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Abstract. The present paper concerns the mathematical study and the numerical treatment of the problem
of semirigid connections in bolted steel column base plates by taking into account the possibility of ap-
pearance of separation phenomena on the contact surface under certain loading conditions. In order to
obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the
continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a
quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem
is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics,
the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the
numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic
optimization algorithms are proposed. This technique ts illustrated by means of a numerical application.
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1. Introduction

Bolted steel column base plates are used in structural steelwork as connections to transfer
internal forces of a steel column to its concrete pedestal. Although a rather large variety of
cross section types is used, the base plate almost invariably sustains the orthogonal shape
fixed to the concrete by symmetrically located bolts. This type of connection can indeed transfer
a fair portion of the moment of the column to the concrete foundation. It is therefore, obvious
that any improvement of the analysis methods for this type of bolted steel connections would
lead to better design principles and more rational safety criteria as modern structural steelwork
standards claim to offer. In this sense, the present study is a contribution to the research for
the analysis and design of steel column base plate connections.

It is obvious that a column base plate under pure compression remains in perfect contact
to the underlying concrete foundation. In this case, the compression forces can be assumed
to follow a linear distribution and are perfectly transfered to the base through the contact
interface. Should axial compression of the column not be the case, any arising tension is
catered for by the fixing bolts. This rather simple assumption of linear interface forces dis-
tribution can not cover all possible loading conditions of a base plate. The general case is
that end-plates are actually loaded by a combination of moment, shear and tension; these
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loads often cause separation on the contact surface between the deformable column base plate
and the rigid concrete foundation. This way, the connection looses part of its bending rigidity
behaving as a semirigid connection. Noteworthy is that this behaviour essentially depends
on the moment-to-normal force proportion which is the dominant factor affecting the se-
paration phenomena on the plate-concrete contact interface (Wald 1993). Extensive laboratory
testing in combination to the study of a plethora of cases of collapse of steel structures certifies
that bolted base plates may be partially separated from the foundation under certain loading
conditions due to the unilateral nature of the contact. Such a semirigid behaviour of the
connection often arises during seismic excitation of steel frames and, also, the moment-to-
normal force ratio causing separation is highly dependent on the rigidity of the base plate
(Astaneh, et al. 1992). Due to the complexity of the problem of accurately defining this re-
duction of the column base rigidity, this factor has been included only in a few standards,
as are e.g the Canadian standards and Eurocode 3, which dictate reduction of the critical
column length according to the effective column base rigidity.

In the classical column base plate design, the plate is considered rigid and the bearing
pressure distribution on the contact surface is assumed to be linear. Although such a sim-
plifying assumption is considerably different from the actual base plate response, this method
is widely used because it generally leads to results on the safe side. The column base plate
analysis and design problem has already attracted the interest of numerous researchers who
applied analytical, experimental and numerical approaches to investigate it. As an example
we mention the analytical works where various normal reaction distributions on the column
base plate contact surface in the presence of concentric (Fling 1970) and/or light loading
(Stockwell 1975, Murray 1983) have been considered. Extensive experimental investigations
aiming to the accurate description and evaluation of the response of column base connections
have been conducted for both the cases of concentric (Dewolfe 1978) and eccentric loads
(Dewolfe and Sansley 1983, Thambiratnam and Paramasivam 1986, Cook and Klinger 1992).
On the other side, the numerical approaches based on the application of the finite element
method have been recently applied to the analysis of column base plate connections (cf. e.g.
Krishnamurthy 1978). Parametric three-dimensional finite element analysis of base plates (with
respect to plate thickness and eccentricity of load) under axial loading and moment has been
recently carried out (Thambiratnam and Krishnamurthy 1989), whereas nonlinear finite ele-
ment analysis has also been performed (Rothert, et al. 1992). We can note here an extensive
review on the results of all previous studies recently presented (Wald 1993). Results of con-
siderable importance on the behaviour of semirigid connections in steel structures have been
obtained by means of an appropriate modification of the classical finite element models in
order to take into account the possibility of appearance of separation zones between the plate
and the base. This phenomenon being of highly nonlinear nature, has to be numerically treated
with utmost care when classical Structural Analysis methods are used, because it possesses
certain traits of its own. The appropriate application of the methods of an actively developing
branch of Mechanics called Nonsmooth Mechanics (cf. e.g. Panagiotopoulos 1985, Moreau,
et al. 1988, Moreau and Panagiotopoulos 1988, 1993) appears very promising for the numerical
simulation of the semirigid joint behaviour because it permits both the accurate theoretical
and the exact numerical treatment of the local separation process on a steel base plate. Within
such a theoretical framework, the separation problem of bolted end-plates has been already
studied (Thomopoulos 1985, Abdalla and Stavroulakis 1989, Abdalla and Baniotopoulos 1991,
1992, Baniotopoulos, et al. 1992, Baniotopoulos and Abdalla 1993). Following these techniques,
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local noncontact zones between the base plate and the foundation are computed, whereas
the loss of the rigidity of the arising semirigid connection is accurately evaluated. In particular,
by introducing the classical unilateral contact law of Signorini (Fichera 1972) to simulate the
contact conditions on the plate, the separation process is mathematically described in the
continuous problem giving rise to a boundary value problem with respect to the displacements
in variational inequality form. This mathematical technique expresses the principle of virtual
work of the body at the state of equilibrium when the unilateral contact is included in
the formulation. This formulation subsequently leads to the formation of a discrete quadratic
programming problem (coupled by inequality constraints with respect to the displacements)
that expresses the principle of minimum potential energy of the body at the state of equi-
librium(Panagiotopoulos 1976, 1985). The transformation of the problem of guessing the con-
tact zone into a constrained quadratic programming problem makes things much more
manageable and allows us to use a wealth of theoretical work and software that is available
from the mathematicians community. Therefore, the separation problem is numerically treated
by means of any available quadratic optimization algorithm. It worths noting that a dual
approach can also be employed giving rise to a similar variational inequality problem with
respect to the stresses expressing in mathematical form, the principle of complementary virtual
work of the connection at the state of equilibrium. Equivalently, this formulation leads to
a guadratic programming formulation of the problem with respect to the stresses expressing
the principle of complementary energy of the semirigid connection at the state of equilibrium
(Panagiotopoulos 1976, 1985, Baniotopoulos, et al. 1992, Baniotopoulos and Abdalla 1993).

In this paper two effective and easy-to-use solution strategies based respectively on two
quadratic optimization algorithms are employed. The first method is based on the Theil-van
de Panne algorithm which equivalently transforms the initial quadratic optimization problem
into a sequence of classical Structural Analysis problems which in turn are solved by means
of any available finite element code. This method is by no means a trial-and-error method
since it provides two criteria for the systematic search of the optimal (actual) solution of the
problem, as well as a criterion for the final control of a seemingly correct solution (Kunzi
and Krelle 1962). This method has been recently applied to the solution of numerous Structural
Analysis problems formulated as quadratic optimization problems (Panagiotopoulos and
Talaslidis 1980, Talaslidis and Panagiotopoulos 1982, Panagiotopoulos, et al. 1984). The second
method is the Hildreth-d’Esopo algorithm that constitutes a typical iterative procedure
being more easily programmable and computationally efficient, thus permitting the effective
numerical treatment of problems with a large number of unknowns (fine finite element me
shes) (Abdalla and Stavroulakis 1989, Abdalla and Baniotopoulos 1992).

2. A variational inequality and a quadratic programming formulation
2.1. The continuous problem

Let us consider an orthogonal cartesian system (x;x,x; and an elastic body 2 with boun-
dary I made up of three nonoverlapping parts I'y, I'r and I's. On I'y (respectively I'r) the
displacements (respectively the surface forces) assume prescribed values U, (respectively F),
whereas on the part I's, unilateral contact boundary conditions hold (Fig.1). Assuming that
the unilateral contact is frictionless and defining as positive normal direction, the one directed
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Fig. | On the continuous contact problem.

outwards of the boundary, the unilateral contact boundary conditions with respect to an elastic
support are expressed in the following form

ifuy < 0 then Sy=0 (D)
ifuy >0 then Sy+k(un)=0 @)

where uy (respectively Sy) denotes the part of the displacements normal to the boundary
(respectively reaction forces) on I's and k(uy) is a nondecreasing function. Relation (1) ex-
presses that if the body looses contact from the support, then normal reaction is equal to
zero, whereas if the body remains in contact with the support, then, a normal reaction does
exist. The previous relations are schematically represented by means of the graph (uy -Sw)
(Fig. 1).

Under the assumption of infinitesimal strains and displacements, the boundary value pro-
blem at hand consists of the equation of equilibrium, the compatibility relations, the consti-
tutive relations relating stresses to strains and the boundary conditions holding on the bou-
ndary Is. A field X* of strains and displacements (¢; and u;" respectively) is kinematically
admissible, if it satisfies the compatibility relations, the kinematical boundary conditions on
I'y and the kinematical conditions imposed by the boundary conditions on I's. Volume forces
are denoted by p;, whereas actual strains and displacements at the position of equilibrium
by &; and u; respectively. Differences (¢;— ¢;) and (u,"— u;) represent kinematically admi-
ssible variations of the respective variables. Moreover, o; denotes the stress field obtained
from ¢; by means of the elasticity law. By splitting now u» into its positive and negative
parts (ux+ and u~- respectively) defined by the formulas

. uy + luny|
ude = B 3)
and | |
_ *+ *
u;—:—ui—z—_ﬂ“ @)

which are nonnegative quantities, the principle of virtual work for the free body 2 (requirement
that virtual work of internal forces be equal to the virtual work of external forces)

J‘ G;(S;— £;) dQ-——J’ pi(ui*— u;) dn‘*"f SN,.(M;;,— uy)dl' +
a a .

f Fiu'—u))dl Yu' € X* ()
I'p
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combined with the inequality describing the virtual work of the unilateral contact reactions
j (Sw(un— uy)Fk(uy Yuny —un))dl 20 Yuy € X* (6)
Is

holding on I's, the principle of virtual work for the body at the state of equilibrium is written
in the following variational inequality form (for details, see Panagiotopoulos 1976)

f o;(e;— €;) dQ— f p:u'—u)d0+
a 0
J’ k(e Xt ye — upy ML — f F,(u’—u;)dl 20 Vu'! € X* ™
I

I'r

Applying the method of special variations, it is proven that variational inequality (7) yields
the equation of equilibrium and the boundary conditions on I's and I'r and thus, it completely
characterizes the position of equilibrium of the body £2. From the standpoint of Mechanics,
variational inequality (7) expresses the principle of virtual work in an inequality form for the
body under consideration. It has been also proven that any solution of the variational

inequality problem (7) minimizes the potential energy of the body over the set X * of possible
displacement configurations at the position of equilibrium

II——f o, €,;dd — j piu;d) + f Kuy, dar — f F.u,dr (8)
Ir

where K(.) is a convex function (due to the monotonicity of k(.) ) defined by the following

integral

¢
K(©©= f ) k(&g ©)

Conversely, it has been proven that any solution of the problem of the minimization of
(8) satisfies the variational inequality problem (7). It is also noteworthy that a dual approach
with respect to stresses can also be equivalently applied. In this case, the formulated variational
inequality problem expresses, from the standpoint of Mechanics, the principle of comple-
mentary virtual work. The latter gives rise to a minimization problem of the complementary
energy of the body 2 (cf. e.g. Panagiotopoulos 1976, 1985).

2.2. The discrete problem

A typical bolted steel column base connection formed by a base plate fixed by bolts on
the base is first considered (Fig.2). In this connection, bolts are symmetrically located in
lines parallel to the column sides. Due to the symmetry of this connection, bolts are equally
stressed in each direction under pure eccentric normal loading, whereas under moment loa-
ding, additional forces develop on the plate tips that depend on the stiffness of the base plate.
These prying forces developed on the plate reduce the contact pressure on certain zones
between the plate and the base (Abdalla and Stavroulakis 1989). The development of the latter
phenomenon greatly affects the overall structural response of the connection giving rise to
a semirigid behaviour. It is therefore, obvious that in order to better estimate the column base
connection behaviour, the separation zones have to be with accuracy determined by taking
into account that on the contact zones, normal reactions do appear, whereas on the separation
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Fig. 2 A typical semirigid bolted column base plate connection.

zones, normal reactions are equal to zero. It must be also noted that separation and contact
zones between the plate and the base are not a priori known.

In the present paper, a method for the numerical simulation of the semirigid behaviour
of the connection under consideration is presented. This connection is discretized by means
of an appropriately chosen finite element scheme. In particular, plate elements are used to
simulate the behaviour of the base plate, whereas local separation conditions holding on the
contact surface are realized by means of one-dimensional elastic couplers (fictitious springs
-contact elements) of infinitesimal length which connect the adjacent nodes of the discretized
contact fronts. The mechanical behaviour of these couplers simulating the possibility of partial
separation of the plate and the base interface can be mathematically described for the i-th
contact element by means of the Signorini-Fichera contact law (compare to relations (1), (2))

if u,) > 0 then R.(G) =0 (10)
if u,) = 0 then R.(G) >0 (11)

where u,({) denotes the displacements along the normal (with respect to the plate) z-axis
and R, (i) the respective reaction force. By means of relation (11) it is stated that if the region
between the column plate and the base connected by the i-th coupler are in contact, then
reaction force do exists, whereas relation (10) expresses that if separation takes place, reaction
is equal to zero. It is also assumed that the response of the steel connection is not affected
by any friction effects (frictionless type of contact).

Assembling relations (10),(11) in matrix terms for all the n imposed couplers, the following
linear complementarity problem is formulated

u; >0 R, 20 (12)
Riu. =0 (13)

where boldface letters denote vectors and matrices. Superscript ’ denotes transposed vectors
or matrices. Linear complementarity problem (12),(13) completely describes mathematically
the quasi-static local separation phenomenon along the steel column base plate.

Taking into consideration the experience of experiment data which certify that deformations
are small on the base plate, the stiffness method is applied to the simulation of the structural
response of the discretized model. In this way, the following matrix equation is obtained
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Ku=P (14)

where K is the stiffness matrix of the connection, # the displacement vector including vector
u. and P the load vector that includes both normal force and moments acting on the con-
nection.

Relations (12)-(14) give rise to the following quadratic optimization problem

H(u)=min{ % w' Ku—P u| Au <b} (15)
where A is an appropriately defined transformation matrix and b a vector which defines the
inequality restrictions imposed by the inequalities(12), (13). Quadratic programming problem
(15) expresses, from a mechanical point of view, the principle of minimum potential energy
of the steel semirigid connection at the state of equilibrium. The actual displacements of the
base plate, as well as the active contact and the separation zones between the base plate and
the rigid foundation can be defined by solving problem (15). As has been previously noted
for the continuous problem, a dual approach can also be employed for the formulation and
the numerical treatment of the discretized problem. Such a dual approach equivalently gives
rise to a quadratic programming problem of the same type where stresses are now the unknown
variables appearing in the quadratic term (instead of the displacements) and the constraints
consist of the equilibrium equation and the reaction forces appearing on the connection, ie.

¢ (s)=min {;—sTF,,s—sTeD | R, 20, Gs=P} (16)
where G (respectively F,) is the equilibrium (respectively flexibility) matrix of the steel con-
nection and s (respectively e,) is the stress (respectively initial strain) vector. The constrained
quadratic programmlng problem (16) expresses, from the standpoint of Mechanics, the prin-
ciple of minimum complementary energy for the steel connection at hand at the state of
equilibrium.

3. On the solution strategies

In the next paragraphs two methods from the theory of Optimization are applied for the
numerical treatment of the discretized problems (15) and (16). The first method is the Theil-van
de Panne method which is based on three theorems from the theory of Quadratic Optimization
(Kunzi and Krelle1962, Panagiotopoulos and Talaslidis 1980, Talaslidis and Panagiotopoulos
1982, Panagiotopoulos, et al. 1984). The method transforms the initial quadratic optimization
problem into a sequence of classical Structural Analysis problems which can be solved by
any available finite element code. The method provides two criteria to find the direction
towards the actual solution of the problem and a final optimality test criterion for any
seemingly correct solution.

The second method for the numerical treatment of the problem is the Hildreth-d’ Esopo
algorithm, a classical iterative procedure with the great advantage of being easily program-
mable and computationally efficient .
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3.1. The Theil-van de Panne method

A solution strategy to the search for the solution of problem (15) will be sketched in the
sequel. By means of the term “active contact zone” or “active contact region” of the base
plate, we mean a set of couplers where displacements along the z-axis are equal to zero. The
term “nonactive contact zone” or “separation zone” is referred to those couplers where dis-
placements are greater than zero. The method is based on three theorems proved in the theory
of Optimization which, translated into the language of Mechanics, give rise to the following
three propositions:

Proposition 1. If the solution U° of the unrestricted quadratic programming problem violates
some of the inequality constraints imposed by the unilateral contact boundary conditions,
then the actual (optimal) solution of the problem U has to satisfy at least one of the violated
constraints in equality form.

Proposition 2. If a solution U" of an intermediate problem violates certain of the inequality
constraints imposed by the unilateral contact boundary conditions, then, at least one of the
violated constraints must be satisfied in equality form in order to obtain the actual (optimal)
solution of the problem U.

Proposition 3. A solution U" which satisfies all the inequality restrictions of the problem
imposed by the unilateral contact boundary conditions, coincides with the actual (optimal)
solution of the initial quadratic optimization problem U, if and only if, omitting one by one
the restrictions of the problem holding as equalities and solving in turn each one of the
resulting problems, the respective solution is found to violate the unilateral contact restriction
at the same contact element.

The solution method is based on the application of the previous Propositions. The procedure
begins by calculating the solution of the unrestricted quadratic programming problem. If this
solution U* violates certain inequality restrictions imposed by the unilateral contact boundary
conditions, then at least one of these inequality restrictions must be satisfied in equality form
in the actual (optimal) solution U of the problem (Proposition 1). In the sequel, if the solution
of problem(15) violates certain inequality constraints, then, in order to approximate the actual
solution, we must consider, in addition to the equality constraints already holding, at least
one more of the constraints violated by the intermediate solution U", to hold as equality
(Proposition 2). An intermediate solution U" which does not violate any unilateral contact
restriction is the actual solution of the problem, if and only if, omitting one by one the pre-
viously imposed equalities and solving the problem, the respective solutions are found to violate
the inequality restrictiction at the very coupler where the equality constraint was omitted
(Proposition 3). The employment of these propositions leads to the solution of the initial
quadratic problem by solving iteratively a sequence of classical (bilateral) Structural Analysis
problems: combining the three propositions appropriately, the quadratic optimization problem
is linearized in the sense that within each step a bilateral Structural Analysis problem is solved
and this is done by means of any available finite element code. Iterative steps are not arbitrarily
chosen, but they are controlled by the criterion of Proposition 2. The final optimality criterion
defined by Proposition 3 checks whether a seemingly correct solution is the actual one or
not. It is worth noting that since there exists systematic choice for the active constraints set
and an optimality criterion, the method can by no means be characterized as a trial-and-error
method, although it possesses the characteristic of repeated attempts with a varying constraint
set.
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3.2. The Hildreth-d'Esopo method

The application of the Hildreth-d’Esopo algorithm is in the sequel applied to the solution
of the quadratic optimization problem (15). The well-known Kuhn-Tucker optimality condi-
tions for problem (15) are written in the following form

Auty=b 7
Ku+A"f=P (18)
y20, 20, y'f=0, (19

where y is a vector corresponding to the unilateral constraints of the problem and f the vector
of reactions on the same constraints. Solving equation (18) with respect to u, the following
relation is obtained

u=—K 'A'f-P), (20)
and then, putting
h=—AK 'P+b 20
and
1
F=2—AK"AT, (22)

relations (17)-(19) are written as follows
2Uf—y=—h (23)

y>0, f20, y'f=0. 24

The latter relations constitute the Kuhn-Tucker optimality conditions for the following pro-
blem

1K) =min| % FEHRTFIf20) (25

where matrix F is a flexibility matrix defined by equation (22) relating contact forces to the
corresponding unilateral contact displacements. When the solution of problem (15) exists, then
problem (25) does also have a solution and this is unique. Problem (25) can be numerically
treated by means of the Gauss-Seidel method. During the iterative steps p=0, 1, 2, ..., the
following iterative values are considered

17 =max {0, 0?"'} (26)

where

,,+,_____(Z g, + ’;+ no gD fori=1,2, .m Q27)

and m is the number of the constraints of the problem. Iterations stop when the computed
contact reactions in two successive solution steps pass the imposed accuracy criteria, i.c. when

=l <e
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where the symbol || - || denotes an appropriately defined norm.

4. Numerical application

The bolted column base plate connection of Fig.3 is considered. Due to the double symmetry
of the connection, the discretized model can be limited to the one-fourth of the column base
plate (Fig4, shadedregion). For the numerical simulation of the column base plate response,
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Fig. 3 Data of the numerical example. Fig. 4 The discretized model.

the plate element #6 from the library of the SAP IV-B program with six degrees of freedom
has been employed. The degrees of freedom corresponding to the in-plane displacement and
the rotation around the z-axis are taken fixed. This way, nodal displacements along the z-axis
and rotations around x- and y-axis do appear. Contact elements obeying to the unilateral
contact law (10), (11) are used to simulate the possibility of partial separation between the
steel plate and the rigid support. In order to improve the accuracy of the numerical solution,
the mesh has to be dense enough around the neighbourhood of the bolts and the column
tips (Fig4), whereas aspect ratio of the mesh must, in all cases, be between 0.5 and 2.
Taking the contact of the plate with the foundation to be frictionless, the nodes of the lower
surface of the plate elements are connected to the rigid base by means of contact elements
of length tending to zero. Those elements that correspond to the regions where bolts are
located, exhibit the elastic characteristics of steel, whereas the elements that simulate the
unilateral contact have 30 times greater flexibility. The lower part of the steel column (120
x120x5.6 mm) is subjected to a moment loading in y-axis transferred into the discretized base
plate model composed by 169 plate elements and 196 contact elements. Although it is re-
dundant, it is noted that the formulation of the method permits taken into account axial and
shear column forces in a straightforward way. The solution procedure starts by assembling
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Fig. 7 Deformed shape of the column base plate for thickness t=12 mm

the stiffness matrix of the discretized steel connection. Then, the quadratic programming
problem is formulated having as subsidiary conditions the nonnegativity of the z-displace-
ments of the base plate. Applying the Theil-van de Panne method, the contact boundary
conditions are iteratively imposed as equality boundary conditions of the problem and the
arising problems are successively solved. Each resulting solution is checked for possible viola-
tion of the inequality constraints. The procedure stops when no inequality restrictions are
violated by the results of an intermediate problem. This seemingly correct solution is controlled
by means of the optimality criterion of proposition 3: the imposed equality subsidiary condi-
tions are relaxed one-by-one and the results of the respective solutions are checked for possible
violation of the inequality constraint on the very contact element that has been relaxed. By
means of this method, the solution of the problem is obtained within six steps. For a base
plate thickness of 12 mm, the isolines of the z-displacements of the column base plate are
depicted in Fig. 5, whereas the plate deformations along sections 1-1 and 2-2 are shown in
Fig. 6 (cases A and B). Note that all these diagrams illustrate the vertical displacements of
the base plate where the positive direction is upwards. The deformed base plate configuration
is depicted in Fig. 7. Similar results have been obtained for the base plate for a thickness
of 15 mm and 18 mm which are presented in the diagrams C, D and E, F in Fig.6 respectively.

The numerical results calculated by the application of the present method qualitatively
conform quite well to those obtained by experiment. The analysed base plate exhibits a be-
haviour corresponding to the so-called flexible base plate behaviour which has recently been
experimentally investigated. In particular, the numerical results of the present method show
similar behaviour patterns to those obtained experimentally for flexible base plates: vertical
displacements along the centerline of flexible base plates take in both cases their maximum
values (of the same class of magnitude) on the center of symmetry, whereas active contact
(i.e. compressive) zones appearing near the edge of the plate is circa 20% of the plate half
length (Cook and Klinger 1992, p. 1656). However, more systematic research using exactly
the same types of connections and loading has to be carried out in the future in order to
accurately calibrate the proposed model. The inherently missing datum of the numerical
prediction of contact zones is the fact that the concrete surface where the base plate rests,
is never absolutely level. Small asperities or bumps (of the order of 10 *-10 7> m) are of the
order of magnitude of the z-displacements differential, thus producing significant alteration
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in both the internal forces of the plate and the contact zone. As this aspect seems entirely
random in nature, a stochastic study of it might be futile for practical reasons but, it is going
to constitute a permanent difficulty for experimentalists and a source for discrepancies between
simulation and experiment.

5. Conclusions

The presented study aims to contribute to the investigation of the structural response of
the semirigid column base plate connections by combining Finite Element and Nonsmooth
Mechanics methods. Within this framework, the not a priori known zones of active contact
and separation can be calculated with accuracy. The proposed solution strategies can effectively
treat the resulting quadratic programming problem. Those are based on theTheil-van de Panne
and the Hildreth-d’Esopo method. The first one has the advantage that it transforms the initial
quadratic programming problem into a sequence of classical Structural Analysis problems
solved by any available finite element code. The second one is easily programmable and makes
the process fully automatic.

The proposed method determines the semirigid behaviour of the base connection easily
and takes into account the highly nonlinear separation phenomena on the contact surface
which can otherwise empirically be incorporated into the structural system. This way, a
phenomenological constitutive law describing the semirigid behaviour of the base connection
can be proposed in order to be used in computer programs that deal with structural analysis
of steelwork. Therefore, the presented analysis method has to be considered as a contribution
to the search for both the optimal design of semirigid column base plate connections and
the development of more cost effective and safe computer programs for metal structural
analysis.
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Notation

Q . Elastic body

I'y : part of the boundary I where displacements have a prescribed value U

I'r : A part of the boundary T’ where forces have a prescribed value F;
Is : A part of the boundary I where unilateral contact conditions hold

€ . Strain tensor
#y 1 Displacements normal to the boundary I's
ux+ . Positive part of uy
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un- . Negative part of uy

Sy I Reaction normal to [

X* . Set of kinematically admissible displacements and strains
u [ Displacement vector including vertical displacements

K Stiffness matrix

P . Load vector including axial and shear forces and moment
F | Flexibility matrix

T Superscript denoting transposed vector and matrices

U? © Solution of the unrestricted problem

U " ! Intermediate solution of the problem

U © Actual (optimal) solution of the problem
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