
Structural Engineering and Mechanics, Vol. 20, No. 3 (2005) 279-292 279

Direct determination of influence lines and 
surfaces by F.E.M.

Engin Orakdö en† and Konuralp Girgin‡

Faculty of Civil Engineering, Technical University of 
.
Istanbul, 34469 Ayaza a, 

.
Istanbul, Turkey

(Received June 14, 2004, Accepted March 16, 2005)

Abstract. In this study, element loading matrices are defined for static application of classical Müller-
Breslau principle to finite element method. The loading matrices are derived from existing element
matrices using Betti’s law and known governing equations of F.E.M. Thus, the ordinates of influence lines
and influence surfaces may be easily obtained from structural analysis for the loading matrices derived
from governing equations, instead of through introduced unit force or displacement techniques. An
algorithm for a computer program and comparative numerical examples are also presented to illustrate the
procedure for determination of influence line and surface ordinates.
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1. Introduction

The internal force and displacement influence functions of a structure are of prime importance in

engineering mechanics, especially when live loads are considered. An influence function at a

particular point of a structure represents the variation in any response such as displacements and

internal forces due to unit external forces moving on the structure and they are very useful concepts

for obtaining maximum or minimum values of responses of moving and live loads. One of the

classical techniques for obtaining influence functions is to analyze the structure for different

positions of unit external effects. Since this technique is time consuming, a more efficient technique,

based on Müller-Breslau Principle, is applied in general, Ghali and Neville (1978). According to

this principle, the influence function of any response relating to a structure, whether statically

determinate or indeterminate, is proportional to the deflected shape of the structure obtained by

inducing a known displacement or discontinuity in the direction of the response. Fu (1973) defined

an equivalent load vector for influence surface ordinates by inserting a relative deformation to

nodes. However, the method requires a corrective vector due to the average deformation

considerations along element edges and it is concluded from numerical examples that the accuracy

of this solution depends on the mesh sizes. Cifuentes and Paz (1991) have developed an algorithm

based on the Müller-Breslau Principle applicable to frames and shells. Sample input data are also
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given for the MSC/NASTRAN finite element code. However, this method requires revising the

input data, since extra nodes and constraints should be defined to be able to give a relative unit

displacement according to the Müller-Breslau Principle. Shen (1992) has extended the Müller-

Breslau Principle to structures consisting of finite elements by introducing a loading vector for

average stress at any point on the structure. Since the average stress is considered, the structure

should be finely meshed in the vicinity of the point at which influence function ordinates are to be

determined and constant strain fields called Standard Displacement Modes (SDM) need to be

defined for each type of finite element considered in the problem. SDMs for n-node isoparametric

plane stress elements and three-node triangular plate bending elements are given in the study.

Belegundu (1986, 1988) proposed a method called the Adjoint Method for influence lines. In this

method, an adjoint variable vector is calculated for any response function using the adjoint

equations and then influence line ordinates are obtained by solving the equilibrium equations.

Memari and West (1991) suggested a remedy for adjoint variable vectors since a correction to the

adjoint variable vector is necessary in the case of the response function in the directions of

constrainted degrees of freedom. Kwak and Song (2001), have used Pusher’s influence surfaces

(1977), to find the most unfavourable internal forces due to the vehicle loads. Akesson et al. (1995),

have utilized the classical Müller-Breslau influence function technique for determination of stress

intensity factors at the crack tip. Hanson et al. (2004) and Yamashita et al. (2004), have used the

displacement influence functions of elastic bodies for crack growth simulations. In these studies,

classical approach based on the unit force or stress loading is used to obtain influence coefficients. 

In this paper, element loading matrices are defined by using Betti’s law and governing equations

of finite element method for direct determination of the influence lines or surfaces in frame and

shell structures. In contrast to other methods in the literature, since the matrices are derived by

using existing finite element matrices, it may be applied to the structures consisting of any type of

finite element without revising the input data or defining any SDMs or adjoint variable vectors. This

proposed approach corresponds to the direct application of the classical Müller-Breslau Principle to

finite element method. This paper also explains the statement If the coefficients of a stress matrix

are used as right-hand sides, the solutions are the stresses resulting from unit loads on each

variable in turn outlined in Irons and Ahmad (1986) and illustrates it’s numerical applications to

frame and shell structures.

2. Influence function ordinates of nodal displacement components of frame and

shell elements

It is well known from structural mechanics that, according to Betti’s Law, influence function

ordinates of any displacement component in a linear-elastic structure can be obtained as the

displacement ordinates due to the unit loading in the direction of considered displacement

components. If the structure is discretized by frame or shell finite elements, the resulting

displacement vector d which is obtained by the solution of linear simultaneous equations

S d = q (1)

gives the influence function ordinates at nodes or so called influence coefficients, where S is the

system stiffness matrix and q is the system loading vector whose element in the direction of the

displacement component considered is equal to 1 while the remaining elements are zero.
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If the Eq. (1) is rewritten for influence coefficients of all nodal displacement components of a

particular element, it yields

S D = Q (2)

where D is a matrix of which each column consists of influence coefficients of an independent

nodal displacement component and Q is the system loading matrix of which each column consisting

of q global loading vectors due to the unit loadings in the directions of independent nodal

displacement components of the considered element. Furthermore, when the matrix S and Q are

rearranged such that the node numbers of the particular element are consecutive, the matrix Q

includes an identity matrix 

Q = (3)

In other words, if the element loading matrix for determining the influence coefficients of the

nodal displacement components of a particular element is represented by R, it yields an identity

matrix 

R = I (4)

3. Element loading matrix for influence coefficients of stress components 

The influence coefficients of stress components at a particular point on an element may be

obtained by using the governing equation of finite element method in terms of the influence

coefficients of nodal displacement components as follows:

σ = E B D (5)

Substituting 

G = E B (6)

in (5) gives

σ = G D (7)

or

σ
T = D GT  (8)

where,

σ is a matrix consisting of the influence coefficients of the stress components at a particular point

on the element, 

E is the elasticity matrix of the element, 

0
 

I

0 



282 Engin Orakdö en and Konuralp Girging
o

B is a matrix consisting of the derivatives of the element’s shape functions written in terms of the

local point coordinates,

G is the element stress matrix, and

D is a matrix consisting of the influence coefficients of the nodal displacement components of the

element. 

Although the influence coefficients of stress components may be obtained by matrix multiplication

in terms of influence coefficients of nodal displacement components by using (5), they may also be

directly obtained as in the following: 

If the element loading matrix in (4) is taken as

R = I GT = GT (9)

the resulting displacement matrix gives D GT as the product or σT, which, according to (2) and (8),

consists of influence coefficients of stress components at particular points on the element. In

conclusion, for obtaining influence coefficients of stress components, transposal of the element

stress matrix G may be taken as the element loading matrix R. It should also be noted that,

transformation of the element loading matrix R from the local axis to the global ones is necessary

for constructing the global loading matrix Q. If the influence surface coefficients of any stress

component are to be determined separately, the column of matrix GT corresponding to stress

component should be taken as the element loading vector r. However, when the influence surface

coefficients of average stress components are to be obtained, the averages of the element stress

vectors connected at a node must be applied together as an unique loading case. 

4. Element loading matrices for influence coefficients of displacement and strain

components 

Similar to the explanations in the previous section, the influence coefficients of displacement and

strain components at a particular point on the element may be directly obtained by using the finite

element equations 

uT = D NT  (10)

 
and

ε
T = D BT (11) 

where,

u is a matrix consisting of the influence coefficients of the displacement components at a particular

point on the element,

ε is a matrix consisting of the influence coefficients of the strain components at a particular point

on the element, and

N is the shape function matrix of the element written in terms of the local point coordinates.

Matrix B has been already defined in section 3.
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5. Element loading matrix for influence coefficients of internal force components in

frames

The influence coefficients of internal force components in frame structures may also be obtained

in terms of the influence coefficients of nodal displacement components by using the governing

equation as

P = K D (12) 

or

PT = D KT (13)

where,

P is a matrix consisting of the influence coefficients of the internal force components of the frame

element, 

K is the element stiffness matrix, and

D is a matrix consisting of the influence coefficients of the nodal displacement components of the

element. 

In a manner similar to that explained in Section 3, for obtaining influence coefficients of internal

force components in frame structures, transposal of the element stiffness matrix K may be taken as

the element loading matrix R. If the influence line ordinates of any internal force component are to

be determined separately, the column of matrix KT corresponding to the internal force component

should be taken as element loading vector r. It is also concluded that the load vector r defined

herein is precisely the adjoint load vector given in Belegundu (1986, 1988). 

6. Computer implementation

A finite element computer program was written for influence cefficients of frames and plates

utilizing the derived loading matrices. The algorithm of the computer program is given as follows:

1- Read the finite element input parameters of the structure by identifying the element and

defining the local coordinates of the point for the influence coefficient which is to be evaluated,

2- Construct the global stiffness matrix S,

3- Construct the global loading vector Q for the stress, displacement or strain components by

using the matrices KT, GT, NT or BT of the considered element,

4- Perform the static analysis of the structure and find the displacement matrix D,

5- Separate the vector D into sub-vectors to obtain the influence coefficients for the external loads

in the directions of the nodal displacement components.

6- Correct the influence coefficients in the direction of response, since an initial unit displacement

is introduced. 

7- Obtain the influence line or surface ordinates within the elements using element shape

functions.
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7. Numerical examples

In this chapter, four numerical examples are given to illustrate the present formulation and to

compare the results with those obtained in previous studies.

7.1 Example 1

Consider the truss shown Fig. 1(a). This example is taken from Belegundu (1988), Cifuentez and

Paz (1991). 

For the influence line for the axial force in rod 3-9, a loading vector is defined by using the

columns P1 or P3 of the transposed element stiffness matrix K, since the axial force is constant

along the element length. Positive sign convention and transposal of element stiffness matrix K in

local axes are shown in Fig. 2, the loading vector r3-9 in global axes is given in Table 1. 

Fig. 1 (a) Plane truss, (b) influence line for the axial force in rod 3-9

Fig. 2 Positive sign convention and transposal of element stiffness matrix in local axes
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As is shown in Fig. 1(b), the influence line coefficients are the same as those given by Belegundu

(1988) and Cifuentes and Paz (1991).

7.2 Example 2

Consider the three span continious beam shown in Fig. 3(a). This example is taken from Mc

Cormac (1984) and Cifuentes and Paz (1991).

Table 1 Element loading vector of rod 3-9 in global axes 

Freedom # r
3-9

1 0

2 −0.025

3 0

4 0.025

Fig. 3(a) Three span continious beam, (b) influence lines for M8, R3 and T7
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For obtaining influence line of bending moment M8, column P4 of the member stiffness matrix

has been chosen as the loading vector of member 7-8. In a similar manner, column P6 of stiffness

matrix was chosen as the loading vector of member 6-7 for obtaining the influence line of shear

force T7. However, column P6 for member 2-3 and column P3 of member 3-4 were chosen together

as loading vectors for support reaction R3 since the vertical equilibrium equation at node 3 is

. In influence line R3, the vertical displacement of node 3 is obtained as equal to

zero from the analysis as the displacement is restrained. But, since the loading vectors correspond to

the unit vertical displacement, the resulting vertical displacements should be superimposed with this

initial relative unit displacement. Thus, the vertical displacement of node 7 is obtained as 0.850 and

influence line ordinate of shear force T7 at the 7 end of element 6-7 should be equal to −0.150. The

positive sign convention and the member stiffness matrix are shown in Fig. 4, the element loading

vectors used for the influence lines are given in Table 2.

R3 T3

2 3–
T3

3 4–
–=

Fig. 4 Positive sign convention and element stiffness matrix

Table 2 Element loading vectors used for influence line ordinates

Freedom # r
7-8

r
2-3

r
3-4

r
6-7

1 −0.200 0.060 −0.060 −0.060

2 0 0 0 0

3 −0.060 0.012 −0.012 0.012

4 −0.040 0.060 −0.060 0.060

5 0 0 0 0

6 −0.060 0.012 −0.012 0.012
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It is concluded from this example, all the influence line ordinates shown in Fig. 3(b) are in close

agreement with those of Mc Cormac (1984) and Cifuentes and Paz (1991).

7.3 Example 3

Consider the simply supported square plate shown in Fig. 5 and the corresponding finite element

mesh Cifuentes and Paz (1991). The stiffness and stress matrices of fully compatible, 16 DOF plate

finite element shown in Fig. 6, are taken from Bogner et al. (1965). 

For the influence surface coefficients of Mx for node 41, the column of the element stress matrix

corresponding to Mx is taken as loading vector. The loading vectors used for the analysis are given

in Table 3. Since the average Mx stress is considered, the average loading vectors of the four

elements connected at node 41 are loaded together. Thus, ¼th of the element loading vectors are

used for the analysis.

After the analysis of the plate for given element loading vectors, influence surface coefficients of

Fig. 6 16 DOF plate finite element

Fig. 5 Geometrical characteristics and finite element mesh of square plate
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Mx are obtained. The coefficients at chosen nodes are given in Table 4.

Influence surface coefficient of Mx at node 39 was obtained as −0.06 by Cifuentes and Paz

(1991). The negative sign of the ordinate obtained by Cifuentes and Paz (1991) may be due to

positive sign convention. It should be noted that the element stiffness and stress matrices given by

Bogner et al. (1965) were used in computer code for illustration of the procedure. However, the

procedure is open to the stiffness and stress matrices of any kind of finite element. The contour plot

of influence surface of Mx for node 41 is also given in Fig. 7. 

Table 3 Loading vectors for the influence surface coefficients of Mx

Freedom # r
29

r
28

r
37

r
36

1 499.200 −384.000 −115.200 0.000

2 −9.600 0.000 4.800 0.000

3 32.000 −16.000 0.000 0.000

4 0.000 0.000 0.000 0.000

5 −384.000 499.200 0.000 −115.200

6 0.000 −9.600 0.000 4.800

7 16.000 −32.000 0.000 0.000

8 0.000 0.000 0.000 0.000

9 −115.200 0.000 499.200 −384.000

10 −4.800 0.000 9.600 0.000

11 0.000 0.000 32.000 −16.000

12 0.000 0.000 0.000 0.000

13 0.000 −115.200 −384.000 499.200

14 0.000 −4.800 0.000 9.600

15 0.000 0.000 16.000 −32.000

16 0.000 0.000 0.000 0.000

Table 4 Influence surface ordinates of Mx at chosen nodes for square plate

Node # IS coefficient of Mx

11 0.01077

17 0.01077

21 0.04447

25 0.04447

31 0.11645

33 0.11645

39 0.05777

41 0.34609

49 0.11645

51 0.11645

57 0.04447

61 0.04447

65 0.01077

71 0.01077
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7.4 Example 4 

Consider the simply supported L shaped plate shown in Fig. 8 and the corresponding finite

element mesh. It was intended to obtain the influence surface coefficients of Mx and Mxy for node

41.

Fig. 7 Contour plot of influence surface of Mx for node 41 – values to be multiplied by 10−3

Fig. 8 Geometrical characteristics and finite element mesh of L shaped plate
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The loading vectors used for the influence surface coefficients are given in Table 5. For the

average influence surface coefficients, the average loading vectors of four elements connected at

node 41 are loaded together. Thus, ¼th of element loading vectors are used for the analysis.

After the analysis of plate for given loading vectors, influence surface coefficients of Mx and Mxy

are obtained. The chosen coefficients are given Tables 6 and 7. 

Table 5 Loading vectors for influence surface coefficients of Mx and Mxy 

Freedom #
r
27

r
26

r
35

r
34

Mx Mxy Mx Mxy Mx Mxy Mx Mxy

1 499.200 0.000 −384.000 0.000 −115.200 0.000 0.000 0.000

2 −9.600 0.000 0.000 0.000 4.800 0.000 0.000 0.000

3 32.000 0.000 −16.000 0.000 0.000 0.000 0.000 0.000

4 0.000 −0.700 0.000 0.000 0.000 0.000 0.000 0.000

5 −384.000 0.000 499.200 0.000 0.000 0.000 −115.200 0.000

6 0.000 0.000 −9.600 0.000 0.000 0.000 4.800 0.000

7 16.000 0.000 −32.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 −0.700 0.000 0.000 0.000 0.000

9 −115.200 0.000 0.000 0.000 499.200 0.000 −384.000 0.000

10 −4.800 0.000 0.000 0.000 9.600 0.000 0.000 0.000

11 0.000 0.000 0.000 0.000 32.000 0.000 −16.000 0.000

12 0.000 0.000 0.000 0.000 0.000 −0.700 0.000 0.000

13 0.000 0.000 −115.200 0.000 −384.000 0.000 499.200 0.000

14 0.000 0.000 −4.800 0.000 0.000 0.000 9.600 0.000

15 0.000 0.000 0.000 0.000 16.000 0.000 −32.000 0.000

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.700

Table 6 Influence surface coefficients of Mx at the chosen nodes for the L shaped plate

Node # IS coefficient of Mx

7 0.00460

9 0.00439

17 0.02307

19 0.02048

31 0.06661

33 0.06277

35 −0.00417

37 −0.00236

38 0.00000

39 0.00000

41 0.28257

49 0.04823

51 0.04730

53 −0.00299

55 −0.00223
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The contour plots of the influence surfaces of Mx and Mxy for node 41 are also shown in Fig. 9

and Fig. 10 respectively.

8. Conclusions

General loading matrices are defined for determination of influence line or surface coefficients of

internal force, stress, displacement or strain components in linear-elastic structures by using

governing equations and basic finite element matrices. Thus, the influence line or surface

Table 7 Influence surface coefficients of Mxy at chosen nodes for L shaped plate

Node # IS coefficient of Mxy

7 0.00050

9 0.00023

17 0.00344

19 −0.00072

31 0.02106

33 −0.01893

35 −0.00072

37 0.00023

41 0.00219

49 −0.01656

51 0.02106

53 0.00344

55 0.00050

Fig. 9 Contour plot of influence surface of Mx for
point 41– values to be multiplied by 10−3

Fig. 10 Contour plot of influence surface of Mxy for
point 41– values to be multiplied by 10-3
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coefficients of any internal force, stress, displacement or strain components can be directly obtained

from the analysis of structure. Once the nodal values of the influence functions are determined,

those within the elements may be easily calculated using the element shape functions. The proposed

technique is very effective for the finite element codes, since it utilizes the existing finite element

matrices to obtain influence line or surface coefficients without any revision of input data or the

definition of loading vectors by calculating new displacement fields. Moreover, the technique

presented herein may also be utilized for crack growth problems solved by step by step

linearization, instead of through introduced unit force or displacement techniques.
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