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Modal analysis of cracked cantilever composite beams 
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Abstract. Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced
polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric
model applicable to investigate the vibration of cracked composite beams is developed. In this new
approach, from the crack section, the composite beam separated into two parts coupled by a flexibility
matrix taking into account the interaction forces. These forces are derived from the fracture mechanics
theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain
energy release rate expressions. Numerical results are obtained for modal analysis of composite beams
with a transverse non-propagating open crack, addressing the effects of the location and depth of the
crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes.
By means of modal data, the position and dimension of the defect can be found. The results of the study
confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite
beams. Present technique can be easily extended to composite plates and shells.
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1. Introduction

Advanced composite materials have been increasingly used over the past few decades as their

high ratio of stiffness and strength to weight. During operation, all structures are subjected to

degenerative effects that may trigger the initiation of structural defects such as cracks which, as

time progresses, lead to the failure or collapse of the structure. As a consequence, the significance

of examination in the quality assurance of manufactured products is well understood. Numerous

techniques, such as non-destructive monitoring tests, can be used to screen the circumstance of a

structure. Novel methods to examine structural defects such as cracks should be investigated. A

crack in a structural element affects its dynamical performance and alters its stiffness and damping

properties. Accordingly, the natural frequencies and mode shapes of the structure hold information

concerning the location and size of the damage. Vibration analysis, which allows on line inspection,

is an attractive method to detect cracks in the structures. What types of changes occur in the
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vibration features, how these changes can be detected and how the condition of the structure is

interpreted has been the topic of several research studies in the past (Cawley and Adams 1979,

Gouranis and Dimarogonas 1988, Shen and Chu 1992, Ruotolo et al. 1996, Kisa et al. 1998, Kisa

and Brandon 2000a, Kisa and Brandon 2000b) and reviewed by Wauer (1991) and Dimarogonas

(1996).

Modal analysis of cracked composite beams has received a good amount of attention in the

literature. Adams et al. (1978) showed that any defect in fibre reinforced plastics could be detected

by reduction in natural frequencies and increase in damping. Nikpour and Dimarogonas (1988)

investigated the variation of the mixed term in the energy release rate for various angles of

inclination of the material axes of symmetry and derived the local compliance matrix of a prismatic

beam having a central crack. Nikpour (1990) studied the buckling of cracked composite columns

and showed that the instability increases with the column slenderness and the crack depth. Oral

(1991) developed a shear flexible finite element for non-uniform laminated composite beams. He

tested the performance of the element with isotropic and composite materials, constant and variable

cross-sections, and straight and curved geometries. Krawczuk (1994) developed a new finite

element for the static and dynamic analysis of cracked composite beams. He assumed that the crack

changes only the stiffness of the element whereas the mass of the element is unchanged. Krawczuk

and Ostachowicz (1995) investigated the eigenfrequencies of a cracked cantilever composite beam.

They presented two models of the beam. In the first model the crack was modelled by a massless

spring and in the second model the cracked part of the beam replaced by a cracked element.

Krawczuk et al. (1997) proposed an algorithm to find the characteristic matrices of a composite

beam with a single transverse fatigue crack. Recently, Song et al. (2003) investigated the dynamics

of anisotropic composite cantilevers. He presented an exact solution methodology utilising Laplace

transform technique to study the bending free vibration of cantilever composite beams with cracks.

The full eigensolution of a structure containing substructures each having large numbers of

degrees of freedom can be cumbersome and costly in computing time. A method, which is called as

‘substructuring’, proposed by Hurty (1965) enabled the problem to be broken up into separate

elements and thus considerably reduced its complexity. In many respects, the original rationale for

such substructuring techniques has been rendered obsolete by the widespread availability of high

performance computers. In this study the component mode synthesis method is used to separate a

non-linear problem into two linear subsystems. To the authors’ best knowledge this method is new

and has not been used for the purposing of separating a global non-linear system into two linear

subsystems, in the past studies.

2. Mathematical model

The model selected is a cantilever composite beam, of uniform cross section A, having a

transverse edge crack of depth a at a variable position L1. The width, length and height of the beam

are B, L and H, respectively, Fig. 1. The angle between the fibres and the axis of the beam is α. 

The composite beam is partitioned into two components, A and B, at the crack section allowing to

a substructure approach, Fig. 2. By separating the complete beam into two components, global non-

linear system can be detached into two linear subsystems coupled by a local stiffness discontinuity.

In the current study, every component is also divided into finite elements with two nodes and three

degrees of freedom at each node as shown in Fig. 2.
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2.1 Stiffness and mass matrices for composite beam element

The stiffness and mass matrices are developed from the procedure given by Krawczuk (1995) and

modified to three degrees of freedom at each node, . As can be seen in Fig. 2,

representing a general finite element, the applied system forces, , and

the related displacements, , are shown. The stiffness matrix for a two-

noded composite beam element with three degrees of freedom δ = {u, v, θ} at the each node, for

bending in the xy plane, are given as follows 

δ u v θ, ,{ }=

F F1 Q1 M1 F2 Q2 M2, , , , ,{ }=

δ u1 v1 θ1 u2 v2 θ2, , , , ,{ }=

Fig. 1 Geometry of the cracked cantilever composite beam

Fig. 2 Components of the whole structure and dividing them into the finite number of elements
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(1)

where kij (i, j = 1,...,6) are given as 

(2)

where B, H and Le are the dimensions of the composite beam element.  are the stress-

strain constants and given as, Vinson and Sierakowski (1991)

(3)

(4)

where m = cosα, n = sinα and Sij terms are determined from the relations 

(5)

where E11, E22, G12, and ν12 are the mechanical properties of the composite and can be determined

as shown in the Appendix.

The mass matrix of the composite beam element can be given as

(6)

where mij (i, j = 1,...,6) are 

Kel kij[ ]
6x6( )=

k11 k55 7BHS33 3Le⁄= =

k12 k21 k56– k65– BHS33 2⁄= = = =

k13 k31 k35 k53 8BHS33 3Le⁄–= = = =

k14 k41 k36 k63 k23– k32– k45– k54– 2BHS33 3⁄= = = = = = = =

k15 k51 BHS 33 3Le⁄= =

k16 k61 k25– k52– BHS33 6⁄–= = = =

k22 k66 BH 7H
2
S 11 36Le⁄ LeS 33 9⁄+( )= =

k24 k42 k46 k64 BH 2H
2
S 11 9Le⁄– LeS 33 9⁄+( )= = = =

k26 k62 BH H
2
S 11 36Le⁄ LeS 33 18⁄–( )= =

k33 16BHS33 3Le⁄=

k44 BH 4H
2
S 11 9Le⁄ 4LeS 33 9⁄+( )=

k34 k43 0= =

S11 and S 33

S 11 S11m
4

2 S12 2S33+( )m2
n
2

S22n
4

+ +=

S 33 S11 2S12– S22 2S33–+( )m2
n
2

S33 m
4

n
4

+( )+=

S11

E11

1 ν12

2
E22 E11⁄–( )

----------------------------------------, S22 S11E22 E11⁄= , S12 ν12S22= , S33 G12==

Mel mij[ ]
6x6( )=

m11 m55 2ρBHLe 15⁄= =

m12 m21 m56– m65– ρBHLe

2
180⁄= = = =
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(7)

where ρ is the mass density of the element.

2.2 The stiffness matrix induced by the crack

According to the St Venant’s principle, the stress field is influenced only in the region near to the

crack. The additional strain energy due to crack leads to flexibility coefficients expressed by stress

intensity factors derived by means of Castigliano’s theorem in the linear elastic range. The

compliance coefficients Cij induced by the crack are derived from the strain energy release rate, J,

developed in Griffith-Irwin theory (Tada et al. 1985). J can be given as

(8)

where A is the area of the crack section, Pi are the corresponding loads, U is the strain energy of the

beam due to crack and can be expressed as, Nikpour and Dimarogonas (1988)

(9)

where KI and KII are the stress intensity factors for the fracture modes of I and II. Coefficients D1,

D12 and D2 are depending on the materials parameters 

(10)

(11)

(12)

The coefficients s1, s2 and  are given in the Appendix. The mode I and II stress intensity factors,

KI and KII, for a composite beam with a crack are expressed as, Bao et al. (1992)

m13 m31 m35 m53 ρBHLe 15⁄= = = =

m14 m41 m45– m54– ρBHLe

2
90⁄–= = = =

m36 m63 m23 m32 m34 m43 0= = = = ==

m15 m51 ρBHLe 30⁄–= =

m16 m61 m25– m52– ρBHLe

2
180⁄= = = =

m22 m66 ρBHLe Le

2
1890⁄ H

2
360⁄–( )= =

m24 m42 m46 m64 ρBHLe Le

2
945⁄– H

2
180⁄+( )= = = =

m26 m62 ρBHLe Le

2
1890⁄ H

2
360⁄–( )= =

m33 8ρBHLe 15⁄=

m44 ρBHLe 2Le

2
945⁄ 2H

2
45⁄+( )=

J
∂U Pi A,( )

∂A
------------------------=

U D1 KIi

2

i 1=

i N=

∑ D12 KIi KIIj

j 1=

j N=

∑
i 1=

i N=

∑ D2 KIIi

2

i 1=

i N=

∑+ +
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⎜ ⎟
⎛ ⎞

dA
A∫=

D1 0.5b22Im
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---------------
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(13)

where σi is the stress for the corresponding fracture mode, Fji (a/H) is the correction factor for the

finite specimen size, Yj(ξ ) is the correction factor for the anisotropic material, a is the crack depth

and H is the element height. Castigliano’s theorem (Przemieniecki 1967) implies that the additional

displacement due to crack, according to the direction of the Pi, is

(14)

Substituting the strain energy release rate J into Eq. (14) the relation between displacement and

strain energy release rate J can be written as follows

(15)

The flexibility coefficients, which are the functions of the crack shape and the stress intensity

factors, can be introduced as follows

 (16)

The compliance coefficients matrix, after being derived from above equation, can be given

according to the displacement vector  as

(17)

where cij (i, j = 1, 2, 3) are derived by using Eqs. (8) to (16).

The inverse of the compliance coefficients matrix, C−1, is the stiffness matrix due to crack.

Considering the cracked node as a cracked element of zero length and zero mass, the crack stiffness

matrix can be represented by equivalent compliance coefficients. Finally, resulting stiffness matrix

for the crack can be given as

(18)

3. Component mode synthesis

The equation of motion of a mid-plane symmetrical composite beam is, Vinson and Sierakowski

(1991)

(19)

where I, ρ, A, y(x, t) and f (t) are the geometrical moment of inertia of the beam cross-section,

material density, cross-sectional area of the beam, transverse deflection of the beam and the global

force vector for the system, respectively. Now, consider the component A, Fig. 2, for undamped

free vibration analysis, the equation of motion can be given as

Kji σi πaYj ξ( )Fji a H⁄( )=

ui

∂U Pi A,( )
∂Pi

------------------------=

ui

∂

∂Pi

-------- J Pi A,( ) Ad
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2
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A
∫

∂
2
U

∂Pi∂Pj

----------------= = =

δ u v θ, ,{ }=

C ci j[ ]
3x3( )=

Kc
C[ ] 1–

  C[ ] 1–
–

C[ ] 1–
C[ ] 1–

6x6( )

=

IS11∂
4
y x t,( ) ∂x

4⁄ ρA∂
2
y x t,( ) ∂t

2⁄+ f t( )=
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(20)

where I, sA,  and  are the identity matrix, principal modal coordinates, mass normalised

mode vector and a diagonal matrix comprising the eigenvalues of A, respectively.

3.1 Coupling of the components

If two components, A and B, are connected together by spring, as shown in Fig. 3, then the

kinetic and strain energy of the two components, in terms of principal modal coordinates, can be

given as

(21)

where T and U are kinetic and strain energy, respectively. M and K in Eq. (21) are

(22)

The strain energy of the connectors, in terms of principal modal coordinates, is

(23)

where KC is the stiffness matrix of the cracked nodal element and can be calculated by using Eq. (18).

ψ in Eq. (23) can be written as

(24)

The total strain energy of the system is, therefore,

(25)

Is··A ωA

2
sA+ ψA

T
fA t( )=

ψA

T
ωA

2

T
1

2
---s·TMs·=

U
1

2
---s

T
Ks=

M
I  0

0  I
K

ωA

2
  0

0  ωB

2

= =

UC

1

2
---s

T
ψ

T
KCψs=

ψ
ψA  0

0  ψB
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UT

1

2
---s

T
K ψ

T
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Fig. 3 Two components connected by spring
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where K has been given by Eq. (22). The equation of motion of the complete structure is

(26)

where ψ has been given by Eq. (24). From Eq. (26), which is solved by the Lanczos algorithm, the

eigenvalues and eigenvectors of the cracked system can be determined. 

4. Numerical examples and discussion

4.1 Uniform cantilever composite beam

As a first example, the uniform cantilever composite beam with a transverse non-propagating

open crack, shown in Fig. 1, is chosen and the described method has been applied. The beam

assumed to be made of unidirectional graphite fibre-reinforced polyamide. In order to check the

accuracy of the model the geometrical characteristics and material properties of the beam were

chosen as the same of those used by Krawczuk et al. (1997). The material properties of the graphite

fibre-reinforced polyamide composite, in terms of fibres and matrix, identified by the indices f and

m, respectively, are

Modulus of Elasticity : Em = 2.756 GPa, Ef = 275.6 GPa

Modulus of Rigidity : Gm = 1.036 GPa, Gf = 114.8 GPa

Poisson’s Ratio : νm = 0.33, νf = 0.2

Mass Density : ρm = 1600 kg/m3, ρf = 1900 kg/m3

The geometrical characteristics, the length (L), height (H) and width (B) of the composite beam, as

consistent with those used by Krawczuk et al. (1997), are chosen as 0.6 m, 0.025 m and 0.05 m,

respectively.

Firstly, the presented method has been applied for the free vibration analysis of corresponding

non-cracked composite cantilever beam. The three lowest eigenfrequencies for various values of the

angle of the fibre (α ) and the volume fraction of fibre (V) are determined. As shown in Fig. 4, the

results that found by using a four element model are compared with the analytical and numerical

solutions found in the literature (Krawczuk et al. 1997, Vinson and Sierakowski 1991). The non-

dimensional natural frequencies are normalised according to the following relation

(27)

where L, H and ωi show the length, height of the beam and the ith dimensional natural frequency,

respectively. As can be seen from the Figures, an excellent agreement has been found between the

results. 

Secondly, the natural frequencies and mode shapes of the cracked cantilever composite beam are

analysed. The calculations have been carried out for various volume fractions of the fibre (V), the

fibre angles (α ) and the crack ratios (a/H). The natural frequencies of the cracked cantilever

composite beam are lower than those of the corresponding intact beam, as expected. In Fig. 5, the

changes in the first natural frequency of the cracked beam are given as a function of the different

s·· K ψ
T
KCψ+( )s ψ

T
f t( )=

ω i L ω iH S11 12ρ⁄⁄=



Modal analysis of cracked cantilever composite beams 151

crack ratios (a/H) and the fibre orientations (α ) for several volume fractions of fibre (V ). First non-

dimensional natural frequencies are normalised according to following equation

(28)

where ω (α ) and ωnc(α ) denote the first natural frequency of the cracked and non-cracked cantilever

composite beam as a function of the angle of the fibre (α ), respectively. 

As seen in Fig. 5, when the crack is perpendicular to the fibre direction (α = 0o), the decrease in

the first natural frequency is the highest. As the angle of the fibre increases, the changes in the first

frequency reduce. For the value of the angle of fibre is greater than 45o these changes are very low

and the cracked cantilever composite beam behaves as if a non-cracked beam. This can be

explained as the flexibility due to crack is negligible when the angle of the fibre is greater than 45o

(Krawczuk et al. 1997). The flexibility induced by the crack is higher when the volume fraction of

the fibre is between 0.2 and 0.8 (Krawczuk et al. 1997), and the maximum when V = 0.45. This can

ω
ω α( )

ωnc α( )
-----------------=

Fig. 4 Non-dimensional natural frequencies of the intact composite beam as a function of the fibre angle α,
for various volume fractions V
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be clearly seen from Fig. 5, as the reduction in the first natural frequency is higher for the volume

fraction of the fibre is between 0.3 and 0.5. 

In Fig. 6, the variation of the first natural frequencies of the cracked cantilever composite beam is

presented as a function of relative crack positions (L1/L) and depths (a/H). In the analysis, the

volume fraction and angle of fibre are assumed to be 0.1 and 0o, respectively. Non-dimensional

natural frequencies are normalised according to Eq. (28). Due to the bending moment along the

beam, which is concentrated at the fixed end, a crack near the free end will have a smaller effect on

the fundamental frequency than a crack closer to the fixed end, and as seen from Fig. 6, it can be

concluded that the frequencies are almost unchanged when the crack is located away from the fixed

end.

Fig. 5 Changes in the first natural frequency of the cracked composite beam as a function of the angle of the
fibre α, for various crack ratios a/H and volume fractions V
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In Figs. 7, 8 and 9, the first, second and third natural bending mode shapes of the cracked

cantilever composite beam for the values of the angle of fibre α = 0o, 30o, 60o and 90o are shown.

The mode shapes have been found by assuming that the crack location (L1/L), volume fraction of

fibre (V) and crack ratio (a/H) are equal to 0.1, 0.1 and 0.2, respectively. The mode shapes show

that the effect of the angle of the fibre is the highest when α = 0o. As the fibre angle increases, the

changes in the mode shape decrease. If the angle of the fibre is greater than 45o, while the first and

second natural bending mode shapes do not give much information about the defect, the third

Fig. 6 Changes in the first natural frequency for various relative crack depth and location

Fig. 7 First natural bending mode shapes of the cracked composite beam for the values of the angle of fibres
α = 0o, 30o, 60o, 90o and L1/L = 0.1, V = 0.1, a/H = 0.2
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Fig. 8 Second natural bending mode shapes of the cracked composite beam for the values of the angle of
fibres α = 0o, 30o, 60o, 90o and L1/L = 0.1, V = 0.1, a/H = 0.2

Fig. 9 Third natural bending mode shapes of the cracked composite beam for the values of the angle of fibres
α = 0o, 30o, 60o, 90o and L1/L = 0.1, V = 0.1, a/H = 0.2



Modal analysis of cracked cantilever composite beams 155

Fig. 10 First natural bending mode shapes of the cracked composite beam for the values of the volume
fraction of fibre V = 0.1, 0.3, 0.5, 0.7 and L1/L = 0.1, α = 0o, a/H = 0.2

Fig. 11 Second natural bending mode shapes of the cracked composite beam for the values of the volume
fraction of fibre V = 0.1, 0.3, 0.5, 0.7 and L1/L = 0.1, α = 0o, a/H = 0.2
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natural bending mode shape, as can be seen in Fig. 9, contains more information about the crack.

Consequently for the inspection of the structures, several mode shapes should be investigated. 

Figs. 10, 11 and 12 show the first, second and third natural bending mode shapes of the cracked

cantilever composite beam for the values of the volume fraction of fibre V = 0.1, 0.3, 0.5 and 0.7.

In the analysis, crack location (L1/L), angle of fibre (α ) and crack ratio (a/H) are taken as 0.1, 0o

and 0.2, respectively. From the figures, it is clearly seen that the changes in the first, second and

third natural bending mode shapes are higher for the volume fraction of the fibre is between 0.2 and

0.8.

4.2 Two-step cantilever composite beam

Second example is chosen as a two-step cracked cantilever composite beam shown in Fig. 13.

The material properties of the composite beam are identical to the beam in the preceding example

and the geometrical properties are L1 = 0.36 m, L2 = 0.24 m, H1 = 0.025 m, H2 = 0.02 m and B =

0.05 m.

In Fig. 14, the variation of the first natural frequencies of the two-step cracked composite beam is

presented as a function of relative crack positions (Lc /L) and depths (a/H). 

In the analysis, the volume fraction and angle of fibre are assumed to be 0.1 and 0o, respectively.

Non-dimensional natural frequencies are normalised according to Eq. (28). As seen from the figure,

a crack near the fixed end has greater effects on the fundamental frequency. The location of the

change of cross-section of the beam can be clearly discerned from the figure.

Fig. 12 Third natural bending mode shapes of the cracked composite beam for the values of the volume
fraction of fibre V = 0.1, 0.3, 0.5, 0.7 and L1/L = 0.1, α = 0o, a/H = 0.2
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In Fig. 15, by assuming that Lc /L = 0.1 and V = 0.1, the changes in the first natural bending

frequency of the two-step cracked beam are given as a function of the fibre orientations (α), for

several crack ratios (a/H). Again, it is obvious that, as the flexibility due to crack is maximum when

Fig. 13 Geometry of the stepped composite beam

Fig. 14 First non-dimensional natural bending frequencies as a function of crack location for various crack
ratios, when V = 0.1 and α = 0o

Fig. 15 First non-dimensional natural bending frequencies as a function of the angle of fibre for various crack
ratios, when L

c
/L = 0.1 and V = 0.1
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the angle of the fibre is equal to 0o (Krawczuk et al. 1997), when the crack is perpendicular to the

fibre direction, the decrease in the first natural frequency is the highest.

As discussed in the first example, the flexibility induced by the crack is higher when the volume

fraction of the fibre is between 0.2 and 0.8, and maximum when V = 0.45. This can be apparently

seen from the Fig. 16 that illustrates the changes in the first non-dimensional natural bending

frequencies as a function of the volume fraction of fibre for various crack ratios and locations.

5. Conclusions

In this paper a new approach for the modal analysis of cracked composite beams has been

presented. It is showed that the knowledge of modal data of cracked composite beams forms an

important aspect in assessing the structural failure. It is noted that if the angle of the fibre is greater

than 45o, as the first and second natural bending mode shapes do not contain much information

about the defect; several mode shapes should be examined. To illustrate the effectiveness of the

approach, results have been compared with previous studies published in the literature leading to

confidence in the validity of this approach. In the method, the component mode synthesis technique

Fig. 16 Changes in the first non-dimensional natural bending frequencies as a function of the volume fraction
of fibre for various crack ratios and locations
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is used and a non-linear problem divided into two linear subsystems. As the whole structure is

separated from the crack section, present approach is capable of analysing the non-linear interface

effects such as contact and impact that occur when crack closes.

It is evident that, the analysis of the present study is mainly for cantilever composite beams with

constant or abruptly changing cross-sections. However, extension to tapered cantilever beams can be

carried out trivially. Other possible extensions of the present study are the investigation of the

beams with other boundary conditions, inclusion of damping to the analysis and consideration of the

propagating of crack, which are left for future works. 
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Appendix 

The roots of following characteristic equation give the complex constans s1 and s2 (Vinson and Sierakowski
1991)

where  constans are

where m = cosα, n = sinα and bij are compliance constants of the composite along the principal axes. bij can
be related to the mechanical constants of the material by

where E11, E22, G12, G23, ν12, ν23, and ρ are the mechanical properties of the composite and calculated using
the following formulae 

where indices m and f denote matrix and fibre, respectively. E, G, ν and ρ are the modulus of elasticity, the
modulus of rigidity, the Poisson’s ratio and the mass density, respectively.
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