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Unified theory of reinforced concrete-A summary
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Abstract. A unified theory has recently been developed for reinforced concrete structures (Hsu 1993), sub-
jected to the four basic actions - bending, axial load, shear and torsion. The theory has five components,
namely, the struts-and-ties model, the equilibrium (or plasticity) truss model, the Bernoulli compatibility
truss model, the Mohr compatibility truss model and the softened truss model. Because the last three models
can satisfy the stress equilibrium, the strain compatibility and the constitutive laws of materials, they can
predict not only the strength, but also the load-deformation history of a member. In this paper the five mod-
els are summarized to illustrate their intrinsic consistency.
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1. Introduction

The structural engineering of a reinforced concrete structure includes four steps as shown
in Table 1. First, a structural analysis is made to find the bending moment diagram M, the

Table 1 Unified theory of reinforced concrete structures
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axial load diagram /N, the shear diagram V' and the torsional moment diagram 7". Second, the
structure is divided into two types of regions, namely, the main regions and the local regions.
Third, the design actions are determined for these two regions according to the four action di-
agrams. The main regions are subjected to the sectional actions M, N, V and T, while the
local regions are treated as a free body subjected to boundary stresses. Fourth, the size and the
reinforcement of the main regions are designed according to the sectional actions, while the re-
inforcement in the local regions are designed according to the boundary stresses. For this final
and most important step a unified theory is developed (Hsu 1993).

A rational design and analysis of a structure should be based on the three fundamental
principles of the mechanics of materials, namely, the stress equilibrium, the strain
compatibility and the constitutive laws of materials. The main regions are those regions where
the stresses and strains vary so regularly that they are governed by simple equilibrium and
compatibility conditions. In the case of beams and columns subjected to bending and/or axial
load, the main region should satisfy parallel stress equilibrium and Bernoulli’s linear
compatibility condition. In the case of shear and torsion, the main region should satisfy two-
dimensional stress equilibrium and Mohr’s circular strain compatibility.

In contrast, the local regions include the connections among beams and columns, the cor-
bels, the regions adjacent to concentrated loads, the ledgers and the dapped ends of beams,
etc. In such regions the stresses and strains are so disturbed and irregular that the
compatibility condition is difficult to apply. The reinforcing bars in these local regions are de-
signed according to the equilibrium condition alone. Although compatibility conditiion could
be maintained using numerical analyses (such as finite element method), such tedious analyses
are employed only occasionally for very important structures.

The two types of regions (main and local) and the four sectional actions M, N, V and T
can all be treated by a unified theory. The unified theory includes five component models as
shown in Table 1. Each model is named to reflect the most significant principle(s) embodied
in each. Some models are particularly suitable for the service load stage or the ultimate load
stage. The basic principles and the scope of applications of each model are explained as fol-
lows:

(1) Struts—and-Ties Model: satisfies equilibrium condition only; applicable to the design of
local regions.

(2) Equilibrium (Plasticity) Truss Model: satisfies equilibrium condition and the theory of
plasticity; applicable to the design of M, N, V and T in the main regions at the ultimate load
stage.

(3) Bernoulli Compatibility Truss Model: satisfies equilibrium condition, Bernoulli’s com-
patibility condition and the uniaxial constitutive laws of concrete and reinforcement. The con-
stitutive laws may be linear or nonlinear. It is applicable to the design of M and N in the
main regions at both the service and ultimate load stages.

(4) Mohr Compatibility Truss Model: satisfies equilibrium condition, Mohr’s compatibility
condition and Hooke’s uniaxial constitutive law for both concrete and steel. It is applicable to
the design of V' and T in the main regions at the service load stage.

(5) Softened Truss Model: satisfies equilibrium condition, Mohr’s compatibility condition
and the soffened biaxial constitutive laws of concrete. The constitutive law of reinforcement
may be linear or nonlinear. It is applicable to the design of V' and 7 in the main region at
both the service and ultimate load stages.
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2. Development of unified theory

Concrete is a material that is very strong in terms of compressive strength but weak in ten-
sile strength. When concrete is used in a structure to carry loads, the tensile region will crack
and must be reinforced by materials having high tensile strength, such as steel. The amount of
steel bars is designed to pick up the tensile forces that could not be resisted by concrete. This
concept of utilizing the concrete to resist compresston and the steel to carry the tension gave
rise to the struts—and-ties model. In this model, concrete compression struts and the steel ten-
sion ties form a stable truss which is capable of resisting the applied loadings. Ever since Jo-
seph Monier, the French gardener, used steel meshes to reinforce his flower pots in 1857, the
struts—and-ties model has been used intuitively by engineers to design reinforced concrete
structures.

Although struts—and-ties model is applicable to both the main and the local regions, it is
useful primarily in the local regions governed by equilibrium alone. A free~-form truss is
formed in the local region consisting of concrete compression struts and steel tension ties ori-
ented in arbitrary angles of inclination. The truss is stable under the boundary stresses. The
analysis of the local region is focused on the flow of the compressive and tensile stresses, the
“node” where the struts and the ties intersect, the dimensioning of the concrete struts, and the
specifications of the permissible stresses under various stress conditions.

When the struts—and-ties model is applied to the main regions, it is known as a truss
model. In a truss model the angle of inclination of the concrete struts becomes a constant.
This angle may be obtained from the stress equilibrium before or after cracking, or from the
strain compatibility. The analysis of a main region is focused on the change of this angle
under loading, as well as the stresses and strains associated with this change of angle.

The truss model concept was most conveniently applied to the main region of a beam. In a
beam subjected to bending, vertical cracks are expected to form. The compressive stresses in
the upper part of a beam will be resisted by concrete in the form of a compression stringer,
while the tensile stress in the lower part is taken by the bottom steel in the form of a tension
stringer. The forces in the concrete and in the steel must be equal, and they form a couple to
resist the applied bending moment. The determination of the stress distributions in the con-
crete and in the steel, however, could not be determined by equilibrium alone. The solution
was obtained by borrowing Bernoulli’s hypothesis from the analysis of homogeneous beams.
This hypothesis stated that a plane section before bending would remain a plane after bend-
ing. The application of Bernoulli’s compatibility condition to the analysis of reinforced con-
crete beams gave rise to the Bernoulli compatibility truss model. This is the first rational model
that satisfies the three fundamental principles of the mechanics of materials, namely, equilibri-
um, compatibility and the constitutive laws of materials. Although not clearly documented,
this model had been used by engineers since the late nineteenth century, serving as the funda-
mental theory of reinforced concrete for more than a hundred years. This rational model
could, of course, be easily extended to columns subjected to bending and axial load.

The first application of the concept of truss model to shear was proposed by Ritter (1989)
and Morsch (1902) in connection with a reinforced concrete beam subjected to bending and
shear. In their concept, a reinforced concrete beam after cracking acts like a parallel-stringer
truss to resist bending. At the same time the shear stress is resisted by the web region which
has developed diagonal cracks at an angle ¢ inclined to the longitudinal steel. These cracks



4 Thomuas T. C. Hsu

would separate the concrete into a series of diagonal concrete struts. To resist the applied
shear forces after cracking, the transverse steel bars in the web will be subjected to tensile forc-
es and the diagonal concrete struts will be taking compressive forces. The transverse steel,
therefore, serves as the tensile web members in the truss while the diagonal concrete struts be-
comes the diagonal compression web members.

The plane truss model concept for a beam was extended to treat members subjected to tor-
sion by Rausch (1929). In Rausch’s concept, a torsional member is idealized as a space truss
formed by connecting a series of component plane trusses capable of resisting shear action.
The circulatory shear stresses, developed in the space truss, form an internal torsional moment
capable of resisting the applied torsional moment.

The rudimentary truss model of Ritter, Morsch and Rausch, unfortunately, could not ex-
plain some behavior of reinforced concrete. Further research, therefore, did not follow this
line until the late 1960’s when Nielson (1967) and Lampert and Thurlimann (1968) derived
the three fundamental equilibrium equations for shear based on the theory of plasticity. The
interaction relationship of bending, shear and torsion was further obtained by Elfgren (1972).
All these theorics were known as the plasticity truss model because they were based on the
yielding of steel. In the unified theory, the name equilibrium truss model would be more appro-
priate, because it indicated that only the equilibrium condition was considered. The
compatibility condition and the constitutive laws of material were not taken into account.

The next important advancement was the determination of the angle of inclination of the
concrete struts by Collins (1973) using the compatibility condition in a reinforced concrete ele-
ment subjected to shear. Because the average strain condition in a membrane element must
satisfy Mohr’s circle, a Mohr compatibility truss model was established. This model satisfies
the two-dimensional equilibrium of membrane stresses, Mohr’s circular compatibility and
Hooke’s law. From Mohr’s circular geometric relationship, three compatibility equations can
be established. Because Hooke’s law is used, Mohr compatibility truss model is consistent
with the theory of elasticity.

A fundamental breakthrough in the understanding of shear and torsion was the discovery
of the softening of the concrete struts by Robinson and Demorieux (1972) and the first quanti-
fication of this phenomenon by Vecchio and Collins (1981). Prior to 1972, the stress—strain
curve of the concrete struts was assumed to be the same as that obtained from the uniaxial
compression tests of standard concrete cylinders. This assumption led to a severe overestima-
tion of the shear and torsional strengths. Robinson and Demorieux observed that a reinforced
concrete panel subjected to compression in one direction was softened by tension in the per-
pendicular direction. This softening phenomenon was quantified by Vecchio and Collins who
proposed a stress—strain curve incorporating a softening coefficient.

By combining the equilibrium, compatibility, and the softened stress—strain relationship of
concrete, the author and his colleagues developed a theory that can predict with good accuracy
the behavior of various types of structures subjected to shear. The problems solved include
low-rise shear walls (Hsu and Mo 1985d, Mau and Hsu 1986), framed shear walls (Mau and
Hsu 1987a), shear transfer (Hsu, Mau and Chen 1987) and deep beams (Mau and Hsu
1987b). By including an additional equilibrium equation and four additional compatibility
equations, the theory became applicable to torsion (Hsu and Mo 1985a, 1985b, 1985¢). This
theory, which unified shear and torsion (Hsu 1988), had been called the softened truss model.
The theory can predict not only the shear and torsional strengths but also the load-deforma-
tion behavior of a structure throughout its loading history.
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3. Struts-and-ties model

Because the struts—and-ties model was found to be a powerful method for the design of
local regions, it received renewed interest in the 1980s. In the modern design concept, the
local region is isolated as a free body and is subjected to boundary forces obtained from the
action diagrams. The local region itself is imagined to be a free~form truss made up of com-
pression struts and tension ties. The struts and ties are arranged so that the internal forces are
in equilibrium with the boundary forces. In this design method the compatibility condition is
not satisfied, and the serviceability criteria may not be ensured. Understanding of the stress
flows and the steel anchorage requirement in a local region can help to improve the
serviceability and to prevent premature failures. In other words, the assumed crack angle for
the compression struts should be close to the actual crack angle. A good design depends on the
experience of the engineer.

Proficiency in the application of this design method requires practice. An excellent treat-
ment of the struts—and-ties method was given by Schlais, Schafer and Jennewein (1987). This
77-page paper provides many examples to illustrate the application of the method.

For important structures, design of local regions by struts—and-ties method may be supple-
mented by a numerical analysis (such as finite element method), because such an analysis can
be made to satisfy the compatibility condition. Although numerical analyses can illustrate the
stress flow and guide the placement of reinforcement, it is quite tedious even for first—order
linear analysis.

4. Equilibrium(plasticity) truss model

Equilibrium(plasticity) truss model is based on the equilibrium condition and the yielding
of the steel reinforcement. Consequently, no compatibility equations are required. The basic
equilibrium equations for bending, shear and torsion have been derived (Thurlimann 1979) as

follows:

4.1. Basic equilibrium equations

Bending Mo = Asfy (]d) = szy dz) (1)

Shear Vo =2d, ( 2];1]:}“/ > Ny (2)

Torsion To =2A, ( ZZZ(’]“’ ) Ry (3)
where

M, = yield moment in pure bending,

V» = yield force in pure shear,

7T, = yield moment in pure torsion,

d, = lever arm in bending, measured from center of bottom stringer to center of top
stringer,



6 Thomas T. C. Hsu

Ay = cross—sectional area within the centerline of the shear flow,
pv = perimeter of the centerline of the shear flow,

Ny y = tensile yield force in bottom longitudinal stringer,

N,y = tensile yield force in top longitudinal stringer,

#.y = tensile yield force per unit length in transverse steel.

4.2. Interaction of bending, shear and torsion

When a reinforced concrete member is subjected simultaneously to a bending moment M,
a shear force V' and a torsional moment 7, it could fail in one of three modes, resulting in
three interaction equations. The three interation equations were first derived from the three
failure modes of rectangular sections by Elfgren (1972) and are summarized as follows:

First Failure Mode —— failure is caused by yielding in the bottom stringer and in the
transverse reinforcement on the side where shear flows due to shear and torsion are additive:
M <L )2 (l )2 _
IR + 2 R+ T P=1 4)
Second Failure Mode —— failure is caused by yielding in the top stringer and in the trans-
verse reinforcement on the side where shear flows due to shear and torsion are additive:
_ _M_>L <I_)2 <l>2_
(3 )%+ () () =1 ()

Third Failure Mode —— failure is caused by yielding in the top bar, in the bottom bar and
in the transverse reinforcement, all on the side where shear flows due to shear and torsion are

additive:
VN, (TN, (VT 2dy _ (1+R)
<v0) +< To> +<VUTU>2 b 2R (6)
R=1/3
s STRINGER YIELDED

I
Ts f °o STRINGER NOT YIELDED
|

N P
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Va \
N //,/’X\ N s EQ. (4}

SECOND MODE
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Fig. | Interaction Surface for Bending, Shear and Torsion
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where R = N,,,/Ny . The above three equations provides the three portions of an interac-
tion surfaces as shown in Fig. 1.

Because the equilibrium (plasticity) truss model is conceptionally very clear and elegant, it
is particularly convenient to express the interaction of bending, shear and torsion. However, in
view of the fact that strain compatibility condition is not taken into account, this model can
not predict the bending, shear or torsional deformation of a member.

5. Bernoulli compatibility truss model

Bernoulli compatibility truss model is applicable to bending of a member with or without
axial load. Fig. 2 shows a symmetrically reinforced column section subjected to a bending mo-
ment and an axial compression load. To find the stresses and strains in the concrete and steel,
we can utilize the two equilibrium equations for the parallel force system on the column, as
well as the two compatibility equations from the Bernoulli’s hypothesis. Bernoulli compati-
bility condition is based on a constant 90° crack angle, which is shown by tests to be correct.
The stress—strain relationships of both the concrete and the steel are assumed to be nonlinear.

—N___
b
—
id Ec
* 8 —0 1 —1} 4 e -
A(/Q s
¢ €
N.A B}
h CgE
h
Ay/2 2
t * Es A
.- I B — e Ay
o—o- @ o — ] QfS
g
(a) Cross Section (b) Strain Diagram (c) Stress Diagram

Fig. 2 Column Section Subjected to Bending and Axial Load

Equilibrium equations

Force equil. N = C+—%L (fs—/1s) (7
. __ _— h At ’ h ’
Moment equil. M = Ne = C(5—hkc) + F-(fs+fs) (3—d") (8
Compatibility equations
. Ec
Tension steel cte. - h=d 9
) €s _c—d’
Compression steel — = (10)
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Constitutive laws

Concrete fe = filee) (11)
Tension steel fs = fhes) (12)
Compression steel fe= Fed) (13)

where

A, = total cross—sectional area of steel in column,

b = width of cross section,

¢ = depth from neutral axis to extreme compression fiber,

d’ = distance from center of top or bottom steel to adjacent edge of cross section,

e = eccentricity of compression force NV, measured from centroidal axis of cross section,

f. = stress in concrete at extreme compression fiber,

fs = stress in tension steel,

<« = stress in compression steel,

h = total height of cross section,

M = bending moment = Ne,

N = axial compression force,

€, = strain in concrete at extreme compression fiber,

&s = strain in tensile steel,

€s = strain in compression steel.

The nonlinear functions f,, f, and f; are determined from the uniaxial tests. The resultant

of concrete compressive stress C and its location, represented by the coefficient 4., can be cal-
culated by integrating o =f,(¢) according to Eq. (11):

_bc (% _
c=k fﬂada-ﬂ(ec,c) (14)
1 J'Coede
kzzl—?*o_ec———:fs(éc) (15)
¢ fade
0

It can be seen that C is a function of e.and ¢, and &, is a function of . only. The calcula-
tions of C and £, have been simplified in various code provisions.

As indicated in Fig. 2 this problem involves a total of 15 variables (N, b, &, d ", A:, fe, /s
fe) €cy Es, €5, €, C, ky and ¢) and nine available equations (Eqgs. 7 to 15). In the case of analy-
sis, the first five variables representing the action and the cross sectional dimensions (N, b, 7,
d’, A,) are given. If one strain variable, usually €., is selected, then the last nine unknown
variable (fc, fs, fer €5, €5, €, C, k2, ¢) can be solved by the nine equations. A series of solutions
for an increasing sequence of selected &, values allow us to trace the whole bending load-de-
formation history. "

The generic trial-and-error procedures can be used to solve these nine equations. First, se-
lect a value of €. and assume a value of ¢, then the two steel strains, 5 and e¢ can be calcul-
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ated from the two compatibility equations (Egs. 9 and 10). Second, inserting the strains ¢, €,
€4 and the depth ¢ into the three stress—strain equations (Egs. 11, 12 and 13) gives the three
stresses f.. fs and fg, as well as the resultant C and the coefficient k., (Egs. 14 and 15).
Third, substituting the stresses f,, f. and the resultant C into the force equilibrium equations
(Egs. 7), the depth of the neutral axis ¢ can be solved. If ¢ is the same as assumed, we have a
solution. If not, assume another value of ¢ and repeat the cycle. The cycles are repeated until
the calculated ¢ is sufficiently close to the assumed ¢ and a solution is obtained. Fourth, sub-
stituting the final values of f,, fs, C and A, into the moment equilibrium equation (Eq. 8),
the final eccentricity e is calculated.

6. Mohr compatibility truss model

Mohr compatibility truss model is applicable to reinforced concrete membrane clements
subjected to shear and normal stresses as shown in Fig. 3(a). This theory is based on the equi-
librium and compatibility conditions of a membrane element, assumed to behave elastically at
the service load stage. Using the concept of trasformation of stresses and strains in the mem-
brane element and assuming the superposition of concrete stresses and steel stresses as shown
in Fig. 3(b), the three equilibrium equations and the three compatibility equations can be de-
rived (Hsu 1988, 1993) as follows:

Oy (+)
t
1 0t () a4 (+)
HCEAN d
Q—T b
’[1'(+) o
—_— 1

(a) Definitions of stresses and coordinate system

048in2u + ,c052 Pife + Pipfip
(S‘ f
2 .
T 10(-) 640520 + o,sin?a T
A N |
Og 1 |
| | Pefa+ peplep
T (#) \ [ § N
‘ ‘ (-04 + o,)sinacosa l
REINFORCED CONCRETE REINFORCEMENT
CONCRETE

(b) Superposition of concrete stresses and steel stresses

Fig. 3 Reinforced Concrete Membrane Elements Subjected to Shear and Normal Stresses
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Equilibrium equations

0, = 04c08a+0, sin‘a+o, f,+0,0f1p (16)
0, = 0g4sina+0, cos’a+p, fi +0.pfip (17)
Ty = (—04+ 0,)sin @ cos a (18)

Compatibility equations

where
01, 0y
Tyt

Gu, 0y

a

O, 0y
fis fe
Oip, Otp
Sips fip

€, &

Tit
€d, &y

i

i

i

i

i

I

g, = g4c08°a +¢&, sin‘a (19)
&, = gysinfa+e¢, cos‘a (20)
Y = 2(—eg4te, )sin @ cos a Q1)

normal stresses in the / and ¢ directions, respectively (positive for tension),
shear stress in the /—f coordinate (positive as shown in Fig. 3),

principal stresses in the d and r directions, respectively (positive for tension),
angle of inclination of the d~axis with respect to /=axis,

reinforcement ratios in the / and ¢ directions, respectively,

steel stresses in the / and ¢ directions, respectively,

prestressed steel ratio in the / and t directions, respectively,

prestressed steel stresses in the / and ¢ directions, respectively,

average normal strains in the / and ¢ directions, respectively (positive for ten-
sion),

average shear strains in /—¢ coordinate (positive as shown in Fig. 3 for 7,,),
average principal strains in the ¢ and » directions, respectively, (positive for
tension).

The solution of the above six equations, (16) to (21), requires six stress—strain relationships
for materials: one relates o, and e, for concrete in the d—direction (principal compression di-
rection). One relates ¢, and &, in the »—direction (principal tension directon). Two for mild
steel (f, vs €; and f, vs &,) and two for prestressed steel (f,, vs €; and f,, Vs &;).

For the service load stage, the tensile strength of concrete may be neglected (o, =0), while
Hooke’s laws are assumed for the concrete in compression, for the mild steel and for the pre-
stressing steel. These simple linear stress—strain relationships are:

Constitutive laws

ou=FE &4 (22)
fi = Ese (23)
fi =Ese, (24)
Jip = Es(€gecter) (25)

ftp: Es (Edec+€t) (26)
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where
E., Es=Modulus of elasticity of concrete and steel, respectively.

cg4ec = Strain in prestressing steel at decompression of concrete, a given constant represent-
ing the intensity of prestressing.

The solution algorithm of Egs. 16 to 26 is quite straightforward (Hsu 1993), but the solu-
tion is applicable only to the service load stage. Although this model could be extended to tor-
sion, it is seldom necessary, because torsion is best treated by the softened truss model.

7. Softened truss model
7.1. Membrane elements

The softened truss model is derived for membrane elements and torsion. The theory is
based on the same six equilibrium and compatibility equations, Egs. 16 to 21, for membrane
elements. In the softened truss model theory, however, the constitutive laws of materials are
improved so that the theory is applicable not only to the service load stage, but also to the ul-
timate load stage. In fact, it can describe the entire load—deformation history of a member.
The improved constitutive laws include: (1) A softened stress—strain relationship for concrete
in compression. The softening effect is represented by a softening coefficient, {, which is
found from biaxial tests to be a function of the strains in the »—-directions, &, . (2) A stress—
strain relationship for concrete in tension. (3) An average stress—strain relationship for steel
bars stiffened by concrete. The suggested bilinear stress—strain curve is quite different from
the elastic—perfectly plastic stress—strain curve obtained from a bare reinforcing bar. First, the
yield stress is lowered; and second, the yield plateau is replaced by a sloped post-yield stress—
strain curve; and (4) A stress—strain relationship for prestressed strands, utilizing the Richard-
Abbott expression. These improved constitutive laws are suggested as follows (Belarbi and
Hsu 1991, Pang and Hsu 1992):

Constitutive laws

Concrete in compression

Y Ea ) _ [ Ea 2 :'
0a™= §fc[ 2< ey ) < tey ) £a/be0<1 (27a)
, eqleo—11\?
O‘d:é’fc[ 1—<"_dj7§{:t0“1’_) ] Ed/§€0>l (27b)
_ 0.9
¢= J/1+600e, (28)
where
. = maximum compressive strength of standard 6 in. by 12 in. concrete cylinder,
€, = concrete strain at maximum compressive strength, taken as 0.002,

¢ = Softening coefficient.
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Concrete in tension
o, =F.¢, £, <0.00008 (29a)

0.00008 )0'4

o &, >0.00008 (29b)

o, =fcr<

where
E. = modulus of elasticity of concrete, taken as 47,000 /. (. and /7 are in psi).

f

fer = cracking stress of concrete, taken as 3.75 /7. (. and JFL are in psi).
Mild steel
fs = Ege&q fs < fo (30a) and (31a)
fo= (1= 224 ) (091-2B)f, +(0.02+0.25B) Eves] £ >
s 0 ’ y : : §<s s ¥ (30b) and (31b)
where
1 f 1.5
B = a parameter defined as — ( =< ) ,
© Sy
Es = modulus of elasticity of steel bars, taken as 29,000 £s:,
fs = stress in mild steel, f; becomes f, or f, when applied to longitudinal steel or trans-
verse steel, respectively,
fv = yield strength of steel reinforcement,
fy =1(0.93 - 2B)f,,
. = angle between the applied principal compression stress (2-direction) and the longitu-
dinal rebars (/~direction),
&g = strain in the mild steel. €5 becomes &; or ¢,, when applied to the longitudinal and
transverse steel, respectively,
o = percentage of steel reinforcement.
Prestressing steel
fo = Eps(€gectes) fo=<0.7 fou (32a) and (33a)
fp — Epf(edec+68) ol fp > 07 fpu
|: 1+ I Eps(edec+6s) lm]m (32b) and (33b)
| Sou J

where

E,s = modulus of elasticity of prestressed steel, take as 29,000 Asz,

E.s = tangential modulus of Ramberg-Osgood curve at zero load (taken as 31,060 %&sz),

f» = stress in prestressing steel. f, becomes f,, or f;p, when applied to the longitudinal
and transverse steel, respectively,

feuw = ultimate strength of prestressing steel,

m = shape parameter (taken as 4 for 250 k£s; and 270 ksi prestressing strands),

Eq4ec= Strain in prestressing steel at decompression of concrete, usually taken as 0.005 for
fully prestressed strands.
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The 13 governing equations, 16 to 21 and 27 to 33, contain 16 unknown variables. These
unknown variables include 9 stresses(o;, 0, T;¢, Ous Or, /1, J2, 10 fep) @nd 5 strains (g,, &;, 7,4,
e, ), as well as the angle ¢ and the material coefficients {. If three unknown variables are
given (usually the two applied stresses, ¢,, ¢, and a selected strain ¢,), then the remaining 13
unknown variables can be solved by the 13 equations. An efficient algorithm to solve this set
of 13 equations has been developed (Hsu 1991a, 1993) and the shear load-deformation rela-
tionship can be traced.

7.2. Torsion

The space truss model proposed by Rausch had captured the basic action of torsion as
shown in Fig. 4. The torsional resistance of a reinforced concrete member is contributed by
the circulatory shear flow in the outer ring zone of a cross section. An element in the shear
flow zone should satisfy the three equilibrium equations (Eqs. 16 to 18) and the three
compatibility equations (Egs. 19 to 21). In addition to these six equations, one equation is re-
quired for the equilibrium of the whole cross section and four equations are needed for the
compatibility of the whole member.

(a) General View

oy

(b) Shear Flow Zone (c) Shear Flow Zone (d) Truss Model of
Element in d —» Element in /—/ Element in
Coordinate Coordinate Shear Flow Zone

Fig. 4 Reinforced Concrete Member in Torsion
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Additional equilibrium equation

The equilibrium of internal and external moment provides Bredt’s relationship between the
torsional moment and the internal shear stresses (Hsu 1984):

T =r1,2At,) (34)

where
T = torsional moment,
A, = lever arm area, which is the cross—sectional area within the centerline of the shear
flow,
t, = thickness of shear flow zone in a cross section, which is also the depth of the com-
pression zone in the diagonal concrete struts.

Additional compatibility equations

Twisting of a member produces two types of compatibility conditions. The first is Bredt’s
compatibility equations relating the shear strain in the elements of the shear flow zone (y,,) to
the angle of twist of the member ():

% :7’11<2_13407> (35)

where p, is the periphery of the center line of shear flow.

The second compatibility condition is the warping of the element in the shear flow zone,
resulting in the bending of the concrete struts. The angle of twist (6) is then related to the cur-
vature of the diagonal concrete strus (¥) (Hsu 1984, 1993) by:

U =4 sin2a (36)

Assuming that Bernoulli’s linear strain distribution is applicable to the bending of the con-
crete struts, the curvature (¥) is related to the thickness of the shear flow zone () and to the
strains in the concrete struts (¢4 and €y (Hsu 1984) by:

Eas = —¥iq (37)

Eds

) (38)

where
€4s = concrete compressive strain at the surface of diagonal concrete struts,
€4 = average concrete compressive strain at the mid-depth of the shear flow zone.

Constitutive laws

As in shear, the softened constitutive laws of concrete in compression (Egs. 27 to 28)
should be applicable to torsion. Since the concrete struts are subjected to bending in addition
to axial load, the average stress in the concrete struts (0, is given by (Hsu 1984, 1988, 1993):

O‘d:k\é’fc/ (39)
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1 Fas
kz———,—f o(e, Hde = fsleys, 40
1 gfcgds 0 ( C) fb( ds é,) ( )
where
f+ = cylinder compressive strength of concrete,
k, = ratio of average stress to peak stress in the compression stress block,
& = softened coefficient for peak stress, given in Eq. 28

As shown in Eq. (40) the coefficient &, is obtained from the integration of Eq. 27. It is a
function of €4 and ¢, and is given in Table 8.1. (Hsu 1993). For simplicity the center line of
shear flow is assumed to be located at the mid-depth of the thickness of the shear flow zone
(1. That is to say, the distance from the center line of shear flow to the extreme compression
fiber is 0.5¢,4, or &, = 0.5.

The torsional load—-deformation relationships of a reinforced concrete member can be ob-
tained by solving 19 equations, Egs. 16 to 21 and 28 to 40. Since 22 variables (o,, 6,, Ty, 04,
Ory S0 fos Fivs Fevs Ty €1y €04 Yits €a €7, @, 0, W, L4, €45, £ and k), are involved in the torsion
problem, three variables must be given. In pure torsion, 6, = 0, = 0, and ¢, can be selected.
Solution of the 19 equations for a series of ¢, values will give the entire torsional load-defor-

mation history. An efficient algorithm for the solution of the 19 equations had also been de-
veloped (Hsu 1991(b), 1993).

8. Conéluding remarks

The unified theory of reinforced concrete has been summarized in a systematic and concise
manner. The struts—-and-ties model is shown to be a powerful tool in guiding the design of
local regions. The four truss models could be used for the design and analysis of the main re-
gions. Because of the simplicity and clarity of concept, the equilibrium (plasticity) truss model
could be utilized for the preliminary design of a member subjected to any combinations of the
four actions-bending, axial load, shear and torsion. This truss model can predict the ultimate
strength of a structure, but can not provide any information on the deformations.

The last three truss models are capable of predicting the various deformations because they
satisfy not only the stress equilibrium, but also the strain compatibility and the constitutive
laws of materials. The behavior of a member subjected to bending and/or axial load can be an-
alyzed by Bernoulli compatibility truss model. The behavior of a structure subjected to shear
and torsion can be predicted by Mohr compatibility truss model up to the service load stage,
or by the softened truss model throughout the whole ioading history.
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