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Static analysis of shear-deformable shells of revolution 
via G.D.Q. method
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Abstract. This paper deals with a novel application of the Generalized Differential Quadrature (G.D.Q.)
method to the linear elastic static analysis of isotropic rotational shells. The governing equations of
equilibrium, in terms of stress resultants and couples, are those from Reissner-Mindlin shear deformation
shell theory. These equations, written in terms of internal-resultants circular harmonic amplitudes, are first
put into generalized displacements form, by use of the strain-displacements relationships and the
constitutive equations. The resulting systems are solved by means of the G.D.Q. technique with
favourable precision, leading to accurate stress patterns.
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1. Introduction

Shells of revolution are common structural elements and can be found in many fields of
engineering technology. Their use spans over different branches of engineering such as pressure
vessels, cooling towers, water tanks, tires etc. As it is well known, for the various shell models
presented in the literature, only a few cases of limited applicative importance have a closed-form
solution (Reissner 1946, Kunieda 1984) and often this needs some further simplification to be
obtained. In the last three decades numerical approaches to shell analysis have become more and
more important, in a way that nowadays approximate solutions are the only ones to be studied,
making shell analysis a rather important area of computational mechanics (Yang et al. 2000).
Amongst different numerical techniques both for the statics and dynamics of shells, surely the most
widely used one is the finite element method. We recall the displacement-based version (Luah and
Fan 1990), the mixed version (Prato 1969, Gould and Sen 1971, Reddy 1984) and the recent hybrid
mixed version (Kim and Kim 2000). Other methods developed for the problem in argument are the
strip method (Mizusawa 1988), the boundary element method (Liu 1998), the element-free method
(Krysl and Belytschko 1996) and the differential quadrature method in the so-called δ-point version
(Mirfakhraei and Redekop 1998, Redekop and Xu 1999, Jiang and Redekop 2002).

The differential quadrature was first introduced (Bellman and Casti 1971, Bellman et al. 1972) as
a rapid tool for solving linear and nonlinear PDE systems. In the recent past further developments
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of this numerical approach have brought a quantity of research results in structural mechanics and in
computational mechanics (Bert and Malik 1996) and even in other fields of applied sciences (Shu
and Richards 1992, Bellomo 1997), due to the great versatility and applicability of the differential
quadrature method. 

The scope of the present paper is to enlighten an efficient and accurate innovative application of a
version of the differential quadrature approach, called G.D.Q. method, for the solution of the static
problem of doubly curved shells of revolution. The present work is based on a first order shear
deformation theory (FSDT) for thin shells and hence the solution does not need the δ-point
technique (Bert and Malik 1996) which by itself introduces further simplification to the model. 

The governing equations of static equilibrium, for the shell structure, are a set of five bi-
dimensional partial differential equations with variable coefficients. They are obtained by means of
the principle of minimum total potential energy for rotational thin shell structures, provided the
strain-displacements relationships for points lying on the reference surface are known. These
equations are initially expressed in terms of stress resultants and couples per unit length of
parametric lines of the middle surface of the shell.

By introducing the constitutive equations and the kinematic relationships between strain measures
and displacements, the equilibrium equations can be written in terms of generalized displacement
components only. The expansion of all variables of the problem into Fourier series’ with respect to
the circumferential coordinate θ permits separation of the independent variables and the initial two-
dimensional problem is reduced to a series of simple one-dimensional problems; in this way,
axisymmetric and nonsymmetric loading cases can be studied easily and the resulting governing
equations can be solved separately for each circular harmonic component.

Precisely, they can now be discretized and solved with the aim of the Generalized Differential
Quadrature technique so to give a series of sets of linear equations. The solution obtained so far is
obviously in terms of middle surface translations and rotations. A simple interpolation rule
(Lagrange interpolation) along meridional coordinate direction is sufficient to obtain an accurate
pattern for the complete kinematic assessment of the shell. Applying the strain displacements
relations to the approximated displacement field and the constitutive equations to the strain
measures so obtained allows to get to the stress resultants and couples for the shell under
consideration. Several examples treated in the present paper show how this simple and quick
procedure produces reliable and accurate results and put the basis for a further development of the
research to the field of more complex shaped rotational shells. The G. D. Q. solution shows good
convergence characteristics and appears to be accurate when tested by comparison to F. E. M.
analyses or analytical solutions available from the scientific literature. To the very best of the
authors knowledge, such an application of the generalized differential quadrature method in
combination with a partial Fourier series decoupling of problem variables, has never been tried
before to rotational shell structural elements elasticity problems.

2. Shell geometry and fundamentals

The typical rotational shell with its reference (middle) surface is presented if Fig. 1. The shell
geometry can be completely assigned in different ways: here the parallel radius scalar equation R =
R(z) and the thickness variation t = t(z) are given. The coordinates on the middle surface are the
circumferential angle θ and the vertical ascissa z. The position of a point lying out of the middle
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surface is given by the distance ζ , measured along the outward normal to the middle surface.
For further analytic developments it is convenient to introduce the following geometric parameters

of the surface:

(1a)

(1b)

which represent the fundamental Lamè parameters along the coordinate lines (meridians and
parallels), and:

(2b)

(2b)

where φ is the colatitudinal oriented angle (Fig. 1) and where ( ), z represents derivation with respect
to z.

The generalized displacement components for an arbitrary point at location (z, θ, 0) are the
translations u, v, w, along meridian, circumferential, and normal directions, respectively, and normal-
to-mid-surface rotations β1 and β2. Assuming the shell to be sufficiently thin, the displacement field
can be represented in this form:

(3a)

(3b)

(3c)

A1 A1 z( ) 1 R,z( )2+[ ]
1 2⁄

= =

A2 A2 z( ) R z( )= =

sinφ sinφ z( ) 1 R,z( )2+[ ]
1– 2⁄

= =

cosφ cosφ z( ) R,z 1 R,z( )2+[ ]
1– 2⁄

= =

U z θ ζ, ,( ) u ζβ1, u+ U z θ 0, ,( )= =

V z θ ζ, ,( ) v ζβ2, v+ V z θ 0, ,( )= =

W z θ ζ, ,( ) w, w W z θ 0, ,( )= =

Fig. 1 Shell geometry and coordinate system on the reference surface
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It is evident how meridional and circumferential translations U and V vary linearly through the
thickness, while the transverse component W remains constant with respect to ζ. The stress
resultants and couples, obtained with equilibrium arguments (Gould 1999) are represented in Fig. 1
with their positive sense and acting on shell element positive-normal faces. It is assumed that
twisting moments and in-plane shear resultants acting on adjacent sides of the element are equal
with reasonable approximation. Also, distributed load components pu, pv and pw are assigned, per
unit mid-surface area.

3. Statement of the problem and variational formulation of equilibrium

For points lying on the reference middle surface the following strain-displacement relationships
can be obtained from (3):

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)
 

(4h)

in which  are in-plane meridional, circumferential and shearing strains; =
κ21 are meridional, circumferential curvature changes and twisting strain, γ1 and γ2 are meridional
and circumferential transverse shearing strains, which are fully taken into account in this framework.
Again, symmetric mixed components are retained as approximately equal in the present treatment.

The total potential energy minimum principle, for a rotational thin shell, reads as follows (Reddy
1984):

(5)

where

(6)

represents the energy density of the system, while B is the potential of the edge loads, assigned on
boundary parallel circles. Now, the vectors in (6) are written in terms of a partial harmonic Fourier
expansion with respect to the circumferential coordinate θ. This leads to:

ε1 1 A1⁄( )u,z w R1⁄+=

ε2 1 R⁄( ) v,θ R,z A1u⁄ sinφw+ +( )=

ε12 1 A1⁄( ) v,z( ) 1 R⁄( ) u,θ R,z A1v⁄–( )+=

κ1 1 A1⁄( ) β1 z,( )=

κ2 1 R⁄( ) β2 θ, R,z A1⁄( )β1+[ ]=

κ12 1 2⁄ 1 A1⁄( )β2 z, 1 R⁄( )β1 θ, R,z RA1⁄( )β2–+[ ]=

γ1 β1 w,z A1⁄ u R1⁄–+=

γ2 β2 1 R⁄( ) w,θ sinφv–( )+=

ε1 ε2 ε12, , ε21= κ1 κ2 κ12, ,

δΠ δ LA1dz
0

H∫ B+[ ] A2dθ
0

2π∫{ } 0= =

L f1
Tδε1 f2

Tδε2 pTδu–+=
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(7a)

(7b)

(7c)

where the superscripted quantities in (7a-c) are the Fourier coefficients of the nth circumferential
harmonic. By substituting (7a-c) into (6) and integrating δΠ over θ, one may write the final form of
the variational principle

(8)

where

(9)

is the modified expanded energy density for the nth harmonic circular number and the integration
extrema 0 and H represent the limits for the z vertical coordinate (see Fig. 1).

Omitting, for brevitiy’s sake, the complete analytical derivations in (8), one obtains:

(10a)

(10b)

(10c)

(10d)

(10e)

which represent the static equilibrium conditions for each harmonic number considered.

f1

N1
 

N12
 

Q1
 

M1
 

M12
 

N1
ncosnθ

N12
n sinnθ

Q1
ncosnθ

M1
ncosnθ

M12
n sinnθ

; ε1

ε1
 

ε12
 

γ1
 

κ1
 

κ12
 

ε1
ncosnθ

ε12
n sinnθ

γ1
ncosnθ

κ1
ncosnθ

κ12
n sinnθ

n 0=

∞

∑= =
n 0=

∞

∑= =

f2

N2
 

M2
 

Q2
 

N2
ncosnθ

M2
ncosnθ

Q2
nsinnθ

n 0=

∞

∑= = ; ε2

ε2
 

κ2
 

γ2
 

ε2
ncosnθ

κ2
ncosnθ

γ2
nsinnθ

n 0=

∞

∑= =

p

pu
 

pv
 

pw
 

0

0

pu
ncosnθ

pv
nsinnθ

pw
n cosnθ

0

0

n 0=

∞

∑= = ; u

u
 

v 

w 

β1

β2

uncosnθ

vnsinnθ

wncosnθ

β1
ncosnθ

β2
nsinnθ

n 0=

∞

∑= =

δΠn δ LnA1dz
0

H∫ Bn+( ) 0= =

Ln f 1
nTδε1

n f2
nTδε2

n pnTδun–+=

RNφ( ),z A1Nφθ( ),θ R,zNθ–+[ ] A1Qφ R Rφ⁄( ) puRA1+ + 0=

RNφθ( ),z A1Nθ( ),θ R,zNφθ+ +[ ] Qθ A1sinφ( ) pvRA1+ + 0=

RQφ( ),z A1Qθ( ),θ+[ ] A1Nφ R Rφ⁄( )– Nθ A1sinφ( ) pwRA1+– 0=

RMφθ( ),z– A1Mθ( ),θ– R,zMφθ– A1 2, Mφ RA1Qθ+ + 0=

RMφ( ),z A1Mφθ( ),θ R,zMθ– RA1Qφ–+ 0=
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Last, a proper set of boundary conditions depending on how the B term is written (i.e., how
boundary loads are set) comes from the stationarity of (6) and one gets a fully well posed b.v.
problem. The following are the types of boundary assignments presented in the numerical examples
studied in the following:

free edge: (11a)

simply supported edge: (11b)

clamped edge: (11c)

which do not need necessarily to be homogeneus.
It should be noted that reported in Reddy (1984), one can deduce the correct equations for

specialized geometry directly from Eq. (10), by setting correct values to the geometric parameters
and not needing to restart from the variational formulation. For instance (one is refereed to Figs. 1,
2, 3):

• Circular plate: 
 
• Circular cylindrical shell: 
 
• Spherical shell: 
 

N1
n N12

n Q1
n M1

n M12
n 0= = = = =

un vn wn M1
n β2

n 0= = = = =

un vn wn β1
n β2

n 0= = = = =

Rφ ∞→

R const., Rφ ∞→=

Rφ const.=

Fig. 3 Circular cylindrical tank with hydrostatic loading

Fig. 2 Simply supported circular plates subjected to a uniform pressure
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4. Fundamental system

The shells examined in this paper are made of linearly elastic isotropic material and the
corresponding constitutive equations can be put in harmonic form too:

(12)

where E is Young modulus, ν is the Poisson ratio and E1 = Et/2(1 − ν2), E2 = νE1, E3 = (1 − ν)E1/2,
E4 = Et3/[12(1 − ν2)], E5 = νE4, E6 = (1 − ν)E4/2, E7 = λE3. λ is a transverse shearing factor such
that λ = 5/6. Introducing the kinematic equations into the above relations and then substituting the
modified constitutive equations into the set of equilibrium equations leads to the following sets of
harmonically-uncoupled fundamental equations, expressed in terms of harmonic components of
generalized displacements:

 (13a)

(13b)

(13c)

(13d)

(13e)

The coefficients Kij are listed in Viola et al. (2003). The G.D.Q. technique is applied to the
systems (13a-e), keeping in mind that the resulting equations contain derivatives with respect to the
longitudinal coordinate z only.

5. The G.D.Q. method implementation and solution

The basis of the G.D.Q. method, when applied to linear time-invariant PDE systems is resumable
by the following sequence (Bellomo 1997):

• Collocation of the space variables into a finite number of grid points

N1
n

N2
n

N12
n

M1
n

M2
n

M12
n

Q1
n

Q2
n

E1
   E2  0  0  0  0  0  0

E2
    E1  0  0  0  0  0  0

0  0  E3
    0  0  0  0  0

0  0  0  E4
    E5  0  0  0

0  0  0  E5  E4
    0  0  0

0  0  0  0  0  E6
    0  0

0  0  0  0  0  0  E7
    0

0  0  0  0  0  0  0  E7
  

ε1
n

ε2
n

ε12
n

κ1
n

κ2
n

κ12
n

γ1
n

γ2
n

=

K11
n un K12

n vn K13
n wn K14

n β1
n K15

n β2
n+ + + + pu

nR=

K21
n un K22

n vn K23
n wn K24

n β1
n K25

n β2
n+ + + + pv

nR=

K31
n un K32

n vn K33
n wn K34

n β1
n K35

n β2
n+ + + + pw

n R=

K41
n un K42

n vn K43
n wn K44

n β1
n K45

n β2
n+ + + + 0=

K51
n un K52

n vn K53
n wn K54

n β1
n K55

n β2
n+ + + + 0=
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• Approximation of the dependet variable(s) of the problem by means of a proper linear
interpolation rule, through collocation points values.

• The space derivatives are approximated themselves using the aforementioned interpolation.
• The differential b.v. problem is transformed into a set of algebraic problems, each imposed at a

grid point. Boundary conditions are similarly assigned at those points corresponding to the
boundary of the domain of the independent variables.

• The solution, in terms of local values of dependent variables, is obtained by solving a linear
algebraic set of equations. These values are subsequently interpolated along the domain, with the
previous method.

In this way, the representation of the derivatives of a z-dependent variable, say f (z), defined in the
closed interval [0, H], is given as:
 

(14)

which is a weighted sum of function values at every grid point along the domain. Here Aij are the
weighting coefficients of the rth order derivative at the ith sampling point along the domain, and m
is the number of sampling points in the collocation .

The weighting coefficients (w.c.) can be determined, depending on the chosen interpolation rule.
For the cases treated in the present paper, Lagrange polynomial functions have been adopted;
therefore some simple recursive formulas are available in finding weighting coefficients (Shu and
Richards 1992):

(15)

where

 (16)

for the first order derivative while, for higher order derivatives, one gets iteratively:

(17)

 (18)

As will be seen later, in the present study, only one-dimensional dependent variables will be
involved and the Chebyshev polynomials roots will be used for numerical reasons (Bellomo 1997),
as collocation points along the domain:

∂rf z( )
∂zr

--------------
z zi=

Aij
r( )f zj( )

j 1=

m

∑=

0 z1 z2 … zi … zm, , , , , H= ={ }

Aij
1( ) π zi( )

zi zj–( )π zj( )
------------------------------ ; i j, 1 2 … m; i j≠, , ,= =

π zi( ) zi zj–( ); i j,
j 1=

m

∏ 1 2 … m; i j≠, , ,= =

Aij
r( ) r Aij

r 1–( )Aik
1( ) Aij

r 1–( )

zi zk–( )
------------------– ; i j≠( ), 2 r m 1–≤ ≤=

Aii
r( ) Aik

r( ) i
k 1=
k i≠

m

∑– 1 2 … m 1 r m 1–≤ ≤, , , ,= =
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 (19)

Moreover, the boundary conditions in terms of generalized displacements harmonic amplitudes
can be cast directly within the approximated equations. Applying the quadrature rule, in order to
discretize the systems (13) and the boundary conditions, enables to impose the approximate
equilibrium equations at every collocation point, for each harmonic number. After a proper
subdivision of nodal generalized displacements, the solving sets of equilibrium harmonic equations
take the following form:

(20)

where the subscripts b and d stand for boundary and domain, respectively, in a way that b-equations
represent the discretized boundary conditions, which are valid only for the points lying on
constrained edges of the shell or at the apex; while d-equations are proper equilibrium equations,
imposed on points of the interior of the domain.

The solution procedure takes advance, now, of the static condensation, in order to obtain a system
of equations in terms of domain d.o.f. only:

(21)

where

(22)

and

(23)

When the global condensed system (21) is solved for the internal degrees of freedom, by simply
recalling that

(24)

gives the boundary values for displacements variables. Finally, applying the steps listed in section 5
and using both the strain-displacement and constitutive relations, one obtains the complete
approximate state of stress and deformation of the shell structure.

6. Numerical results and discussion

6.1 Simply supported circular plate subjected to uniform pressure

To show the accuracy and precision of the present method, we first consider a circular plate under

zi
1 cos i 1–( )π m 1–( )⁄[ ]–

2
---------------------------------------------------------------H, i 1 2 … m, , ,==

Kbb
n   Kbd

n

Kdb
n   Kdd

n

ubb
n

udd
n

pbb
n

pdd
n

=

Kdd
n

udd
n pdd

n=

Kdd
n

Kdd
n Kdb

n Kbb
n( )

1–
Kbd

n–=

pdd
n pdd

n Kdb
n Kbb

n( )
1–
pbb

n–=

ubb
n Kbb

n( )
1–

pbb
n Kbd

n udd
n–( )=
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a uniform pressure (Fig. 2). The boundary conditions impose closed apex continuity at the centre
point and null transverse displacement along the extreme parallel; it is remarkable how the point
continuity conditions at the centre can be exactly imposed with the aim of the G.D.Q. technique
(see Viola and Artioli 2004). The material data (as taken from Kim and Kim 2000) are E = 106 kN/m2,
ν = 0.0, R = 1 m, t = 0.01 m, p = 1 kN/m2. In Table 1, the present results are plotted, and those
available from Kim and Kim (2000), resulting from a recent hybrid-mixed rotational finite element
and those from elementary plate theory (Reddy 1984). For this analysis, only 5 sampling points are
sufficient to yield good accuracy both for kinematic and static quantities. With regards to this
example, the computational efficiency of the present method, when compared to the reference
solution, is recognizable in the less computational cost involved in obtaining the global linear
system which for both methods has the same dimension.

6.2 A clamped-free cylindrical tank with idrostatic load

Fig. 3 shows the geometry of a liquid-filled circular cylindrical shell with one clamped edge, the
other one being free; as for the preceding example the only circular harmonic involved is n = 0, due
to axial symmetry of the system. The geometry and material data of the shell are: E = 3 × 106 kN/m2,
ν = 0.25, R = 360 in., t = 14 in., p = 0.03616 × z lb/in2. Results from a G.D.Q. modelling with 11
grid points along meridian are shown in Fig. 4 and Fig. 5. The accuracy of the solution in terms of
internal stress resultants and moments is achieved and a good agreement between the present
solution and the results from Gould and Sen (1971) is evident. The reference solution was obtained
using a mixed rotational finite element and required a discretization with more that 25 nodes along
meridional curve. Fig. 6 shows that to obtain a sufficient accuracy for the free edge translations less
nodes were required in the analysis.

Table 1 Comparison between present results and Kim and Kim hybrid mixed finite element solution

z (m) Theor. Kim & Kim G.D.Q.

w × 10−3 (m)

0 0.938 0.939 0.938
0.25 0.868 0.868 0.868
0.50 0.668 0.668 0.668
0.75 0.364 0.363 0.364
1.00 0 0 0

β1 × 10−3

0 0 0 0
0.25 0.551 0.551 0.551
0.50 1.031 1.031 1.031
0.75 1.371 1.371 1.371
1.00 1.500 1.500 1.500

M1 (kNm/m)

0 0.188 0.188 0.188
0.25 0.176 0.175 0.176
0.50 0.141 0.141 0.141
0.75 0.082 0.082 0.082
1.00 0.000 0.000 5 × 10−17
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Fig. 5 Stress couples M1 and M2 for tank shell in Fig. 3. Comparison with results from Gould and Sen

Fig. 4 Circumferential stress resultant N2 and transverse meridional shear Q1 for tank shell in Fig. 3.
Comparison with results from Gould and Sen



470 Edoardo Artioli and Erasmo Viola

6.3 Hyperboloid of revolution subjected to wind pressure

A rather classic example in the static analysis of non-symmetrically loaded shells of revolution is
shown in Fig. 7. The clamped hyperboloidal shell with uniform thickness shown in Fig. 7(a) is
subjected to a wind pressure p whose pattern around the parallel has been reported in Fig. 4(b),
while it is assumed that no variation occurs along the vertical coordinate z. The external normal
load has been developed in Fourier series accounting for the first ten harmonic components (Kim

Fig. 6 Convergence pattern for the meridional and transverse displacements at top of cylindrical tank with
hydrostatic load if Fig. 3

Fig. 7 (a) Clamped-free hyperboloid of revolution subjected to unsymmetrical wind pressure (b) Wind
pressure pattern
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and Kim 2000). The assumed shell meridian equation is the following:

with the geometric parameters a = 84 ft and b = 209.66 ft. The elastic parameters are E = 432 × 106

lb/ft 2, ν = 0.15 and t = 7 in. and the total height of the tower is H = S + T = 270 + 60 = 330 ft. The
present solution has first been compared with that obtained by Kim and Kim (2000) with a brand-
newly developed hybrid-mixed harmonic rotational element and then with that obtained by Luah
and Fan (1990) using a spline finite element method. The present analysis made use of 19 grid
points along the domain, producing a global system of size 85. The analysis by the hybrid-mixed
element of Kim and Kim requires a total amount of 15 unequally spaced elements with a grand
total of almost 230 condensed d.o.f.. Fig. 8 again shows a quite good agreement between the
present analysis and the scaled values extracted by the paper of Kim and Kim, for what concerns
the transverse displacement along centre meridian θ = 0. In Fig. 9 and Fig. 10 a comparison is
made between present results computed with the G.D.Q. method and those from a rotational spline
finite element (Luah and Fan 1990). This excellent agreement also for membrane and couple stress
resultants is achieved with a significantly lower number of nodes (19) than those used in the
reference paper. It is to be noted also that, differing from the F.E. method, within the present
approach no integration prior to the global system assembly is necessary and that this results in a
further reduction of computational cost. 

As mentioned earlier, (Fig. 11), even a fewer number of nodal points are necessary for the good
prediction of displacements.

z
2

a
2

----- R
2

b
2

-----– 1=

Fig. 8 Translational displacement u, v and w for the wind-loaded hyperbolic cooling tower in Fig. 7(a).
Comparison with results from Kim and Kim
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Fig. 9 Internal stress resultants N1 and N2 for the hyperbolic rotational shell subjected to wind pressure in
Fig. 7(a). Comparison with results available from Luah and Fan

Fig. 10 Internal stress couples M1 and M2 for the hyperbolic rotational shell subjected to wind pressure in
Fig. 7(a). Comparison with results available from Luah and Fan
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7. Conclusions

A G.D.Q. procedure for the static analysis of rotational shells has been presented. Starting from
general shell equations a proper set of equilibrium equations in terms of circular harmonic
components of generalized displacements and a set of boundary conditions has been obtained. These
partial differential equations in the axial coordinate only are easily discretized by means of the
technique in argument, to yield a set of common linear systems each for a circular harmonic
number. Some comparisons with available results confirm how this simple numerical method
provides accurate and computationally low-cost results.
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Notation

z, θ : vertical and colatitudinal curvilinear coordinates on the reference surface
ζ : normal coordinate along shell thickness
R(z) : parallel circle normal radius
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Rφ(z) : meridian radius
A1, A2 : Lamè parameters of the reference surface
U, V, W : displacement components of points lying within shell thickness
u, v, w : displacement components of points lying on shell midsurface
β1, β2 : midsurface normal rotations
f1, f2 : internal stress resultants and couples
ε1, εε2 : midsurface strain measures
p : midsurface distributed load intensities
u : midsurface distributed load intensities
λ : shearing correction factor

: weighting coefficients for the G. D. Q. approximations of derivatives
n : circular harmonic number

: stiffness submatrices of discretized structure (boundary and domain)
: discretized structure nodal degrees of freedom (boundary and domain)
: discretized structure nodal load vectors (boundary and domain)
: condensed stiffness matrix of discretized structure
: condensed load vector of discretized structure

Aik
r( )

Kij
n i j, b d,=,

uij
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pij
n i j, b d,=,

Kdd
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