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Axisymmetric analysis of
multi-layered transversely isotropic elastic media
with general interlayer and support conditions
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Abstract. Based on the transfer matrix approach and integral transforms, a solution method is developed for
the stress analysis of axisymmetrically loaded transversely isotropic elastic media with generalized interlayer
and support conditions. Transfer functions (Green’s functions in the transformed domain) are obtained in ex-
plicit integral form. For several problems of practical interest with different loading and support conditions,
solutions are worked out in detail. For the inversion operation, an efficient technique is introduced to reme-
dy the slow convergence of numerical integrals involving oscillating functions. Several illustrative examples
are considered and numerical results are presented.
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1. Introduction

The increasing use of composite materials in many engineering applications has resulted in
considerable interest in the stress analysis of anisotropic layered media. For multi-layered
media, the problem of stress analysis becomes very complicated since solutions to the elastici-
ty problem for all layers are required. These solutions must also satisfy both the boundary and
interlayer continuity conditions. The complexity of such procedure is attested by solutions
such as the ones given by Burminster (1945) and Chen (1971) who considered a semi-infinite
medium composed of isotropic layers by using potential functions and integral transforms. A
serious limitation of the conventional procedure is the fact that the number of simultaneous
equations to be sclved for displacements and stresses at a prescribed field point increases as
the number of layers increases.

Other solution procedures for a layered isotropic or transversely isotropic (cross—anisotrop-
ic) half-space have also been reported. Gerrard (1967), for example, applied a Fourier series
to the solution of stresses and displacements in a layered transversely isotropic soil deposit
subjected to an axially symmetric load. Fares and Li (1988) introduced the generalized image
method to consider isotropic, plane layered media. Lee and Zhang (1992) utilized the image
method in conjunction with the boundary integral formulation to analyze a problem of layered
half-space which contains a cylindrical cavity. As for multi-layered media, however, most of
these approaches suffer the same limitation as the conventional one in that analytical opera-
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tions become excessively complicated as the number of layers grows.

To overcome the limitation shared by above-mentioned formulations, various alternative
approaches have also been developed. In the stiffness matrix method (e.g., Kausel and Roesett
1981, Seale and Kausel 1989, Choi and Thangjitham 1991), a local matrix equation is con-
structed in terms of field variables at the upper and lower surfaces of each layer, and the glo-
bal matrix equation is assembled by imposing interlayer continuity conditions. The unknown
interfacial variables are then obtained by solving the global matrix equation. This process
results in a significant reduction in the number of equations that must be solved when com-
pared to the conventional formulation.

Another efficient alternative for the analysis of multi-layered media is the transfer matrix
approach (Bahar 1972). Based on the mixed formulation of elasticity proposed by Vlasov and
Leontev (1966), this approach converts the boundary value problem to an equivalent initial
value problem in terms of state variables. Once the transfer matrix for each layer is found, the
global matrix can be assembled when interlayer contact conditions and boundary conditions
are introduced. The order of the global transfer matrix does not depend on the number of lay-
ers since the transfer matrix is multiplicative in nature for certain interlayer contact condi-
tions. To the best of the authors’ knowledge, however, this method has not been fully exploit-
ed in the stress analysis despite of its intrinsic merit for solving problems involving multi-lay-
ered media.

In this paper, based on the transfer matrix method and integral transforms, a solution
method for problems of axisymmetrically loaded, multi-layered transversely isotropic elastic
media with general interface and boundary support conditions is developed. The transfer ma-
trix is obtained in the way different from the usual state space method. This alternative tech-
nique is useful for problems in which it is difficult to find transfer functions explicitly. In con-
trast to most previous studies where perfectly bonded (or welded) interlayer contact conditions
are typically assumed, this generalized transfer matrix method can readily accommodate gen-
eral interlayer contact and support conditions. Moreover, the number of simultaneous equa-
tions to be solved remains constant regardless of the number of layers in the media for the
case of perfect (welded) or smooth (non-welded) interlayer contact conditions. For the assem-
bly of the global matrix for other contact conditions, a systematic procedure is developed and
described in some detail. For the inversion operation of integral transform, an efficient tech-
nique is introduced to remedy the prohibitively slow convergence of infinite integrals involv-
ing Bessel functions. Several numerical examples are presented to demonstrate the effective-
ness of the proposed technique.

2. Basic equations

The equilibrium equations for an axisymmetric elastic solid without body forces are given
by

00,  Ory, , Or—04 _
v v s Ty 0 "
00z , OTrg | Trs _ 1
0z + or + v =0

where ¢ and r are the normal and shear stress respectively, and », #, and z are the radial, cir-
cumferential, and axial coordinate respectively (Fig.1). For transversely isotropic materials,
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Fig. 1 Configuration of multi-layered medium.

stresses are related to strains by

Or CiCnCi;0 Er
O - CnCy Cl.’} 0 Ey
Oz CsCisCyu0 Ez (2)
Trz 0 0 0Cu Vrz
where C;; are elastic parameters, and strains are given by
_ou o 0w Ou dw (3)
T N P 0z | or

where 72 and w are displacements in the radial and thickness direction respectively. Eliminat-
ing stresses from (1) using (2) and (3) leads to

27 2
clt+vc (L) +c.2un +(cm+c44y3i -0

or

4 (4)
gru! ow dw
(CH+C44)7 +C“V& <7’a >+C538g*’0
3. Transfer matrix in integral transform space

The Hankel transform pair is defined by
P& 2= [ Fo, 2 r/unadr (5.0
Fr, )= | FE 2 &uers (55)

where F represents u, w, t,, or 6,, and J, is the Bessel’s function of the first kind of order %.
Note that #=1 for « and r,,, and 2#=0 for w and ¢,. The Laplace transform pair is defined
by
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Fe 9= [ FE e dz (6.2)
Fe 9= [ Re gevas (6.5)

where j = /-1

After applying the Hankel transform and then the Laplace transform, (4) can be written in
the following matrix form

,: Cus—Cné& *(C113+C44)ES} I?jt 1
(C13 + C44)ES C33 §— Cu tfz 1 w J

=[S {g‘ - +[(cli, g“ci)é TR s ] {%}0 (7)

in whichu’ = du/dz and w’' =0ow /9z. In order to eliminate the derivatives %’ and w’ from
(7), we first introduce the following relations:

— (9w ou
Trz = Cul or * az)
ou

Jz; = 01357- + C}:s% + C.’s:s‘aa_g‘

After applying the Hankel transform, the above equations can be written in matrix form as

(o) =[G AHE [0 %5 Y 9

o=l aHE e L8 o T O

Substitution of (9.b) into (7) leads to

(8)

or

([u | __G (u L Tre
17:5}—detA{1%}z=o+A {Ez }zzo (10)

where

A= [Cu $—=Cu& —(Ci+Cués ]
(C11;+C44) ES C:xs s — Cu 52

G = [ Ciuy Cus’+Cu Ciy &s CuCués"+CiuCu & ]
- —Cu ClS 532 — Cll C44 53 C33 C44 st + (Clg + C13 C44 - Cn C33)S Ez

The inverse Laplace transform is then applied to (10) to obtain

(d < [0 Do) v 5 Ty ee) v

in which
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Tu :f;,—f— C13 52.7[1, Tw=E&f +%53fu
Tz[ — _‘C”Efz C]légfu’ TM:f3+Cl§+C]C3:C4(4:_C]1C3J Ezfl
2 Cl3 +C44 ; ! (12)
T13 = -(?——fz - Téfo’ T|4 - e Sfl
__C13+C44 ) ___1_ _ Cu 2
T23 B 33 Efl’ T“ - C33 f2 C33 C44 Efﬂ

In the above equations, f; (7 =
operation, i.e.,

0, 1, 2, 3) are determined from the Laplace inverse transform

— 71 s
where
N(S) Clj + ZCCI/;:FEM CH C33 Ezsz C]l 54 (13.b)

Explicit expressions of f; are given in Appendix. Substitution of (11) into (9.a) resuits in

fzrzl - Ty T 2 | Ty Ty fzrz l
10'3 Iz [Tu T42:’ {wfz=0+[T43 T44] IO'Z Jz=0 (14)
in which

T31 — 2C13C44 Ezf + IIC44 54_][0 +C44 %fj

T, = —~—~C“Cg; Cid gy, T =f+Seey,

= Sten+ e, 7, = Gz CiCa CCC &, (15)

Tu — Cls + ZCIJC(:M Cl[ C33 ngz + C“af‘} _g_éélafo

44 33
T43 _ Efz __C_li 3f0’ T44 — f3 + Cla + CEC(&_ Cll C33 szfl
33 Cag

Finally, Egs. (11) and (14) can be combined into a single matrix equation as the following

u T T T
w | _| Tu Tu Ta
Trz Ty Ty Tu
dz 4 T'ﬂ T42 T43
or
d(z) =

T14 E{—:
T2 w
T34 Trz

— 16
T44 Gz z=0 ( )
T d(0)

in which T is the so-called transfer matrix whose elements shown in (12) and (15) depend
only on the elastic constants and thickness of the layer.
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4, Assembly of global matrix

Once the transfer matrix for each layer is formed following the procedure described above,
the global matrix can be assembled if the interlayer contact conditions and boundary condi-
tions of the layered medium are introduced. For the case where all layers are perfectly bonded,
the transfer matrix can be easily determined and its order does not depend on the number of
layers since the transfer matrix is multiplicative in nature. The global transfer matrix for a n-
lavered medium (see Fig. 1) can be obtained as a product of n matrices, i.e.

d(z)=TdO)y=T, T, T, d(0) (17)

where T; denotes the transfer matrix for the 7-th layer. For more general interlayer contact
conditions, such as a partial contact at the interface, however, a different procedure must be
used. The procedure is described in the following: let us consider two adjacent layers, the 7-th
and 7+ 1-th layers. According to (16), unknowns at the upper and lower surfaces of an indivi-
dual layer can be related in the following forms:

d/=T;d; (18)
for the 7-th layer,
divy =T disy (19)

for the 7+ 1-th layer where superscripts + and — denote the upper and lower surface of each
layer respectively. Assembling (18) and (19) and introducing the general interlayer contact con-
dition between the i and 7 + 1-th layers, we obtain

—1 Ti\y O O Zi“ 0
0OJ KO dg,“ :{0}
0 0 —-I T, ‘ 0 )t (20)
12X16 di 16x1
or
H''D'" =0 1)

where I is the 4x4 unit matrix, and J and K are the contact matrices which depend on the
interlayer contact condition between the 7-th and 7 + 1-th layers. For a smooth contact, for ex-
ample, the interlayer contact condition becomes

Wi =wi, 0 =0 and (T, = @i =0 (22)

Therefore, the contact matrices in this case become

0 0—-1 0 8

0 10 00 23
of E=loo0o1 0 (23)
1 0 0 0—1

If the boundary conditions on the upper surface of the »-th layer and the lower surface of the
first layer are introduced, the global matrix for the »-layer medium can be assembled into
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H, 0 0 P
H,_, 0 0\ D, 0
o - g0 p*l = 0| (24)
o - 0 Hi| | D
L 0 . 0 -+ H,| .
0

in which H,, and H, are the boundary matrices (for the top and bottom boundary respectively)
and P is the load vector. If normal and tangential loads are acted on the top surface of the #-
th layer simultaneously,

'I—)Z_l__ peJ(Ea)
21 | —bnJNEa) (25)
[0 0 1 0

H"_[o 00 1] (26)

where p, and p, are the normal and tangential loads respectively. The boundary matrix H,
can take different forms depending on the boundary condition at the lower surface of the first
layer as follows:

n-[30 98] mo(33 08 w20 e

for a fixed boundary, smooth rigid boundary, and Winkler base (£#=spring constant) respec-
tively. Note that elements of the main diagonal of the coefficient matrix in (24) may be zero,
but the matrix is not singular and can be solved by any standard elimination method. When

all unknowns on the interface are determined, displacements and stresses at any interior point
lying in the 7-th layer can be found from the following equation

d(z) =T(2) d; (28)

in which z is the distance of the field point from the lower surface of the 7-th layer. The
Hankel inverse transform is then applied to obtain the stress and displacement in the virtual
space.

5. Selected solutions
Solutions to some problems of practical interest are worked out in the following:

(1) Normal loads

We consider a layered medium of finite depth A resting on either a fixed rigid base or a
Winkler mattress. We assume that a normal load of p,, is applied on an annular area of radius
a on the surface. The boundary conditions at the top (z=H) then become
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0, = IO afr, 2)r J{Er)dr = — %]u(fd) and 7,, =0 (29)
for both cases. The boundary conditions at the bottom (z=0) become
#=0 and w=0 (30)
for a fixed base, or
7.,=0 and 0,=kw (31)

for a Winkler base, in which k is the spring coefficient of the Winkler mattress.
The surface displacements in the Hankel transform space are then given by

{Q_} _ anO(Ea) { TsstM - T13T34 }
w 27T(T33T44 - TZMTA,B) TssTo— TosTy

for the case of fixed base and

{_?/L } — '—I)nfo(fd) f ToTsy— TTs+ (T Ty — T11T34) } (33)
w 21T T — ToT o+ k(T3 Tyu— TuTw)] 1 ToT s — ToTsw + R(TuTss— TuTs)

for the case of Winkler base.

(32)

(2) Tangential loads

We consider now a case where a tangential load of p, is applied on an annular area on the
top surface of the same layered medium. The boundary conditions at the top surface(z=H)
become

.= f :rrzrfl(é'r)dr:% (a) and 3, =0 (34)

The boundary conditions at the bottom (z=0) are given by (30) or (31). The surface displace-
ments in the transformed space are then given by

{ :7;_ } — D ]1(562) { TuTu—TuTs }
w 27(T 55T as — TaaTw3) | TosT o — TauT s

for the case of fixed base, and

fz l _ D ]l(éa) { T.Typ—TyT, + k(TnTu - T14T41) } (36)
1 w J - 20T Ty —TuTu+ RT3 Tw—TaT:)) | ToTw— ToTa +RToTw—TuTw)

for the case of Winkler base. The solutions for a normal concentrated load can be reduced
from Eq.(32) or (33) by setting 2=0. The solutions for other boundary conditions can also be
obtained in similar fashion.

(35)

6. Convergence of numerical integration

If the Hankel inverse transform is applied to Eqgs.(32), (33), (35) or (36), the solutions in
the virtual space can be written in the following form:

F= [ f@Ica) ) erds (37)
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where 7 and ; take on O or 1. It should be noted that convergence of the above integral is very
slow if no special treatment is taken.

It can be shown that, for a lager &, the integrand f(£) in (37) approaches asymptotically to
a non-zero constant C for given ¢ and ». Thus we can rewrite F as

F=C [ 1) Jends + AF (38)

Since the integral in the right hand side of (39) can be found in closed form (Abramowitz and
Stegun 1964), 4F can be written as the following:

ar= | ? [ A8~ Clea)JEr)dé + | LAO—ClCa ] ér)ds (39)
Noting that the second integral in (39) vanishes, (39) becomes
aF~ [ 116 - ClEaIEn dé “0)

where & can be determined by considering the permissible relative error of the numerical inte-
gration. 4F converges rapidly enough to be evaluated by using the usual numerical integration
scheme,

Moreover, since the term A£)—C in (40) decays exponentially, it is possible to avoid the
numerical integration at all. We note that

K
—C= —(kn&)?
&) kgl ape (41)
where K depends on the permissible relative errors of 4F, % is the average thickness of layer
of the multilayered medium, and «, can be obtained in a recurrent analysis or the least square
approximation. If we replace /(&) — C in (40) with (41), 4F can be determined in closed form
by using the Wallis expansion (e.g., Arfken 1970). For the case when ¢ =0, for example,

~ 7 —ieney? _Jr 1, __7
AF =~ fo e~ kn®? J(yE)dE = o M( ok 1, AEhY ) (42)
in which M stands for the confluent hypergeometric function (Abramowitz and Stegun 1964).
7. Numerical examples

As an illustration, three problems are considered and their results are presented in the fol-
lowing:

Example 1. In order to verify the method developed herein, we first consider a simple ex-
ample of an isotropic layer of depth A on a fixed rigid base under the action of a concentrated
vertical load P (see Fig. 2). Fig. 3 shows the dimensionless transverse displacement wrxER/F(1
—v?) as a function of the normalized thickness H/R for given Young’s modulus (£) and Pois-
son’s ratio (v), where R denotes the distance between the source point and the prescribed field
point. The results are in excellent agreement with the analytical solution (Timoshenko and
Goodier 1970). Fig. 4 shows u/w at the prescribed field point as a function of » for selected
values of the normalized thickness H/R. For an isotropic half space (FH/R= ), the exact solu-
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Fig. 2 Example 1: isotropic elastic layer on fixed base.
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Fig. 3 W/R vs. H/R with E = 10 and v = 0.25 Fig. 4 U/W vs. v for selected values of H/R.

tion becomes w/w =(1—2v)/(2—2v) (Timoshenko and Goodier 1970), which is also plotted in
the figure. When H/R=200, the results from the present method is shown to be identical to
the exact solution.

Example 2: We consider next a cross-anisotropic elastic layer on a Winkler mattress with
spring constant £ which is subjected to a normal concentrated load P as shown in Fig. 5. It 1s
noted that #=0 and k=co represent the free and fixed boundary support respectively. The
elastic constants used are as follows: C,,=8.68, C3=6.66, C5:=9.13, and C,,=1.124. Flg. 6
shows the non-dimensional transverse displacements at the prescribed field point on the sur-
face (R=0.4H) for selected values of the nondimensionalized spring constant K =kH*/P. As
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Fig. 5 Example 2: a anisotropic elastic layer Fig. 6 W/H vs. R/H for selected values of K.

on Winkler mattress.

expected, the two extreme cases corresponding to the the free and fixed support (i.e., £#=0 and
k=o0) provide the upper and lower limits for the elastic response as shown in Fig. 6. It is also
shown in the figure that, when K'=180, the resuit is almost identical to that of the case with
rigid base. For a large K (>25), the difference in displacement between the Winkler base and
the rigid base is shown to be negligible.

Example 3: As the last example, we consider a cross-anisotropic 3-layer system under the
action of a normal concentrated load P as shown in Fg. 7. Elastic constants for three cross-an-
isotropic materials are shown in Table 1. Three cases are considered and the sequence (from
top to bottom) of materials for the three cases are as follows: CASE 1 (A-B-C), CASE 2 (B-A-
C), and CASE 3 (C-B-A). Fig. 8 shows the variation of the non-dimensional vertical stress (o,
H*/P) with depth (z/H) for three cases with perfectly bonded interlayer conditions and fixed
support condition. As shown in the figure, the vertical stress reaches its maximum in the mid-
dle layer for CASE 1 and 3, whereas CASE 2 has its maximum at the bottom of the top layer.
Fig. 9 shows the same variation of the non-dimensional vertical stress with depth for the three
cases with smooth interlayer contacts and smooth rigid support. As expected, curves in Fig. 9
are not smooth due to the smooth interlayer contact condition which allows a jump in the ra-
dial displacement. This feature is most pronounced for CASE 1 at z/H=1/3. The figure also
shows that the dimensionless normal stress essentially becomes constant in the bottom layer.

Table 1 Elastic constants of three materials for Example 3.

Material Cu C13 C‘in C44
A 8.69 6.66 9.13 1.12
B 18.50 9.94 19.47 4.45

C 45.25 17.22 51.93 15.63
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Fig. 7 Example 3: a 3-layer cross-anisotropic elastic medium on fixed or smooth rigid base.
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Fig. 8 Variation of o, H*/P for welded interlayer Fig. 9 Variation of ¢, H*/P for smooth interlayer

contact and fixed base. contact and smooth rigid base.
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8. Conclusions

Fundamental solutions to problems of multi-layered transversely isotropic elastic media to
localized axisymmetric loads have been obtained by introducing a generalized transfer matrix
method. In contrast to the conventional formulation, the number of simultaneous equations to
be solved remains constant regardless of the number of layers in the media for the case of per-
fect or smooth interlayer contact conditions. For other contact conditions, a simple systematic
procedure has been proposed for the assembly of the global transfer matrix. Since the transfer
matrix is obtained in the way different from the usual state space method, this technique can
be an effective tool for problems in which it is difficult to find the transfer matrix functions
explicitly. Furthermore, in contract to most previous studies, this generalized transfer matrix
method can accommodate combinations of general interlayer contact conditions, loads and
support conditions. In addition, a special numerical technique has been introduced to effi-
ciently evaluate the slowly converging infinite integrals. Several numerical examples have dem-
onstrated the accuracy and effectiveness of the proposed technique. The solution method de-
scribed in this paper can readily be extended to general 3-D anisotropic layered media.
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Appendix.

The Laplace inverse transform f; of the function s°/N(s) is given here. By letting s=7 £, the characteris-
tic equation N(s)=0 (13.b) can be written as

C1§+2C13 CM—C\I C33 772 Cll _

4
7 + CliS CM CJJ 0

Although the above equation can possess more than two classes of roots, only two cases need be given in the

following since the elastic constants should satisfy certain conditions (Gerrard 1976). (Note sh=sinh and ch
=cosh).

CASE I different real roots: s=*73, &, +7,&
1

= - df _ ch(z,€2) — ch(z.£z)

fo= e | 5o g~ o-shn ) |, Lo = Py
/= Gfo oh _ 7.sh(@,82) — 7, sh(z.82)

: 2 (71— 72)E
= afL df: _ nich(@.€2)—7n}ch(y.§2)

0z’ 0z 7t — 7}

7 :ﬁz_ afa EblShQ}lé_z)-Uz sh(z . £2)]

’ 0z’ a 7% — 7}

CASE II: two pairs of equal real roots: s=x7&, =9&
fo=— sh(n€2) .z ch(z£2) dfo _ zsh(z&z2)

2087 " 2éF 0 oz &
s = of _ sh(n&2)+n&z ch(nz)
' TPz 0z &
fo = gf; % = ch(z£2) + 5 L 762 shin &D)
5= % = S 08 sh(r62) + 3 (163 chin €2





