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Nonlinear dynamic FE analysis of structures
consisting of rigid and deformable parts
Part I —Formulation
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Abstract. Some structures under the action of some specific loads can be treated as consisting of rigid
and deformable parts. The paper presents a way to include rigid elements into a finite element model
accounting for geometrical and material nonlinearities. Lagrange multipliers technique is used to derive
equations of motion for the coupled deformable-rigid system. Solution algorithm based on the elimination
of the Lagrangian multipliers and dependent kinematic unknowns at the element level is described. A
follow-up paper(Rojek and Kleiber 1993) complements the discussion by giving details of the computer
implementation and presenting some realistic test examples.
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1. Introduction

Depending on the application, structures are usually modelled as either deformable or rigid.
However, in some practical situations strain-inducing deformations may occur only in selected
parts of the structure, while its remaining parts can be regarded as deforming as a collection
of rigid bodies. Although the equations of motion used in structural mechanics dealing with
deformable bodies as well as the equations describing rigid body motion originate from the
same principles, the theories of structural dynamics and rigid body dynamics have been de-
veloping separately and have now different methodologies worked out for the analysis of
motion.

The aim of the paper is to combine the nonlinear FE equations with the equations of rigid
body dynamics. The Lagrange multipliers technique will be used to derive equations of motion
for the coupled deformable-rigid system.

Assuming a model consisting of both deformable finite elements and rigid bodies can often
be an optimal approach in view of the effectiveness of the analysis. The problem of combining
rigid bodies and deformable finite elements in nonlinear analysis has been studied by seve-
ral authors, cf. Belytschko, et al. 1977, Benson and Hallquist 1986, Park and Saczalski 1974,
Saczalski and Huang 1972, Saczalski and Park 1974. We shall present an alternative for-
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mulation of the equations of motion for the coupled system which has been implemented
into a program for nonlinear analysis of frame and shell structures(Kleiber and Rojek 1992,
Rojek 1992). The computer implementation together with the results of the analysis of a
practical problem in the form of a simulation of a tractor safety cab will be presented in
Part II of this paper(Rojek and Kleiber 1993).

2. Incremental equations of motion for the continuum

2.1. Incremental description of motion

We are interested in the motion of a body(Fig. 1) in the time interval [ 0, # ]. The volume
of the body and the surrounding boundary surface are denoted by V' and S', respectively.
The body is subjected to the external loading consisting of the body forces b’ and traction
p'. We introduce the following reference systems: (a) a fixed Cartesian coordinate system {X
Y Z}, (b) corotational Cartesian coordinate system {x‘y°z°}, t=0, At 2As..., fixed in the
time interval[t t+Ar] and updated step-wise. The approach used is known as the updated
Lagrangian description. The two coordinate systems are related by the transformation

x'=LX M

X

Fig. 1 Motion of a body—-configuration at time instant ¢

where X={X Y Z}" are the components of any column vector in the coordinate system {X

Y Z}, x*={ "y z"}" is the representation of the same vector with respect to the coordinate
system {x®y"z'}, and L' is the time-dependent matrix of rotation, the index 7T indicating
transposition.

The location of a given particle of the body at time ¢ x'={x" y' z'}", cf. Fig. 2, can be
described by its initial position x°={x" y° z°}" and its displacement u' ={u} u; u:}" from
time 0 to time ¢ so that

x'=x"+u' ()
In the incremental nonlinear analysis we look for the vector of the particle position change
Au={Au, Au, Au.}" during the time interval from ¢ to r+Ax.
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X

Fig.2 The location and displacement of a material point

2.2. The principle of virtual work

Using the principle of virtual work the condition of dynamic equilibrium can be written
in the following form
fS(Au)Tp’ii’“’anLfc’d’*A’S (Au) dV+

t

- fS(Au)Tb’*A’dV— fS(Au)Tp”A’dS-l- fS(Ae)To’“LA’dV:O 3)
14 S 4

(o)

which expresses the condition of dynamic equilibrium at time ¢+ Az, for which the solution
is to be found. In Eq. (3) we have used the following notation: p’ —material density, ¢’ —
damping coefficient, 6'** —vector of components of the second Piola-Kirchhoff stress tensor
at 1+ Ar, Ae — vector of components of the incremental Green-Lagrange strain tensor. The
boundary kinematic conditions are taken into account implicitly by assuming that variations
of the incremental displacements & (Au) satisty them a priori.

Eqg. (3) is valid for both deformable and rigid bodies; in the latter case the virtual work
of internal stresses is equal to zero.

2.3. The condition of dynamic equilibrium for the body divided into deformable and rigid
parts

Following our assumptions for the physical model we divide the body volume V" into disjoint
subregions: N¥ deformable parts V¥ and (i=1....,N”) and N parts V" (j=1...., N”) that
can be regarded as rigid. The regions taken up by all the deformable and rigid parts at time
¢ are denoted as V¥ and V", respectively.

In this way we have divided all the quantities into those referred to deformable parts denoted
by superscript “f” (flexible) and into those referred to rigid parts denoted by superscript “r”
(rigid). We shall further assume that allowable incremental displacements fields Au? and
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Au" satisty a priori kinematic boundary conditions and that the kinematic condition of conti-
nuity across the surface SV " separating deformable and rigid parts is accounted for by adding
the additional constraint equation

x (Au?”, Au)=Au" —Au" =0, x' €SV )
For the coupled system the equation of dynamic equilibrium (3) can be rewritten as

f S(Aum)Tpii(’)’“‘dV+f 5(Ag)' o™ dV+
V(/)’ VW

- fV()S(Allm)rb(ﬂ'+de—J'VjS(Aum)prHA'dSﬁL f (S(Au(r))Tpl'"(r)r+Ade_+_
pyr s i

>

- f S(Au“’)rb""*“dV—f 8(Au) p™HdS +
vV s

(i i

(UMY _JZ_X__T (INT ___dx__r *IEA O
+ LM [ 5(au) (a(Au(’))> + 8(Au") (a(Au“’)> Jarr>as=0 5)

where the integrals for the rigid and deformable parts are written separately and the virtual
work of the constraint reactions is included explicitly by adding the terms with Lagrangian
multipliers A*'.

3. Discretization of equations of motion for deformable bodies
3.1. Linearization of the incremental equations of motion for deformable bodies

We shall consider a motion of a deformable body(Fig. 2) using the condition of dynamic
equilibrium (3). By using the decomposition of the incremental strains Ag into linear and
nonlinear parts, Ae and An, respectively

Ae=Ae+ Ay (6)

and the stress decomposition
oY =0"+Ac )

we can transform Eq. (3) into the following linearized form

fS(Au)Tp'ii’“’dW—jS(Au)Tc’i:”A’ dv+
v V!

+ f 5(Ae) Ao dV + f 5(An) o'dV +
V{ !

1%
— JS(Au)Tb'+NdV~J S(Au)Tp”A‘dSJr JS(Ae)To’dVIO (8)
i N V'

Material nonlinearities are taken into account in Eq. (8) by using an appropriate constitutive
equation to express Ao in terms of Ae. On the basis of Eq. (8) discretized equations of the
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so-called tangent stiffness method can be obtained. Another way of accounting for nonlinear
effects, which is particularly effective for material nonlinearities, is based on introducing
pseudo-forces on the right-hand side of the equilibrium equations. The approach is called
the initial load method. In our program both these iterative methods can alternatively be used.

3.2. Incremental finite element equations

Using displacement expansions typical of FEM, performing appropriate local-to-global
transformations and introducing the result into Eq. (8) we get the condition of dynamic
equilibrium in the implicit form

M";I+A[ +Cil.'t+Al +KI+AIAr:RI+AI _FI (9)
where
K=K“" +K"“ (10)

M C K“7” and K are the global mass, damping, constitutive stiffness and initial stress
matrices, r is the global vector of generalized nodal displacements, R is the global vector of

external load and F is the global vector of internal nodal forces. The matrix K“" depends
on material properties. The elastic and elastic-plastic constitutive stiffness matrices will be

denoted by K and K, respectively. For the initial load method we similarly have

M8 L O L KT Y A= R _F' 4 AW 1)
where now
K=K“+K"Y (12)

and AV is the global vector of fictitious forces due to material nonlinearities within the in-
crement considered.

3.3. Nonlinear material models in FE equations
3.3.1. Elastic-plastic material model

The flow theory of plasticity is used below and the additive decomposition of the strain

rate ¢ into the elastic € and plastic €” parts is postulated

é: é(e) + é(ﬂ) (13)

Assuming the associative flow rule and the yield condition with isotropic hardening we can
obtain for the elastic-plastic states of the material behaviour the constitutive matrix in the
following form(Owen and Hinton 1980)

C(e)( _g_of_ )T _g% C((’)

(ep) — gle) __ — ) __ (P

C"=C H+_5£C<e>(ﬁi)T =C"-C (14
Jo do

where H is the so-called hardening modulus, which can be determined from the uniaxial
tension test as
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_ ds"
H=-1%- (15)

with o™ being the yield stress.
3.3.2. Elastic-viscoplastic material model

The influence of the strain-rate on the yield stress is accounted for in the elastic-viscoplastic
model. In analogy to Eq. (13) we assume the decomposition
g€ =€ +eg™ (16)

and the viscoplastic flow rule in the associative form suggested first in Perzyna 1966 as

.. af
op) — LA 17
e =y LD (f) % (17)
with y being the viscosity parameter, f the yield function and the symbol {@® (f)) defined as
@ (f) if />0
(@ (=
2 0 if /<0 (18)

The so-called overstress function @ (f) should be taken in a form which is in best agreement
with experimental results available.

4. Equations of multibody dynamics
4.1. Rigid body kinematics

We shall now consider a single rigid body which can be treated as the d-th rigid part of
the system consisting of N rigid and N¥ deformable parts defined in Sec.2.3. The forces
acting from the rest of the system on the part selected will be treated as included in the external
loading.

The motion of the rigid body can be described by means of three translational and three
rotational coordinates. In the rigid body dynamics the motion of a body is often investigated
in body-fixed coordinates with Euler and Bryant angles, Euler parameters or direction cosines
used as generalized coordinates, (Nikravesh 1982, Wittenburg 1977) defining the angular
location of the moving coordinates with respect to the stationary coordinates.

[ |

In our formulation the system {x'y’z’}, kept constant within the time step A, is considered
as the reference coordinate system for the description of the rotational motion of rigid bodies.

The equations of motion are transformed to the global coordinates by means of the rotation
matrix which is updated at every time step. This description is fully consistent with that
adopted in the deformable finite element analysis.

On the basis of rigid body kinematics (Euler's and Chasle’s theorems, Lurie 1961, Mei-
rowithch 1970, Wittenburg 1977) any displacement of the rigid body can be represented by
a sum of the translation of any point and a rotation about an axis passing through this point.
As a reference point for every rigid element we choose their centers of mass since the rotational
equations have then a simpler form. Accordingly, the velocity of any point belonging to the
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d-th rigid body u can be expressed by using the velocity of the reference point &’ and the
angular velocity ' in the following form, (Meirowitch 1970)

u=u""+s=u""+"s (19)

where s is the vector connecting the given point with the reference point(the center of mass)
and @ is the skew-symmetric matrix associated with the vector @

@ @
0 —; o,
o= w? 0 —@? (20)
-0 @ 0

which is used to express the vector product in algebraic notation. The geometrical interpretation
of the equation (19) is given in Fig. 3. Using the properties of product we can rewrite the
relation (19) as

=0 +(—5)e" Q1)

X

Fig.3 Velocity of a particle of a rigid body

where s has the structure analogous to that defined in Eq. (20). Differentiating the expression
(19) with respect to time yields (Meirowitch 1970)
P=u +s=u +(—§)d)(d) +0%6""s (22)

which defines the acceleration u of the given point. Relation (19) can be written in the in-
cremental form as

Au=Au"+(—5)A0" =[5 | [ ]-——cr>Aq<d’ (23)
Ae(d)

The relation (23) plays the same role for the rigid parts as the FEM displacement expansion
for the deformable parts since it expresses incremental displacements of any point as a function
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of generalized incremental displacements.
4.2, Equations of motion for single rigid body

Similarly to the derivation of the FE equations we shall now make use of the principle
of virtual work to obtain equations of motion for the single rigid body. The condition of
dynamic equilibrium can be written in the following form

SAuw) pu'dV — | &Auw)'b'dV — | &Au) p'dS=0 (24)
Yy d) St

After introducing relations (22) and (23) into Eq. (24) we obtain
@y T =A@\ Wy =y~ oy~
fw)[amu ) +6 (540" ][p( 50 +6" 6" s) b b'] av+
- J [8au)" +5 (—540)" ] p'ds=0 25)
St
while Eq. (25) can be transformed to the following form, (Nikravesh 1982, Wittenburg 1977):
5 (uh) Tt — 7 ]

48 ( AG("’) [ DG WD e 5 u/y] ~0 (26)

with m“? being the mass of the body, £’ “ the resultant external force, 7 “” the resultant external
moment with respect to the reference point and j* being the matrix of inertia containing
components of the inertia tensor with respect to the origin of the coordinate system {x'y'z'}.
Since all the variations in 8Au«'")and §A8'") are independent the condition (26) yields two
equations

(11) e (dy __f(d)l

J DD s c/)IJ @ gy ¥ = g (¥ 27
The first of the above equations describes translational motion of the rigid body and is called
the Newton'’s equation. Rotational motion is governed by the second equation called the Euler’s
equation. Both Eqs (27) are referred as the Newton-Euler’s equations.

Using the matrix of rotation I we can transform all the quantities in Eq. (27) from the
coordinates {x'y‘z'} to the coordinates {XYZ} as

Jr=p oo (28)
O =L i (29)
Q@ =L@ @ (30)
R R (31
N =L g (32)

We can write Eq. (27) in terms of the global quantities defined by Eqs (28)-(32) as

()

m Y =F

(dy
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Jitr g _+_(~2(11)r'l(d,,n((ly =N (33)
Egs (33) can be combined in one matrix equation as
M(c/)l";(d)t _+_C(t/)f",(11)' :R(d)' (34)
where
C mY 0
M(d)l — 0 J(rl)l (35)
) 0 0
m? = 0 m? 0 (36)
B 0 0 (d)
0 0
C(d)’ j—y !: 0 ﬂ((f)lj(dy} (37)
":(d)l — {U(d)z Q(ll)l } T (38)
P = { U gy } T (39)
R ={ F (dy N @y 7 (40)

4.3. Equations of motion for system of unconstrained rigid bodies

Now we shall consider a system of rigid bodies interconnected by springs and damping
elements. The links are treated as sources of the internal loading which is added to the external
loading. The principle of virtual work for such a system leads to

M'¥ + C'¥ =R 41)

where we have introduced global quantities for the whole system assembled from the vectors
and matrices defined for a single rigid body by Eqs (35)-(40), (Nikravesh 1982, Wittenburg
1977).

5. Discretization of equations of motion for system consisting of deformable and rigid
parts

5.1. Discrete model of system consisting of deformable and rigid parts

Now we shall synthesize our results obtained so far in order to get discretized equations
for the coupled system consisting of deformable and rigid parts. We consider discrete model
of the system defined in Sec. 2.3. Deformable parts are discretized with finite elements and
rigid parts are represented by rigid bodies with known locations of the centers of mass and
inertial properties. The deformable and rigid parts are connected with each other by some
of the nodes of the finite element mesh lying on the boundary surfaces of the rigid parts.

The incremental generalized displacements Ar can be divided into those referred to the
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nodes defining finite element mesh Ar” and those referred to the nodes being the centers
of mass of rigid parts Ar”, which is written as

Ar={Ar? Ar"} (42)

In the vector Ar? we further distinguish the components referred to the nodes lying on the
boundary surfaces of rigid bodies Ar"’ (“c” =constrained) and the components referred to the
nodes not connected to the rigid parts Ar" (“u” =unconstrained), i.e.

Ar(/) — {A’,(u) Ar(c)}T (43)
Now we can write the vector Ar as consisting of the three subvectors
Ar={Ar" Ar9 Ar"} (44)

5.2. Discretized equations of constraints

The problem of getting discretized equations of constraints is simplified by considering the
condition of continuity only at the nodes of finite element mesh lying on the boundary surface
of rigid bodies, cf. Gallagher 1975. When we apply the kinematic relations (19), (21), (22) and
(23) to the constrained nodes of the FE mesh (to the b-th node connected to the d-th rigid
part, for instance), we can obtain the discretized equations for the velocities, accelerations and
incremental displacements as

PN — py ) (45)
";(b)(t')t :D(h)r";(d)(r)f _+_g(b)f (46)
Ar(h)(c) :D(b)rAr(t/)(r) (47)
where
1 —-s”
D" = [ 0 I ] (48)
g ={a """ Q" s of! (49

with $® being the vector connecting the b-th constrained node with the center of mass of
the d-th rigid body and Q““* being the angular velocity of the d-th rigid body. It should
be noted that the constraint equations (45)-(47) have been written in the global coordinates
{XYZ} and that the condition of equality of the translational nodal kinematic quantities have
been supplemented with the condition of equality of the rotational kinematic quantities, which
is important if structural clements with rotational degrees of freedom(beams or shells) are
used in modeling the structure. If some of the six degrees of freedom of the b-th node are
not constrained then the rows corresponding to them should be removed from the equa-
tions (45)-(47).

By combining the relations (45)-(47) for all W' constrained nodes we can obtain joint
equations in the form

}((')I _Dli.(r)l :0
(50)

";(z-)r _Dr";(r)z _g/ :0 (51)
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Ar' —D' Ar'" =0 (52)
where
b= .
D = Z‘\ A(b)(t) D(h)tA(rl)(r) (53)
: R oxo) T oy
g'=2 A"y (54)

with A" and A" being appropriate boolean matrices relating the components of the vec-
tors Ar”™ and Ar‘“® with components of the vectors Ar"” and Ar"”, respectively.

5.3. Discrete equations for system consisting of deformable and rigid parts

We shall now derive the discrete equations for the system consisting of deformable and
rigid parts by using the condition of dynamic equilibrium for the coupled system given by
Eq. (5) and performing the discretization typical of the finite element method for the defo-
rmable parts and employing the discrete equations of rigid body dynamics. By making use
of previously obtained equations — Eq. (9) for the deformable parts and Eq. (41) written in
an implicit form for the rigid parts — we can rewrite Eq. (5) in the discrete form as

(A (MOFY ™ +COFY + K Ar? — RO 4 F)
+8(Ar"))T(M"”;‘”'+A’ O pirr _me,)

ox' 77

5X aArm)} xH—A/:O

Gl e

T'as o[ -

If we take into account the explicit form of the equations of constraints (47) and divide the
matrices and vectors referring to the deformable parts in accordance with the split of the vector
Ar? expressed by Eq. (43) the following form of Eq. (55) is obtained

".(H)I+AI

Ar® Tr M@ pe R c“ ¢«
5 {Ar“') } ([ M M :| ','.(cymzl + [ ' O } {}(cwm }
Ko ey Ar® R+ Flr
T [K(““" Ko } l Ar“"l o {Ruwm] T { F ])
e

safar] ] s o) T oo

By using the condition that Eq. (56) must be satisfied for any variation of the incremental
displacements and adding the equation of constraints expressed by accelerations (51) we arrive
at the following system of equations
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M(uu) M(m') 0 0 ";(u)t+A1 Cuun C(m') 0 0 "‘(uwAz
M(t'u) M(w') 0 I ";(L'DH At n C (ctr) C(t‘t‘) 0 0 ;.((')hL Ar
0 0 M(rlf _D[ T ',;(W*AI 0 0 C(rll 0 ;,(HHAI
0 I —-p 0 AT 0 0 0 0 0
) K" K4y @ 0 Ar R+ F
K(t'u)t K(t'cv 0 0 Ar(c) _ R(t'H At _ Fw (57)
0 0 0 0 0|  |R™MA™ 0
0 0 0 0 0 g 0

5.4. Elimination of Lagrange multipliers and constrained displacements

The equation of motion for the structure consisting of deformable and rigid parts (57) can
be solved directly for the kinematic unknowns and Lagrange multipliers using any implicit
method of step-by-step integration. However, it seems to be more effective to eliminate the
Lagrange multipliers and kinematic unknowns referred to the constrained nodes prior to the
solution. Instead of Eq. (57) we then have

{ M(uu) M(W)D/ } { ":(u)H At }

":(r')/+ Ar

Dr TM(('M) DI TM(('(‘)D/ _+_M(r)1
{ C(uu) C(m')Dl } [ i'(u)l fAI] { K(uu)! K(u(‘)IDI } { Ar(u)]
+

DI Tc(cu) DI Tc((‘t')DI + Clr)( ;_(r)l A DITK(L‘M)I DI TK(('(‘)IDI A}”

‘ R(u)t+A1__F(u)1 __M(m')gl )
R

(ry+Ar + DlT(R(t')!+Al _F(L')I _M(a')gl) (58)
In practical examples the equations of motion for the structures consisting of deformable and
rigid parts can be considerably reduced by making various simplifying assumptions, such as:
(1) taking diagonal mass and damping matrices.
(2) neglecting damping,
(3) ignoring mass of deformable parts concentrated at the constrained nodes (M“’ =0),
(4) completely neglecting mass of the deformable parts (M“' =M"“ =M =M"“" =)
Egs (57) and (58) are based on the split-up of the specially ordered degrees of freedom. This
helps to understand the structure of the equations; in the computer implementation, howe-
ver, there are no requirements as to the ordering of the degrees of freedom so that the nodes
of different types can be mixed up. The reduction of Eq. (57) leading to Eq. (58) was shown
to be performed by operations on global matrices. In the computer implementation elimination
of the Lagrange multipliers and dependent unknowns is accomplished on the element level
before assembling global matrices. In our paper we have presented equations of motion for
structures consisting of deformable and rigid parts only in the implicit form; explicit equations
can ecasily be derived as well. Any implicit time integration procedure can be applied to solve
Egs. (57) and (58). Our implementation is based on the Wilson 8 scheme with modified
Newton-Raphson iteration (Kleiber 1989).
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We should observe that the left side of Eq. (57) and (58) can, in general, be unsymmetric
due to the matrix C* which is assembled from the submatrices defined by Eq. (37). The
problem can be solved in its unsymmetric form or it can be symmetrized by moving the
unsymmetric term C"* over to the righthand side.

The vector of incremental generalized displacements Ar enables us to obtain the new con-
figuration at time r+ Ar. The new configuration can be described by the displacements of
all the nodes

U(,,y+A, :U(ny _,r_AU(n) (59)

and their angular location characterized by the matrix of rotation L"**, which can be de-
termined from the following relation

L(n)(+A1 :L(lI)I+AL rL(njl (60)

where L"" is the matrix of rotation from the global coordinates {XYZ} to the local coordinates
{x'y'z'}), and L™ is the matrix of rotation of the local coordinates in the time interval
from 7 to t+ Ar. The matrix L™** ' can be defined using the components of the vector of

incremental rotations A®@" as the first-order approximation

L(n)I+A1. ! __:I_{_A’\@’ (n (61)
or the second-order approximation to the matrix of finite rotation (Argyris 1982).

L(H)I+AI. 1 :I_+_A/\®’ n) _‘__;_A’\@' (II)A’@)' () (62)

where I is the identity matrix and A® "™ is the skew-symmetric matrix similar to that given
by Eq. (20).

6. Concluding remarks

In this paper we presented the formulation of the equations of motion for structures with
deformable and rigid parts. For both deformable and rigid parts large displacements are taken
into account; material nonlinearities are considered in the case of deformable parts, using
elastic-plastic or elastic-viscoplastic model of the material. The equations of motion for de-
formable and rigid parts are coupled by means of Lagrangian multipliers. Discretized equa-
tions for the coupled system are presented in the implicit form for the tangent stiffness and
initial load methods. Explicit equations can be obtained in the same way. We present the
algorithm of solution used in the computer implementation which is based on the elimination
of the Lagrangian multipliers and dependent kinematic unknowns during the assembling of
elemental matrices and vectors. The presented method of modeling have obvious advantages
when applied to the analysis of practical problems. It allows us to setup a model of a complex
structure with a reduced number of unknowns. It enables us to analyze exactly deformations
in the zones where they are significant and neglect them in the zones where they are small.
In the second part of our paper, (Rojek and Kleiber 1993) we shall present more details con-
cerning the computer implementation and illustrate the problem discussed with results of the
numerical analysis of a tractor with a protective cab subjected to an impact loading.
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