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Free vibrations of circular arches
with variable cross-section
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Abstract. The differential equations governing free, in-plane vibrations of linearly elastic circular arches
with variable cross-sections are derived and solved numerically for quadratic arches with three types
of rectangular cross sections. Frequencies, mode shapes, cross-sectional load distributions, and the effects
of rotatory inertia on frequencies are reported. Experimental measurements of frequencies and their
corresponding mode shapes agree closely with those predicted by theory. The numerical methods presented
here for computing frequencies and mode shapes are efficient and reliable.
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1. Introduction

The governing equations and the significant historical literature on the in-plane vibrations
of linearly elastic arches with uniform cross-section are reported in references (Wolf 1971, Veletsos,
et al. 1972, Romanelli and Laura 1972, Davis, et al. 1972, Austin and Veletsos 1973, Wang 1975,
Irie, er al. 1983, and Lee and Wilson 1990) and their citations. For arches with variable cross-
section, Royster (1966) computed the fundamental extensional frequency of a clamped tapered
circular arch; Wang (1972) computed the fundamental extensional frequency of a clamped para-
bolic arch with variable width and depth: and Laura, et al. (1988) calculated the fundamental
frequency of a circumferential arch with thickness varying in a discontinuous fashion. In the
works just cited, the Rayleigh-Ritz method was used. Sakiyama (1985) presented another approxi-
mate method for analysing the free vibrations of arches with variable cross-section and non-
symmetrical axis.

The main purpose of this paper is to present both the fundamental and some higher free
vibration frequencies for linearly elastic circular arches with variable cross-section in which rota-
tory inertia is included. The differential equations for in-plane vibration are derived and solved
numerically.

Numerical results are presented for quadratic arched members of variable cross-section. Three
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general cross-sectional shapes of rectangular section are selected. Hinged-hinged and clamped-
clamped end constraints are considered. The effects of the cross-sectional shapes on the frequen-
cies are reported. The lowest four natural frequencies are presented as functions of three non-
dimensional system parameters: (1) the ratio of moment of inertia of cross-section of the end
to that of arch crown ratio, (2) the slenderness ratio and (3) the subtended angle. Typical mode
shapes of deformations and cross section load distributions are presented. Also included are
experimental results that serve to validate the theory.

2. Mathematical model

The geometry of the circular arch with variable cross-section, symmetric about the crown,
is depicted in Fig. 1(a). Its radius, subtended angle and span length are a, a and /, respectively.
The radial line to a typical arch point is inclined at angle ¢ with the horizontal. The left support
is at ¢=p Shown in Fig. 1(a) are the positive direction of radial and tangential displacements,
w and v, and positive direction of the rotation angle v of the cross section at point ¢.

The area moments of inertia of cross-section at ¢, at the crown of arch and at the left/right
end are denoted as I, I, and I, respectively. The cross sectional areas at ¢ and at the crown
of arch are depicted as A and A. The abscissa z is measured from at any point of arch ¢
to the arch vertical center line and the angle between the arch axis and the horizontal is 6.
The angle between the arch axis and the horizontal at the left end support is 6, which is equal
to half the subtended angle, or a/2.

The quantities / and A are expressed in the form

I=1.F, A=A4.G (1,2)

where both F=F(¢) and G=G(¢) are the functions of the single variable ¢, as discussed in
section 3.

A small element of the arch shown in Fig. 1(b) defines the positive directions for its loads:
the axial forces N; the shear forces Q; the bending moments M; the radial inertia force P,
the tangential inertia force P; and rotatory inertia couple 7. With the inertia forces and the
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inertia couple treated as equivalent static quantities, the three equations for “dynamic equilibrium”
of the element are

dN/d¢+Q+aP,=0. dQ/d¢—~N+aP,=0, a 'dM/dg—Q—T=0 (3-5)

The equations that relate N, M and y to the displacements w and v account for axial deforma-
tions due to N. These equations, given by Borg and Gennaro (1959), are

N=EAda"'(V'+w)+Ela (W +w)=EAGa ' (v'+w)+ElLFa* (W +w) (6)
M= —Ela (W' +w)=—ELFa *(0W"+w) N
v=a '(w—v) (8)

where each prime is one derivative with respect to ¢ and E is Young’s modulus.

The arch is assumed to be in harmonic motion, or each coordinate is proportional to sin(wt)
where @ is the frequency parameter and f is time. The inertia loadings per unit arc length
are then

P=yd&*w=y4.Gww )
P=ydarv=yAGwr (10)
T=vAde y=yl Fora '(w —v) (11)

where y is mass density of arch material and y4=v4.G is mass per unit arc length at any
point of arch.
When Egs. (6) and (7) are differentiated once, the results are

dN/dp=EAG'a™ ' (V' +w)+EAGa™ ' (V"+wY+ELF'a W +w)+ELFa (W +w') (12)
dMjd¢= —EI.F'a *(W' +w)—El.Fa *(w" +w") (13)
When Egs. (11) and (13) are substituted into Eq. (5), then
O=a"'dM/d¢—RT=—EIl.F'a (W' +w)—ElLFa*(W"+w)—Ry Fa’a ' (W —v) (14)
Here R=0 if rotatory inertia is ignored and R=1 if rotatory inertia is included.
The following equation is obtained by differentiating Eq. (14):
dgdq): __EI"FIIa—j(M)Il+n’)__EILlFla~3(WIH+w!)_E1()FIa—3(wlll+wr)
—ElFa *W"+w")—RYUF'wa (W —v)~ Ry .Fora ' (W' —V') (15)

To facilitate the numerical studies, the following non-dimensional system variables are defined.
The first is the frequency parameter,

Ci=wa’(yA/EL)" (16)
which is written in terms of the ith frequency w=w, i=1,23,4,---. The slenderness ratio s
is
s=alll/A)"* (17)
The displacements are normalized by the arch radius a:
E=wla, n=v/a (18a,b)

When Egs. (15), (6) and (9) are substituted into Eq. (4) and the non-dimensional forms of
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Eqgs. (16)~(18) are used, the result is
E"==2F'F & —(Rs *C}+F'F '+ )& +(Rs*C—2F 'F~' &
+(C’GF '~ F"F'—$s’GF ' = 1)é+(Rs 2C?—s*GF "YW +Rs*CF'F'n (19)

When Egs. (12), (14) and (10) are substituted into Eq. (3) and Eqgs. (16)~(18) are used, the
result is

=R *CFG'= DN —GG GG ' —s *CHRFG™ ' +s)n (20)

The Egs. (19) and (20) with F=G=1 and F'=F"=G"=0 are reduced to governing differential
equations for in-plane free vibration of circular arch with the uniform cross-section and these
reduced results coincide with equations of Veletsos, ef al (1972).

For the hinged-hinged arch, the boundary conditions at the ends ¢=p8 and ¢=a+f are

£&=0, =0, =0 (21-23)

where the last condition assures that the moment M given by Eq. (7) is zero.
For the clamped-clamped arch, the boundary conditions at the ends ¢=p and ¢=a+f are

£=0, n=0. {'=0 (24-26)

where the last condition assures that the end rotation v given by Eq. (8) is zero.

Arch stresses may be computed from the following nondimensional forms for the bending
moment M, the normal load N, and the transverse shear load Q. The respective results, obtained
from Egs. (7), (6) and (14) using Egs. (16)-(18), are:

m=Ma/El,.= —F({"+ &) 27N
n=Na*/El.=s’G(f + )+ F(&"+ &) (28)
q=Qa"/El.=—F'({"+)—F({"+¢)—Rs*CPF({ — 1) (29)

3. Shape functions: F and G

The shape functions F and G first introduced in Egs. (1) and (2), and contained in the governing
differential Eqgs. (19) and (20), are now defined. Of the two basic classes of arched members,
prime and quadratic (Leontovich 1969), the quadratic arch is considered here. Examples are
also limited rectangular cross sections.

First, the function F is derived for the quadratic arch. A quadratic arch is defined as an
arch whose moment of inertia of cross-section varies in accordance with the quadratic equation:

1

€

I= : (30)
I, Ak
- 1- — | rcos@
I,cos8, !

The terms of 8 and z/I in above equation can be expressed in the variable ¢ as follows.

6=n/2— @, 2z/I=cosec(a/2)cos¢ (31,32)

A new non-dimensional parameter is defined as the ratio of I, and I:
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Fig. 2 Cross-sectional shapes.

k=1/I. 33)
When Egs. (31)~(33) and §,=a/2 are substituted into Eq. (30), the result is
I=1.cosece/(1+Dcos’¢) (34
where
D:cosecz(a/Z)[ (o) —1] (35)

When Egs. (1) and (34) are combined, the function of F can be expressed in terms of the
variable ¢. The result is

F=cosec¢/(1+ Dcos’¢) (36)

When Eq. (36) are differentiated once and twice, the results are
F'=F?cos¢(—3Dcos’¢p+2D—1) (37
F"=2F"'F"+F*sin¢(9Dcos’¢p— 2D+ 1) (38)

Second, the function G is defined for the following three rectangular cross sections.

(@) Depth taper, Fig. 2(a). The beam width of B is constant, and the beam depth at any
point of arch is denoted as H and at crown as H,. With the relations of I.=BH,%/12 and I=BH?/12,
the following result is obtained using Eq. (1).
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1= Btep= B (39)
Using Eqg. (39), the variable depth H is expressed as

H=H.F" (40)
With the relations A.=BH., A=BH, and Eq. (40), then the area becomes

A=BH=BH F'""=A4.F" 41)
With Eqgs. (2) and (41), G is expressed in terms of F as

G=F" 42)
When Eq. (42) is differentiated once, then the result is

G'=F *F'/3 (43)

(b) Square taper, Fig. 2(b). This is the square cross-section so the beam width and depth
at any point of arch are equal. With the derived as same procedure as in (a), the functions
G and G’ are functions of F and F', or

G:Fl‘/z, G’:F" 1/2F’/2 (44’ 45)
(c) Breadth taper, Fig. 2(c). The functions G and G’ are expressed as
G=F, G'=F' (46,47)

The theoretical results are summarized. The governing differential Egs. (19) and (20) for the
in-plane free vibration displacement mode shapes (& n) form a sixth order system. When subject
to the six homogeneous boundary conditions (three on each end of the arch), given by either
Egs. (21)~(23) for the hinged-hinged arch, or by Eqgs. (24)~(26) for the clamped-clamped arch,
the ith frequency parameter (eigenvalue) C; and its corresponding mode shapes (eigenfunctions)
&=¢ and n=n, may be computed from the governing Egs. (19) and (20). To compute these
solutions, one must specify the following arch parameters that appear in these governing equa-
tions: the arch angle a; slenderness ratio s of Eq. (17); the geometric ratio k of Eq. (33); the
rotatory inertia where R=1 if included and R=0 if ignored; and the cross sectional shape factors
F and G. For the quadratic arch defined by Eq. (30), with o and k specified, then D, F and
the derivatives of F are computed from Egs. (35)~(38). For a rectangular cross section with
a taper chosen from either type (a), (b), or (c), then the values of G and G’ are given by Egs.
(42), (43), or (44), (45), or (46), (47). respectively. With solutions to the governing equations, the
three cross sectional load distributions, the bending moment m=m, the normal load n=n,
and the transverse shear load ¢ =g, are then computed from Egs. (27)~(29), respectively. Numeri-
cal results are now illustrated.

4. Numerical method and computed results

Based on the above analysis, a general FORTRAN computer program was written to calculate
C, E=E(0). n=n:(¢d). m=m(¢), n=n;(¢) and ¢=¢,(¢). The numerical method described by Velet-
sos, et al. (1972) was used to solve the differential Eqs. (19) and (20), subject to the end constraint
Egs. 21)~(23) or (24)~(26). The hinged-hinged and clamped-clamped end constraints were consi-
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Table 1 Comparison of frequency parameter C; between this study and finite element
method (SAP 90)

Frequency parameter, C;

Geometry of arch {
This study (R=1) SAP 90

Hinged ends a=90° 1 12.38 1240
and square s=100 2 28.52 28.61
taper k=0.5 3 56.18 56.36
4 82.56 82.76
a=9%° 1 14.81 14.80
s=100 2 35.73 35.70
k=3 3 66.98 67.09
4 93.41 9345
Clamped ends a=9%0° 1 19.72 19.75
and square s=100 2 36.84 3695
taper k=05 3 70.56 70.80
4 85.98 86.09
a=90° 1 27.12 27.08
s=100 2 48.79 48.75
k=3 3 87.87 88.02
4 93.55 93.59

Table 2 Effect of rotatory inertia on frequency parameter C;

Geometry Cross sectional Frequency parameter, C;

of arch shapes =1 =2 =3 =4

27.12 48.79 87.87 93.55

25.87 47.39 82.35 9491
2585 47.32 82.07 94.82

Breadth taper

Hinged ends Depth taper 0 15.15 36.40 6891 93.14
a=9%0°, s=100 1 15.13 36.33 68.65 93.02
k=3 Square taper 0 14.82 35.80 67.22 93.54
1 14.81 3573 66.98 9341
Breadth taper 0 13.83 3378 62.20 93.41
I 13.82 3372 62.00 93.19
Clamped ends Depth taper 0 27.57 4925 90.15 93.16
a=90°, s=100 1 27.54 49.16 89.79 93.04
k=3 Square taper 0 27.15 48.88 88.21 93.65
1
0
1

dered for the three cross-sectional shapes, for given parameters a, s, k and R(=0 or 1). First,
the Determinant Search Method was used to calculate the characteristic values Cj; and then
the Runge-Kutta method was used to calculate the mode shapes. In this study, the four lowest
values of C; and the corresponding mode shapes were calculated. The numerical results, given
in Tables 1~3 and Figs. 3~6, are summarized as follows.

In Table 1, values of C; are presented for square, tapered arches with clamped and hinged
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Table 3 Effect of cross-sectional shapes on frequency parameter C;

Geometry Cross Frequency parameter, C;
¢ k sectional
of arch shape i=1 i=2 =3 =4
Hinged 0.5 Depth taper 12.06 28.06 54.64 82.28
ends Square taper 12.38 28.52 56.18 82.56
a=90° Breadth taper 13.34 29.74 6091 85.17
s=100
R=1 30  Depth taper 15.13 36.33 68.65 93.02
Square taper 14.81 3573 66.98 9341
Breadth taper 13.82 3372 62.00 93.19
Clamped 0.5 Depth taper 19.29 3643 68.73 85.75
ends Square taper 19.72 36.84 70.56 8598
a=90° Breadth taper 21.02 37.80 76.13 86.26
s=100
R=1 3.0 Depth taper 27.54 49.16 89.79 93.05
Square taper 27.12 48.79 87.87 93.55
Breadth taper 25.85 4731 82.07 94.82
120
square taper, a=90°, s=100, R=1 square taper, a=90° k=3, R=1
. clamped—clamped ends 120 . clamped—ciamped ends
— — — : hinged—hinged ends - =~ — : hinged—hinged ends
100 i=1,2,34 : from bottom to top 1=1,2,3,4 - from bottom to top
[} s 100
£ 80 i
g Y 80
I L
5 5 %0
g « S w0
20 203
]
0 AL B S S S S B i B L A B s B S St O‘]ﬁ—‘
1 2 3 4 5 o] 25 50 75 100 125 150
SECTION RATID, k SLENDERNESS RATIO, s

Fig. 3 Effect of section ratio k with a=90°, s=100, Fig. 4 Effect of slenderness ratio s with a=90°, k=3,
R=1 on frequency parameter C; for square R=1 on frequency parameter C; for square
taper. taper.

ends. Comparisons are made between C; computed using the present analysis with R=1 and
C; computed with the packaged finite element program SAP90. For the latter calculations, 100
beam elements were used and effects of shear area were not included. Comparing the results
for like arch parameters, the results for C; agree to within 1%. The remainder of the numerical
results are based on the present analysis.

In Table 2 are given the lowest four frequency parameters for all three types of rectangular
tapers. For a given geometry, the effects of end restraint and rotatory inertia are apparent: the
higher the end restraint, the higher is C;; and the inclusion of rotatory inertia depresses C; by
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Fig. 6 Fundamental mode shapes of displacements (£ 1) and cross sectional load distributions (m, n,
q) with @=90°, s=100, k=3, R=1 for square taper.

less than 1%. A comparison of the results in columns i=1,2,3 show that C; decreases as the
type of taper changes from the depth to the square to the breadth taper; but this trend is reversed

for i=4.

In Table 3, the effects of cross sectional shape on C; are displayed. Here, C; always increases
as k increases, other parameters remaining the same.

The results shown in Figs. 3~35, all for the square cross section with R=1, depict the variation
of C; (i=1,2,3,4) with k, with 5, and with q, respectively. In Fig. 3, s=100, =90 deg and the
C; values approach upper limits or horizontal asymptotes as k increases to 5. In Fig. 4, k=3,
a=90 deg, and the C; again approach horizontal asymptotes as s increases to 150. In Fig. 5,
k=3, s=100, and the C; values all decreases very rapidly a increases from 25 deg to 100 deg.
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Typical fundamental mode shapes are shown in Fig. 6, based on the square cross section
with R=1, k=3, s=100, and ¢=90 deg. For a given end constraint (hinged or clamped), the
(& n) deflection modes for C, have the same shape and are asymmetric about the broken line
that represents the static equilibrium state. Also shown in Fig. 6 are the cross sectional load
distribution mode shapes for moment m, for the normal load n, and for the transverse shear
load ¢, all for i=1. In all cases, the accompanying broken lines refer to zero load. As one
would expect., when one compares the hinged and clamped configurations, the respective shapes
for these loads are about the same except near the ends where m is zero for the hinged end
case and non-zero for the clamped end case.

5. Experimental results

Experiments were designed to measure the lowest few free vibration frequencies on two alumi-
num, laboratory-scale circular, tapered arches, one with hinged ends and the other clamped
ends. These two arches had the same geometry: quadratic arches described by Eq. (30), with
type (c) or breadth taper given by Egs. (46) and (47). The dimensions, defined in Fig. 1(a) and
2, were: a=255 cm, B,=127 cm, H=0635 cm, and a=9 deg. for which the corresponding
nondimensional parameters were: k=2 and s=139. Based on the methods described above in
which rotatory inertia was included (R=1), the frequency parameters C; were calculated. The
corresponding frequencies @; (rad/s) were computed from Eq. (16) based on the following material
properties for the aluminum arches: a Young's modulus E of 6.89X 10" N/m? and a mass density
y of 2680 kg/m’. The resulting frequencies fi=w/(27) Hz, i=1,2,3,4 are given in Table 4 for
each of the two arches tested.

The experimental setup and methods of measuring the free vibration frequencies of these
two arches is fully described by the authors (Lee and Wilson 1990). For the sake of completeness,
these methods are now summarized. At each end, the arch was either hinged or clamped to
a 50 kg, isolated concrete block where each block “floated” on a rubber pad. Including the
end points, 17 reference points spaced along the arch circumference were used. To one of these
reference points on the underside of the arch was affixed a miniature accelerometer mounted
so that it was sensitive only to radial arch acceleration. In a typical experiment, a hammer
also fitted with a miniature accelerometer was struck at each of the reference points, in-plane
and in the radial direction of the arch. All acceleration data were received by a Signal Analyzer
(Model SD380Z, Scientific-Atlanta Corp.) and processed through a minicomputer using a fast
Fourier transform (FFT) analyser. For the details of data reduction, see Ewins (1985).

The data analysis lead to two important results: (1) the frequency dependent Transfer Function
defined as the ratio of the magnitude of the FFT for arch acceleration to the magnitude of
the FFT for the hammer acceleration; and (2) the radial displacement mode shapes for the
arch at the peaks of the Transfer Function. Such a Transfer Function measured for the clamped-
clamped arch is illustrated in Fig. 7. The consecutive major peaks of this plot indicate the
consecutive free vibration frequencies of this arch, or /=500 Hz, ;=890 Hz, etc., which are
also listed in Table 4. For each of these first four frequencies, the corresponding radial displace-
ment mode shapes generated from measurements are depicted in Fig. 8 These have the same
number of node points and have approximately the same shape as (£ 1) computed (but not
shown) from the theoretical model at the same respective frequencies. In reality, these measured
shapes are smooth and, relative to the undeformed shape shown as the dashed line, have zero
slope at each end. However, the software available simply connected data from the 17 reference
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Fig. 8 Measured mode shapes of the clamped-clamped experimental arch.

points with straight lines and thus gave only a crude picture of the theoretical shapes. For
the hinged-hinged experimental arch, results similar to those of Fig. 7 and 8 were also obtained,
and the resulting frequencies are listed in Table 4.

Considering all of these data, the measured frequencies averaged about 14% less than those
predicted from theory. The differences between theory and experiment are of the same order
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Table 4 Comparison of computed and measured results (breadth taper, a=90°, s=139,

k=2, R=1)

Theory Experiment % Deviation
End constraint  Mode no. experiment
G Si(Hz) fi(Hz) from theory

Hinged ends 1 13.85(A)* 315.89 285 —938

2 33.39(S) 761.57 640 —159

3 61.93(A) 1412.80 1085 —232

4 96.34(S) 2197.76 - -

Clamped ends 1 24.57(A) 560.55 500 —10.8

2 4592(S) 1047.42 890 —150

3 80.53(A) 1837.12 1560 —151

4 112.36(S) 2562.96 2350 —83

*A: anti-symmetric mode, S: symmetric mode

as obtained on other arch geometries (Lee and Wilson 1990) and may be accounted for by
several factors: the experimental difficulties of achieving “perfect” hammer strikes exactly on
the arch centerline, where imperfect hammer strikes led to out-of-plane free vibrations; difficulties
of achieving the ideal end constraint conditions (clamped or hinged); and the presence of natural
structural damping in the experiments which was not included in the theoretical model.

6. Conclusions

The methods presented here for calculating frequencies and mode shapes for circular, quadratic
arches of variable cross section were found to be efficient and reliable over a wide range of
system parameters. Computations showed that rotatory inertia depressed the frequency parameters
C: by less than one percent for such arches with hinged ends and with clamped ends. Results
also showed that the type of taper for the quadratic arch (depth, square, or breadth taper) caused
variations in C; by less than one percent, all other parameters remaining the same. For the
square taper, the effects of each of the three parameters k, s and a on C; (i=1,2,3,4) were
investigated for the first time, as were the internal circumferential load distributions of bending
moment, normal load, and transverse shear load. Experiments in which frequencies and mode
shapes were measured on two breadth-tapered quadratic circular arches, one clamped-clamped
and the other hinged-hinged, served to validate the results of the theoretical analysis.
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