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Nonlinear dynamic FE analysis of structures
consisting of rigid and deformable parts
Part II —Computer implementation and test examples

J. Rojekt and M. Kieiber$

Institute of Fundamental Technological Research, Polish Academy of Sciences
Swietokrzyska 21, Warsaw 00-049, Poland

Abstract. This is the second part of the paper (Rojek and Kleiber 1993) devoted to nonlincar dynamic
analysis of structures consisting of rigid and deformable parts. The first part contains a theoretical for-
mulation of nonlinear equations of motion for the coupled system as well as a solution algorithm. The
second part presents the computer implementation of the equations derived in the first part with a short
review of the capabilities of the computer program used and the library of finite elements. Details of material
nonlinearity treatment are also given. The paper is illustrated by discussing a practical problem of a safety
cab analysis for an agricultural tractor.
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1. Introduction

In Part I of our paper (Rojek and Kleiber 1993) the formulation of incremental equations
of motion for structures consisting of deformable and rigid parts was presented. The defor-
mable parts were discretized with finite elements while the equations of rigid body dynamics
in the form of the Newton-Euler equations were employed for the rigid parts. Lagrangian
multiplier technique was used to couple the equations for the whole system.

The algorithm for nonlinear dynamic analysis of structures consisting of rigid and defor-
mable parts has been implemented in our in-house computer code called AKAB, (Rojek 1992,
Rojek and Kleiber 1991). In Part IT we would like to provide some information on the computer
implementation, reviewing the capabilities of nonlinear analysis with AKAB and describing
the library of finite elements that can be used in modeling of structures. The library currently
includes: rigid element, truss element, beam element, and flat shell element. The updated
Lagrangian description has been adopted. Towards the end we shall present the application
of the computer program to the analysis of a practical engineering problem, namely the
analysis of a safety cab installed on an agricultural tractor and being impacted in order to
test its performance in a possible roll-over accident. This is a typical example of a structure
that can be modelled as a system consisting of deformable and rigid parts. The purpose of
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the analysis is to illustrate the practical importance of the method of analysis presented in
the paper.

2. Description of the finite elements used in the computer code
2.1. Rigid element

A rigid element represents a part of the structure where no deformations are expected. It
can be viewed as an arbitrary rigid body with known mass and principal inertia moments
with respect to the axes of the local coordinate system passing through the center of mass.

The algorithm for the analysis of structures consisting of deformable and rigid parts, im-
plemented in AKAB, is based on the elimination of the undetermined Lagrange multipliers
and constrained kinematic unknowns on the element level prior to the assembling of the
global matrices and vectors. The set of the equations is symmetrized by shifting the terms
introducing nonsymmetry to the right hand side and updating them iteratively.

2.2. Truss element

It is a simple 2 node truss element with constant strain and stress along its length, (Bathe,
et al. 1974, Kleiber and Wozniak 1991). Three cases are possible: (1) the element subjected
both to compressive and tensile loading, (i1) the element carrying load only when compressed,
and (iii) the element carrying load only under stretching. The case (iii) is useful in modeling
cables. By selecting the option (i) we can use the elements to represent springs modelling
vehicle tyres, for instance.

2.3. Beam element
2.3.1. General remarks

A simplest straight, prismatic two node beam element based on the Euler-Bernoulli theory
neglecting the influence of shear stresses has been used. The equations for the beam element
are formulated in the space of generalized strains and generalized stresses (stress resultants).
The shape functions are constructed assuming cubic bending displacement variation and a
linear variation in the axial and torsional displacements, which gives the element matrices
of the form that can be found in Kleiber and Wozniak 1991, for instance.

2.3.2. Elastic-plastic stiffness matrix for the beam element

The elastic-plastic constitutive matrix is denoted as k. When no yielding occurs k'”
coincides with the elastic constitutive stiffness matrix k*’. The effect of yielding is considered
globally on the cross-section level. An immediate plastification of the whole cross-section
is assumed when a limit state condition is satisfied. The yield condition, which can be written
generally as

f=F©)—kE")=0 (1)
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depends on the stress resultants 6, with k being the generalized yield stress, and € v being
the equivalent generalized plastic strain in the section, playing the role of a hardening para-
meter. In the vector ¢ the axial force F,.the torsional moment M, and bending moments
with respect to the central principal axes of the cross-section M, and M. are included, ie.

o={F. M, M M.}’ (2)

The shear forces are neglected. The limit state surface defined in Eq. (1) can expand due
to the strain-hardening of the material without changing its shape. Exact treatment of
strain-hardening effects in the elastic-plastic analysis at the cross-section level in a general
case is impossible. A simple approach presented here enables one to perform the analysis
which should be at least qualitatively better than that based on elastic-ideally plastic model
of material, (Toi and Yang 1991, Ueda and Fujikubo 1992). The equivalent generalized plastic
strain in the section & " is defined by the following relation, (Ueda and Fujikubo 1992)

55" =6"dg" 3)
Here, ¢ is the equivalent generalized stress associated with the equivalent generalized plastic
strain £”. The vector of incremental generalized strains corresponding to the vector of ge
neralized stresses ¢ defined by Eq. (2) has the following components

- . dde,)
de =\de .
e ={de ™

where g, isaxial strain of the beam axes, 0, is the angle of torsion of the beam cross-section,
while «,.k, are the beam axis curvatures.

For elastic-plastic processes described in terms of generalized strains and stresses we assume
the additive decomposition of the generalized strain increments into the elastic Ae* and plastic

Age” parts. The associative flow rule in terms of generalized strains and stresses, Olszak, et
al. 1965 reads

dx.—dx,}7 4)

T
AR = AL ( a‘i{ ) 5)
During yielding we should have
f=0 (6)

which, upon introducing ffrom Eq. (1) and considering a small time increment, can be written
in the incremental form as

oF

e A&“HAE v =() (7)
oo

-~ dk
where H= c—z’_:—(”—) can be called a cross-section equivalent strain-hardening modulus. A possible
£

approximate procedure for expressing H as a function of material strain-hardening modulus
and geometric properties of the section can be found in Ueda and Fujikubo 1992.

Eqgs. (1)-(7) refer to the yielded beam section without considering the distribution of plastic
regions along the beam axes. In many practical examples of frame structures it is justified
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to assume that plastic deformations are concentrated in very small regions. These regions can
be idealized as the so-called plastic hinges with plastic strains limited only to one section
of the beam. Since generalized strain velocities in the plastic hinges tend to infinity, it is

necessary to define now the generalized strains in the following way, (Olszak, et al. 1965):
X+ Ax

XN+ Av
Py — : W ") . d(Ae‘\p) )
Aul’ = lim Ae?’ dx ABY = lim — dx
Av—{) X Av—l) X
YA Yt AY (8)
A8V = [im J Ak dx AQY = ‘limJ‘ Ax? dx
. Av—0) v : Av—t) X

where Ax is the width of the region where plastic strains are concentrated. The generalized
strains defined by formulas (8) have the physical character of incremental displacement and
rotation angles.

In the finite element analysis, when we use the beam element with linear variation of the
bending moments and the constant axial force and torsional moment, plastic hinges can be
located at the element nodes only. Incremental generalized plastic strains defined by Eq. (8)
correspond then to the appropriate components of the vector of the incremental generalized
displacements Ag defined at the a-th node (a=1, 2) and are equal to their plastic parts
Aq'™ . the following additive decomposition being assumed

Ag=Aq" +Aq" )
Aq={Aq"" Aq® "}, etc. The generalized stresses 6 at the a-th node are the appropriate
A pprop

components of the vector of generalized nodal forces at this node. The limit state condition
(1) for the a-th node is written in the following form
foP, g‘“””):F(a)(P(a))_k(m (g““(l”):o (10)
The associative flow rule for the generalized displacements Aq"’ has the form
Aq“"””:A)»:n(“’ (11)

where

(a) AT
@ :( oF ) (12)
8P((1)

If we take into account the possibility of yielding at both nodes of the element and combine
the two equations into one we have

Aq” =nAN* (13)
where
a0
n=[ (] AN ={AA} ARS YT (14)
0 n

The increments of the generalized nodal forces are equal to the increments which result
from the elastic deformations in the eclement

AP=kY Aq (© (15)
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where k“ is the elastic constitutive stiffness matrix. On the other hand, the elastic-plastic
constitutive stiffness matrix enters the equation

AP=Kk"" Aq
(16)
The condition (7) can be written for the a-th node as
n@ T AP® _ f7® AZ O -0 (17)
Inserting the relationship
fro — v F1 AZ (18)
into Eq. (17) we get
n'@ TAP‘“’ __H(a)* AX : =0 (19)

The parameter H'* is called the nodal ‘hardening’ modulus. The formulae which make it
possible to calculate the value of this modulus will be dertved later in this paper.
Eq. (19) can be combined for a=1 and a=2 to give

n" AP—H* AA* =0 (20)
where
—
0
On introducing the vector Aq" defined by Eq.(9) into Eq. (15) we arrive at
AP=k“(Aq—Aq") (22)
By using Egs. (22) and (13) in Eq. (20) we get the following formula
AN =(n"k“n+H"*) 'n"k“ Aq (23)

By means of Eqs(23), (13) and (22) we obtain the expression for the elastic-plastic constitutive
stiffness matrix of the beam element in the form

K=K —k“n(n "k n+H ") 'n"k (24)

We shall now return to the problem of finding nodal ‘hardening’ moduli H™*  defined
by Eq. (18), which appear on the diagonal in the matrix H = given by Eq. (21). The modu-
lus H'* can be obtained from (18). provided we know AZ "’ In order to obtain AZ '™
we can assume (Ueda and Fujikubo 1992) that plastic work in the plastic hinge is equal to
the plastic work in the real yielded zone spreading in the element along a certain length /).
On expressing the distribution of the equivalent plastic strain increment A& “in the yielded
zone as a function of the equivalent plastic strain at the a-th node Ag o by means of a

certain distribution function g(x)
AEY )= g(x)Ag o) 25)

we can write plastic work equality in the following form
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AZ p s o pie (26)

(f]tm gaw’) g(x)dx

ey
The value of AZ“™" can be obtained from Eq. (26). The integral in this equation can be
evaluated numerically. The length of the yielded zone is determined by checking the yield
condition along the beam length. The values of the distribution function g(x) can be computed
from the expression obtained from (25) after introducing A& ”(x) and AZ“Y defined by
(7) and (17), respectively.

2.3.3. Yield conditions for beamns under complex loading

Exact derivation of the yield conditions (1) in their explicit form for beams with arbitrary
cross-sections under complex loading is a very difticult task, cf. Zyczkowski 1981. Therefore
approximate equations for the yield surfaces are usually assumed, cf. Egger and Kroplin 1978,
Kleiber and Wozniak 1991, Sosnowski 1989, Tong and Rossetos 1977, Ueda and Fujikubo
1992, Ueda and Yao 1982. In this work we have used an approximate form of the yield
condition, written for the a-th node as

g MOV ME M FE e g2
f():( 70 ) + ( o ) + ( Y ) + ( o ) ——‘:k()(g )] =() 27

Eq. (27) is based on the known values of the limit axial force F'”, limit torsional moment

MY, and limit bending moments M{” and M. It is also assumed that k@ (the generalized
normalized yield stress) is a linear function of the hardening parameter previously defined

k@ =1+ g (28)

Expression (27) is similar to those used in other formulations, cf. Sosnowski 1989, Tong and
Rossetos 1977.

2.3.4. Initial load method

In the initial load formulation material nonlinear effects are taken into account in the vector
of fictitious forces Ay on the right-hand side of the equilibrium equations. The elemental
vector of initial load for the beam element can be evaluated from the following equation

Ay=k" Aq 29)
where k' is given by
kY =k“n(n K n+ ) a7k (30)

Similarly as in the elastic-plastic analysis, in the elastic-viscoplastic analysis of frames we
assume that inelastic strains are concentrated at the element nodes and yielding occurs when
the yield condition given by Eq. (27) is satisfied. The vector of the initial load (fictitious forces
on the right-hand side) can be written as

A"’:k(t') Aq("ﬁ) (31)
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The viscoplastic flow law is used in the form

af
a P(a)

where a=1, 2 numbers the beam nodes, y is a certain fluidity parameter and @&( /') is the
so-called overstress function assumed in the simplest form as

(D(fa)):f (a) (33)

In the computer implementation expressions (29) and (31) are used in the iterative form

Both elastic-plastic and elastic-viscoplastic algorithms presented above have been impleme-
nted for both static and dynamic analysis. In the dynamic analysis inertial properties of the
beam element are represented by the lumped mass matrix.

Ag'™ = Ary <(D (f‘(a))> (32)

2.4 Shell element
2.4.1. General comments

Shells are approximated by flat triangular elements. With well-known disadvantages these
elements have one superior feature over all other shell elements — they are very effective
numerically. Therefore they are still often used in non-linear analysis, including practical
applications (Haug, et al. 1983, Hayduk, et al. 1983). The shell element employed is obtained
by combining the constant strain triangle — the CST membrane element (see, for instance,
Cook. et al. 1989, Gallagher 1975) and the linear curvature compatible triangle — the LCCT-9
plate element, known also as the HCT element (Clough and Felippa 1968).

The vector of generalized stresses for this element ¢ has as its components the membrane

forces 6 and bending moments ¢
6 {G(ln 8 }T (34)
6" ={N.N,N,}’ (35)
=M MM, (36)

The incremental constitutive relationship for the elastic shell is written as
A =CV AR (37

where C" is the constitutive elastic matrix for the shell and Ag is the vector of respective
incremental generalized strains, consisting of membrane Ag"™ and bending A" components

) AS——— {és(m) Ae([’) } ’ 38)
Aﬁ(m) - {Agx\‘ Ag.‘t" 2A8'Yy }T (39)
A" ={Ax,, Ak, 2Ak,}" (40)

The constitutive elastic matrix for the shell C' is written in the following form

é‘w:[@‘"”“” h 0] (41)
0 C(b)(f')

where C™ and C™ are the elastic constitutive matrices for the membrane and plate, res-
pectively.
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The elastic constitutive stiffness matrix for the shell element k“"* is written as

k(nl)\t'b 0
k(mn) :k(t') — (42)
0 k(M(t'i

where k™" and k”* are membrane and bending elastic constitutive stiffness matrices, res-
pectively. Since in the constitutive elastic matrix C* given by Eq. (41) there is no interaction
between membrane and bending states, in the elastic constitutive stiffness matrix k“"* the
coupling submatrices for the membrane bending stiffness have only zero elements. The tangent
stiffness matrix k used in the nonlinear analysis in the UL formulation is composed of the
constitutive stiffness matrix k“’ and the initial stress matrix k' as

k:k(mu) +k(0) (43)

The initial stress matrix k'” used in this work has non-zero elements only in the submatrix
corresponding to the bending degrees of freedom

0 0
k' = { ] (44)
0 k (h)o)

The matrix k™ used is the so-called inconsistent matrix evaluated using simplified shape
functions. As it was proved in many tests, (Hien, et al. 1989), by using this matrix one can
often obtain very good results. The membrane element used in the formulation has no stiffness
for rotation about the normal to its surface. Therefore, to avoid numerical problems when
coplanar elements are assembled we have added an artificial stiffness term for the rotation
about the normal in accordance with the suggestion made by Bathe (1982). In the dynamic
analysis of shells we have used the lumped matrix with non-zero rotational terms according
to Surana 1978.

2.4.2. Elastic-plastic analysis of shells

By considering the yielding of the shell in the space of the stress resultants given by Eq.
(34), there is no need to perform a numerical integration through the thickness. The limit
state condition is taken in the Ilyushin’s form, (Crisfield 1981, Eidsheim and Larsen 1981)
as

% N My N 1 |MN|

fL = (N(o)): (M“”)J \/3’ MONO —1=0 (45)
where
NO  =sMp
My ?2
T — c"h”
M 4
N)? =(N.) +WV,,) =N N, +3WV,)° (46)

M)* =M ) +M, ) =M M, +3M,)

MN :M,m‘ Nx\ +M»li)' N}j)' - —;_(Mn‘N);)' +M>\ij.\\')+ 3Mn N.\'y
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Another effective concept which preserves all the advantages of the formulation in the stress
resultant space and at the same time accounts for the gradual development of yielding through
the shell thickness was presented in Crisfield 1981, Eidsheim and Larsen 1981. There, it was
suggested to introduce a control parameter @ to enable the limit state condition expanding
from the initial yield condition given by the following formula
s M 3| MW
=0 e SIMNT @)
(N(O))3 4 (M(O))Z M(O)N(())
to the limit yield condition given by Eq. (45). The form of the yield condition which covers
this range was suggested as

(N)? N M)’ 1 |MNI|
(N(o))z az(Mm))z \/37 M(())N«J)b

The coefficients ¢ and b in Eq. (48) are given in terms of the effective plastic curvature k®
as

f= ~1=0 (48)

~ ) 1 8 124 4
a(x"? )—1—?exp< 3 KK(O)) (49
b(x™)=1—|3— —\/———) (1 a(x") (30)

. 20,(Y)

k" h (1)

1
= IW) o " 2 ) ( *) 7,0 M 2 (52)
- dx? = f (d)c i’l) dx‘f)) +dk ) dx )+
0 0 W 4
For k7" =0 Eq. (48) is equivalent to the condition of the initial yielding (47), while for k" —eo
Eq. (48) coincides with the limit state condition (45).
After assuming the yield condition in the form (48) and the associative flow law

A= [ 2L ) (53)
o
we can obtain the elastic-plastic constitutive matrix in the form
é((’)( __a;[_ af C(l)
A - . do do Ao o (50
C(ep):CH' — =CY -
H f C'()( af )
do do
where
—
f=— of 6_ a gk (55)

da k¥ oA
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" a;w_z{( af)2+( af)jr of _af 1 ale_
A V3| lom, oM, | " oM, oM, ' 4 (a M., )} (36)

which can be introduced into Eq. (55).
The elastic-plastic constitutive matrix can be divided into the following submatrices

A on ~ (mXep) ~ (mhYep)
c"= [C o ] 57)

é (mbXep) 7 C (bXep)

where C™*' is the membrane elastic-plastic constitutive matrix, C**”" is the bending elastic-
plastic constitutive matrix and C"”’ is the elastic-plastic constitutive matrix coupling me
mbrane and bending modes (which is no longer zero in contrast to Eq. (41), cf. Rojek, et
al. 1991). The elastic-plastic constitutive matrix given by Egs. (54) and (57) can be used to
get the elastic-plastic constitutive stiffness matrix for the shell element.

The constitutive relationships obtained above can also be used to evaluate the initial load
vector accounting for the plastic deformations. The elemental vector of initial loads can be
obtained from the following equation

AY= f B" "As"dA (58)
A
where B" is the linear strain operator matrix, 4 is the area of an element and
As” =C" Ag (59)

matrix C? being defined in Eq. (57). In the numerical algorithm Egs. (58)-(59) are used in
the iterative form as the relationships for consecutive approximations. Similarly, relationships
for the tangential stiffness method in the numerical aigorithm are used in the form adequate
to the iterative method employed, (Rojek 1992).

2.4.3. Elastic-viscoplastic analysis of shells

The elastic-viscoplastic analysis has been implemented for the shell element using the initial
load technique. The constitutive law for viscoplastic flow is taken as

A =Ary (D (f) Q—f—)r (60)
do

where y is a viscosity parameter and @ (f) is the ovestress function assumed in the simplest
form

@ (N=f (61)
The vector of initial load is obtained from the integral
A\Y:J B(l,) Té(e) A’é (vp)dA (62)

A
which in the computer implementation 1s used iteratively as consecutive approximations to
the exact value.
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3. Computer simulation of dynamic tests for safety cabs of agricultural tractors
3.1. Requirements for cab design and technical conditions of laboratory tests

The computer program AKAB has been verified on a great number of test examples of
beams, frames, plates and shells for different cases of nonlinear analysis, both under static
and dynamic loading (Kleiber and Rojek 1992, Rojek 1992, Rojek and Kleiber 1991). Test
examples of structures consisting of deformable and rigid parts (Kleiber and Rojek 1992, Rojek
1992, Rojek and Kleiber 1991) have also been analyzed. The results have generally shown
good agreement with theoretical solutions and numerical results presented in literature. The
program was then applied to the analysis of a practical problem in the form of a computer
simulation of the dynamic tests conducted to verify the strength of the roll-over protective
structures (ROPS), either frames or cabs, installed on agricultural tractors.

National and international standards, such as ASAE Standard, ISO 3463/3, 5700, establish
test procedures to verify the effectiveness of ROPS. Regulations require the structures to pass
a specific set of laboratory quasi-static or impact tests simulating rollover. The dynamic test
procedure according to the ISO standards (ISO 3463/3) consists of the following tests: impact
at rear, static crush test with loading applied at rear, impact at front, impact at side and static
crush test with loading applied at front. The standard requirements for stiffness are met if
a certain space around the place of the driver, the so-called zone of clearance, is preserved
free in all the tests. On the other hand small deformations prove the structure is overdesigned.

The laboratory tests are costly and time consuming. Their number can be greatly reduced
if the computer simulation is performed during the design phase, although a number of tests
must still be conducted to validate the design concepts basing on the numerical analysis.

Our purpose was to perform the computer simulation of impact tests conducted for ROPS
of agricultural tractors. For the impact tests the tractor with a cab standing on the wheels
is restrained from moving by means of restraining cables and beams positioned against the
wheels. The dynamic loading is generated by use of a 2000 kg pendulum. The standard de-
termines the height of the center of gravity of the pendulum pulled back before the test, which
ensures the required energy of impact.

3.2. Mechanical and numerical model of tractor with cab subjected to impact

In the numerical analysis of roll-over protective structures for agricultural tractors, presented
in Kearns 1987, Kecman 1983, Rusinski 1983, 1984, Tidbury 1984, Yeh, et al. for instance,
models of elastic-plastic frames subjected to quasi-static loading have mainly been used.
Formulation of equations for the systems consisting of rigid and deformable parts, presented
in our paper, enables us to examine the behavior of the whole vehicle (and not only the frame)
under the dynamic loading. According to our knowledge the structures on hand have not
been treated in this way in the available literature. On the other hand, the problem of stiffness
evaluation of the protective structures for agricultural structures belongs to a wider class of
problems considered in the so-called crashworthiness analysis. At present the power of today’s
mainframe and supercomputers makes it possible to use very large and complicated models
of structures with hundreds of thousands unknowns, and such models are also employed in
the crashworthiness analysis, cf. Belytschko 1992, Haug, et al. 1989, Schweizerkof, et al. 1991.
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However, even when using the contemporary mesh generators preparing data for a large model
of a structure like a car body is a time-consuming process. Therefore the number of possible
design solutions we can analyze in this way is limited. Thus, the use of medium size models
similar to that used in our work has some advantages. A great number of design alternatives
can be analyzed at early stages of the design process.

In the analysis we have used a model of the tractor in which the cab with fenders, the
mounting adaptors of the cab, the tyres, and the restraining cables were treated as defor-
mable parts, while the rest of the structure (the tractor chassis, engine, gear box, front and
rear axles) was replaced by one rigid body. We neglected the existence of possible gaps and
mechanisms in the structure. The mass of the wheels was added to the rigid body, and at
the same time the rotational motion of the wheels was neglected, as was the friction between
the wheels and the ground. Tyres were replaced by nonlinear elastic springs subjected only
to compression in the direction perpendicular to the ground. The cab with fenders is treated
as a frame and shell structure that can undergo large displacements and inelastic deformations,
either plastic or viscoplastic ones, depending on the material model assumed. The deformable
frame is connected to the rigid body by means of two nonlinear elastic springs at the rear
bottom corners and two hinges at the front bottom part of the structure. Structural damping
is considered in an approximate way by assuming it to be of the Rayleigh’s type. Restraining
cables are represented in the model by spring elements that can carry only extensional loads.
Gravitational forces are taken into account by the constant resultant force applied at the center
of mass of the rigid element. At the initial moment this force is in equilibrium with initial
prestressing forces given in the springs representing the tyres. Initial tension should also be
introduced into the restraining cables; however, these forces were neglected in the present
analysis, since it was difficult to evaluate them accurately enough from available experimental
data.

The impact loading is modelled by assuming an initial velocity at the place of impact. We
assume that the pendulum is in permanent contact with the structure after the impact, and
its mass is added to the structure as distributed over the place of contact. As we are interested
in the global collapse mode, we neglect local effects at the place of impact as well as the
wave propagation effects after impact.

3.3. Results of computer simulation

The analysis was performed for the safety cab of the type M87U mounted on the tractor
Ursus 1634. The FE model has 160 beam and 204 shell elements, 16 springs and one rigid
element. The model was defined with the use of about 200 nodes, which resulted in about
1200 unknowns.

We present the results of the computer simulations for two load cases — impact at rear
and impact at side. Both elastic-plastic and elastic-viscoplastic material models are considered,
and difterent values of damping coefficients are assumed. For impact at rear the pendulum
has the velocity 401 m/s at the moment of impact, while for the impact at side the velocity
of the pendulum is 42 m/s. The analysis was continued until the maximum deflection at the
point of impact was achieved as this is an essential fact for the validation of the structural
stiffness. Time integration was performed with a constant time step of 0.1 ms. One case required
about 1500 time steps. The CPU time for one step on a SPARC 2 workstation was about
40 s.

Fig. 1 presents the deformed configuration after the impact at rear together with the initial
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configuration. Deformed structure after the impact at side is given in Fig. 2 which proves that
theoretical deformations are outside the zone of clearance. Incremental analysis made it also
possible to observe the sequence of plastic hinge development in the frame. The location of

plastic hinges at different time instants is shown in Fig. 3.

undeformed
T 777 configuration

deformed
configuration

————— undeformed configuration
deformed configuration
— — clearance zone

W=
N
N SIS

S

S

Fig.2 Deformation of the cab after the impact at side

In Fig. 4 we see the results of the dynamic analysis in the form of the relationship between
the horizontal displacement at the point of impact and the time after impact. Response hi-
stories are presented for elastic and elastic-plastic material models with different values of
damping.

Similarly, we present the response histories for the elastic-viscoplastic model for the impact
at rear (Fig. 5). The elastic-viscoplastic analysis was performed for a fixed value of damping
and for a set of different viscosity parameters. The elastic-viscoplastic solutions are compared
with the results of the elastic and elastic-plastic solutions. For small values of viscosity para-
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Fig. 3 Distribution of plastic hinges at different time instants after the impact at rear

meter the elastic-viscoplastic solution is close to the elastic solution, and as the value of the
viscosity parameter increases the elastic-viscoplastic solution approaches the elastic-plastic
response.

The theoretical maximum deformation has been compared with available experimental
results. The maximum deflections at the point of impact at rear, as predicted theoretically,
are between 140 and 170 mm with respect to the reference frame fixed at the rigid body
modeling tractor chassis, with the values varying depending on the damping assumed. The
results taken from several tests were ranging from 75 to 145 mm. Similarly we can compare
the results for the impact at side. Theoretical horizontal displacements vary from 340 to 440 mm
depending on the value of damping, while the experimental results from various tests yield
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Fig. 5 Horizontal displacement of the point of impact during the impact at rear—results of elastic-vis-
coplastic analysis compared with elastic and elastic-plastic solutions

values of 315 to 440 mm. As we can see the theoretical results show a qualitative agreement
with the experimental results. These, and other results allow us to regard the program AKAB
as a useful tool of assessment the stiffness of the structure during the design process. The
possibility of using deformable and rigid elements to model the structure enables us to consider
the whole structure by means of the medium size model.

4. Concluding remarks

The formulation of equations of motion for structures consisting of rigid and deformable
parts, presented in Part I, has been implemented in the computer code called AKAB. The
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program has wide capabilities of nonlinear analysis which have been briefly described in this
paper. Finite elements available in the program have also been described with special attention
paid to the way material nonlinearities are accounted for. The capabilities of the computer
code have been illustrated with the results of the analysis of an agricultural tractor with a
protective structure subjected to the impact loading according to the standard requirements.
The structure was modelled as a system of deformable components and a rigid body. The
model proved the efficiency of the method discussed. The theoretical results have shown an
acceptable agreement with the experimental results; however, we are aware that further vali-
dation of the computer program is necessary while many improvements in it are feasible.
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