coordinates without any post-processing technique. The mesh

generated by infinite number of geometric objects of similar shape was known as a fractal mesh.

The numerical method being used was the two-level finite element method. Therefore, the method

was named as the fractal two-level finite element method. This novel method had not only been

used to determine the stress intensity factors but also been extended to solve various engineering

problems such as dynamic crack problem (Hu et al. 1998), cracked structure-acoustic coupling

problem (Zhong et al. 2003) and unbounded problems (Leung et al. 2004). Recently, this method

was used to determine the numerical eigenfunctions for axisymmetrical cracked body for which the

analytic eigenfunction cannot be found completely (Tsang et al. 2004). In this paper, this method is

applied to calculate the T-stresses. 

For completeness of the paper, brief formulation of the FFEM will be presented. To simplify our

discussion, typical 9-node isoparametric elements with two DOF at each node will be used to

illustrate the formulation of the FFEM. Based on the traditional finite element method (Cook et al.

1989), the first level interpolation in a finite element (say the l th element) is achieved by using the

conventional shape function , 
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û ûx  ûy{ }T
= d̂ … v̂x

k
  v̂y

k
 …{ }

T
=



Evaluation of T-stress for cracks in elastic sheets 337

nodal displacement vector. The symbol ‘∧’ used here is to denote the vector or matrix in element

level. Furthermore, considering the nodal displacement  at the k th node of the

element; the displacement can be represented by the global interpolation, hence,

(2)

where  is the unknown coefficient vector of the Williams eigenfunction

series. The first two coefficients a0 and b0 are associated with the rigid body motions at the crack

tip of the fractal mesh. The symbol ‘−’ denotes the vector or matrix for the fractal mesh in global

level. The explicit form of the global interpolation function  can be expressed as, 

(3)

where r and θ are the polar coordinates evaluated at the k th node of the element, µ is the shear

modulus, ν is Poisson’s ratio and κ = (3 − 4ν) for plane strain condition and (3 − ν)/(1 + ν) for

plane stress condition. It is noted that as a usually large amount of conventional finite elements is

required to simulate the singular behaviour at the crack tip, the order of nodal displacement vector

in the singular region is in general much larger than that of . When an infinite number of the self-

similar layers of elements is generated around the crack tip (as shown in Fig. 1) and is leading to

infinite number of unknown displacements, Eq. (2) would be very helpful to condense the

associated infinite number of DOF to a finite number of unknown coefficients . 
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Fig. 1 Regular and singular regions and construction of fractal mesh
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To perform the condensation, the elements on the first layer and the inner layers of the fractal

mesh have to be considered separately. For the first layer of the fractal mesh, let there is M number

of master nodes on the boundary Γ0, the displacement vector associate with the master nodes is

denoted as  and the displacements within the boundary Γ0 (known as slave nodal

displacements) is represented by  as shown in Fig. 1. To carry out the condensation,

the element stiffness matrix  of the first layer of mesh is first partitioned with respect to s and m,

(4)

where the superscript f indicates the first layer of mesh. All the slave displacements would be

condensed. The second level (global) interpolation of displacements can be written as follows,

(5)

Where I is the identity matrix and  is the transformation matrix which can be

obtained from Eq. (3). After condensing the stiffness matrix of the l th element on the first layer of

the fractal mesh, one has,

(6)

Consider the inner elements located in the same sector of the lth element (see Fig. 2), as there is

no master node for the elements in the inner layers of the fractal mesh, all the DOF is transformed

to the unknown coefficients. Due to the geometric self-similarity between successive layers of the

fractal mesh, a simple geometric progression relationship was found for condensing and assembling

all the inner layer elements (Leung and Su 1994), such that, 
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(7)

(8)

(9)

The generalized stiffness matrix  of that sector can be expressed as,

(10)

So far, only a sector of the elements along the perimeter Γ, as shown in Fig. 2, is condensed, the

global generalized stiffness matrix  of the fractal mesh can be calculated by summing up the

generalized stiffness matrix  associated with all the sectors, hence,

(11)

By means of the master nodes, the singular region can be fit onto the regular region (see Fig. 1)

which is modelled by the conventional finite elements. The unknown coefficients in Eq. (11) can be

solved after applying the appropriate boundary conditions. 

The stresses in the Cartesian coordinates at the crack tip can be expressed as an eigenfunction

expansion series (Williams 1957), 

(12)
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3. Numerical examples

In order to verify the accuracy and the efficiency of the present method for determination of the

T-stress, four numerical examples as shown in Fig. 3 are studied by the FFEM. They are (a) the

centre crack in tension (CCT), (b) the double edge cracks in tension (DECT), (c) the single edge

crack in tension (SECT) and (d) the single edge crack in bending (SECB). For problems (a) and (b)

the aspect ratios H/W are taken as 1 and 3 whereas for problems (c) and (d) the aspect ratio H/W is

taken as 6. 

Fig. 3 Example problems for T-stress calculation: (a) Centre Crack Tension (CCT); H/W = 1 and 3, (b) Double
Edge Crack Tension (DECT); H/W = 1 and 3, (c) Single Edge Crack Tension (SECT); H/W = 6 and (d)
Single Edge Crack Bending (SECB); H/W = 6
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The FFEM calculation is performed for the problem of CCT. To verify the present approach, the

crack configuration with crack length to sheet width ratio a/W = 0.05 is selected to simulate an

infinite sheet with a finite centred crack of which the analytical solution is T/σo = −1 (Leevers and

Radon 1982). Due to symmetry, only a quarter of the sheet is modelled. The stress ratio T/σo

calculated by FFEM is −1.0019 which agrees well with the analytical solution.

The numerical results of CCT with crack length to sheet width ratio a/W varied from 0.1 to 0.7

had been presented (Tan and Wang 2003, Chen et al. 2001). Sherry et al. (1995) reported a

compendium of the T-stresses and the stress biaxiality ratios  for common crack

configurations. Some of the previous results (Leevers and Radon 1982, Cardew et al. 1984, Kfouri

1986) presented B values only which were considered not particularly convenient for uses as the

stress intensity factor had to be obtained from other handbooks. Sherry et al. (1995) had converted

all the B values to the corresponding T/σ0 values and presented the T-stress results. The finite

element mesh used in the FFEM calculation with a/W = 0.3 and H/W = 1 is shown in Fig. 4. The

total numbers of conventional 9-node elements and fractal elements are 34 and 4 respectively. The

B T πa KI⁄=

Fig. 4 The finite element mesh for a quarter of cracked sheet: H/W = 1 and a/W = 0.3

Table 1 Computed values of KI, T and B for CCT: H/W = 1 and a/W = 0.3 

Sources

Present 1.1221 −1.154 −1.0284

Leevers and Radon (1982) -- −1.088* −1.0289

Cardew et al. (1984) -- −1.093* −1.032

Kfouri (1986) -- −1.076* −1.018

Fett (1998) -- −1.1557 −1.028

Chen et al. (2001) 1.1231 −1.15536 −1.0286

*values converted from the corresponding stress biaxiality ratio B by Sherry et al. (1995)
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total number of nodes is 182 and the highest term used in the Williams series is N = 12. It is noted

that extensive convergence and parametric studies (Leung and Su 1996, Xie et al. 2003) have been

conducted and the mesh configuration of 4 elements per single layer of fractal mesh has been

shown to be sufficient to achieve accurate results (with errors less than 3% for both KI and KII) in

the FFEM calculation. A comparison of the numerical values of the dimensionless stress intensity

factors , the dimensionless T-stress T/σ0 and the stress biaxiality ratio  of

CCT of aspect ratio H/W = 1 and crack length ratio a/w = 0.3 is shown in Table 1. Very good

agreements with generally less than 1% differences are found between the present results and those

available in the literature. However, inconsistent results are discovered for T/σ0 ratios obtained from

Sherry et al. (1995). The discrepancy may be due to the inaccuracy of the stress intensity factors

chosen for calculating T-stresses. 

Fig. 5 shows the variations of T-stress against the crack length to sheet width ratio a/W. Consistent

results are found for different aspect ratios (H/W) and crack length ratios (a/W). Based on our

results, new functions of T/σ0 in terms of a/w are derived for CCT,

H/W = 1

(16)

H/W = 3

(17)

The FFEM calculation was conducted for the problem of DECT with crack length to sheet width

ratio a/W varied from 0.1 to 0.7. The numerical results of the present methods and the other results

available in the literature for H/W = 1 and 3, and a/w = 0.5 are shown in Table 2. Reasonable good

agreements with differences less than around 3% are found. Again, similar discrepancy is found for
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Fig. 5 The effect of a/W on T/σ0 for the problem of CCT
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the interpolation results of Sherry et al. (1995). Fig. 6 shows the variations of T-stress against the

crack length ratio a/W for DECT. Consistent results with those from Kfouri (1986) and Wang

(2002) are observed in full ranges of aspect ratios (H/W) and crack length to sheet width ratios (a/W).

However, higher discrepancies of around 3% are revealed for the present results and those from Tan

and Wang (2003) which were obtained from the quarter-point boundary elements. Based on our

results, new functions of T/σ0 in terms of a/w are proposed for DECT,
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Table 2 Computed values of KI, T and B for DECT: a/W = 0.5

Sources

H/W = 1

Present 1.332 −0.3172 −0.238

Leevers and Carlsson (1973) -- -- −0.255

Kfouri (1986) -- −0.2716* −0.233

H/W = 3

Present 1.169 −0.5523 −0.4727

Tan and Wang (2003) -- −0.534 --

Wang (2002) -- −0.553 --

*value converted from the corresponding stress biaxiality ratio B by Sherry et al. (1995)
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Fig. 6 The effect of a/W on T/σ0 for the problem of DECT
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Single edge crack subjected to tension or bending moment is considered here. The problems had

been studied by Sham (1991), Chen et al. (2001) and Karihaloo and Xiao (2001). For the case of

cracked sheets subjected to bending, the maximum bending stress σ0 can be calculated by the

formula σ0 = 6M/(tW 2) where M is the applied end moment and t is the thickness of the sheet. Figs. 7

and 8 show the effects of a/W on the T-stresses for SECT and SECB respectively. Very good

agreements with differences of around 2% are observed for all the results. It is noted that the

infinitely long sheet considered by Karihaloo and Xiao (2001) gave very similar results to the case

of H/W = 6. It can be concluded that for SECB, the effect of aspect ratios on the T-stress is

negligible when the ratio is higher than 6. It is noted that the interpolation functions of T/σo for

single edge crack tension and bending moment are not available in the literatures, by using standard

regression procedure, the interpolation functions are derived and expressed as follows,

SECT
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T
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a

w
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a

w
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2
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Fig. 7 The effect of a/W on T/σ0 for the problem of SECT

Fig. 8 The effect of a/W on T/σ0 for the problem of SECB
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SECB

(21)

The interpolation errors of the above two equations are generally less than 3% in the range of

.

4. Conclusions

By using the FFEM, the T-stresses for various crack configurations were evaluated. The explicit

formulation of FFEM has been described. Using relatively coarse meshes, the T-stresses were

determined for the problems of CCT, DECT, SECT and SECB. The present method has shown

good agreements with the higher order weight functions method, the Eshelby’s path-independent

interaction integral method, the hybrid crack element and the p-version finite element method. The

numerical examples further revealed that the present method is simple, accurate and reliable for

solving T-stresses under different loading conditions. The present study discovered some of the

errors presented in the previous literature and the new interpolation functions for the determination

of T-stresses were derived. 
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