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Abstract. An analytical method is presented to solve the problem of transient wave propagéation in a
transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact
expressions for the transient responses of displacements, stresses, eectric displacement and electric
potentials in the piezodectric hollow sphere are obtained by means of Hanke transform, Laplace
transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral
equation of the second kind involved in the exact expression, which is caused by interaction between
thermo-elastic field and thermo-electric field. Thus, an anaytical solution for the problem of transient
wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finaly, some
numerical results are carried out, and may be used as a reference to solve other transient coupled
problems of thermo-electro-elasticity.

Key words: thermo-electro-elastic;, wave propagation; piezoelectric hollow sphere; electric excitation;
thermal shock.

1. Introduction

In recent years, the applications for a transversely isotropic hollow sphere have continuously
increased in some engineering areas, including aerospace, offshore and submarine structures,
chemicd vessal and civil engineering structures. An exact solution of spherically isotropic shells
subjected to both interna and external uniform pressures was introduced by Lave (1927) and
Lekhniskii (1981). Hu (1954) first initiated use a separation method and presented a general theory
of easticity for an sphericaly isotropic medium. Many subsequently important anayses were
inspired based on Hu's elegant investigations on some static problems such as a concentrated force
in an infinite medium, stress concentration due to a spherical cavity, and a steadily rotating shell.
Sternberg and Chakravorty (1959) obtained an exact closed-form solution for the dynamic problem
of a sudden temperature change at the surface of a spherical cavity in an infinite solid. Hata (1991,
1993, 1997) obtained the dynamic thermal stress responses in a uniformly heated isotropic spherical
shell and solid sphere, as well as transversely isotropic solid sphere by using the ray theory. Wang
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(2000) discussed the thermal stress concentration in an isotropic solid sphere. Recently, Wang et al.
(2001) obtained dynamic thermal stress in a transversely isotropic hollow sphere. Ding et al. (2003)
investigated on stress-focusing in a uniformly heated solid sphere. However, investigations on
thermo-electro-elastic interaction in piezoelectric structures subjected to thermal shock and transient
electric excitation have been a few.

This paper presents an analytical method for thermo-electro-elastic interaction in a transversely
isotropic piezoelectric hollow sphere subjected to thermal shock and transient electric excitation.
The thermo-éectro-elastic dynamic equation of the transversely isotropic piezoelectric hollow
sphere may be decomposed into a quasi-static homogeneous equation with inhomogeneous
boundary conditions and an inhomogeneous dynamic equation with homogeneous boundary
conditions. Firstly, using the method described by Lekhniskii (1981), we can solve the quasi-static
guestion. Secondly, the solution to the inhomogeneous dynamic question which satisfies
homogeneous boundary conditions is obtained by utilizing the finite Hankel transforms (Cinelli
1965), and the Laplace transforms. Then, using Hermite non-linear interpolation method solves
Volterra integral equation of the second kind caused by interaction between thermo-elastic field and
eectric field. Thus, the exact expressions for the transient responses of displacements, stresses,
electric digplacement and eectric potentials in the transversely isotropic piezoelectric hollow sphere
are obtained.

2. Formation of the problem

A spherical coordinate system (r, 8, ¢) with the origin identical to the center of the sphere is used
for a spherically symmetric problem where a transversely isotropic piezoelectric hollow sphere with
internal radius a and external radius b as shown in Fig. 1, is subjected to a rapid change in
temperature T(r, t), so that the strain-displacement relations are expressed as

ou,(r, 1) u.(r, t)
Er = T oo T Egp T T £ = Eop = &9 = 0 (@h)

Electrodes

Fig. 1 A geometric graph of piezoelectric hollow sphere subjected to thermal shock T(r, t) and electric
excitation ¢(r, t)
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where g;(i,]j =r, 6, ¢) are strain components, and u,(r,t) expresses a radial displacement. The
congtitutive relations of a spherically transversely isotropic pyroeectric medium are expressed as
(Sinha 1962, Chen and Shioya 2001)

17l
O = Cpi&+ 2C1p890+ ellg(f—AlT(r, t) (29)
17l
Ogg = Cpp&+ (Cpp+ Cx)Eggt 6125?_A2T(r1 t) (2b)
_ 99
D = eug, + Zelzgee—ﬁndr + Py T(r, t) (20)
AL = CpQ,+ 2C0p, Ay = Cpl, + (Cxp+ Cxp)dy (2d)

where ¢, e, a;, Bj, and pn are elastic constants, piezoelectric constants, thermal expansion
coefficients, dielectric constants, and pyroelectric coefficients, respectively. g; and D,, are the
component of stress and radial electric displacement, respectively.

In absence of free charge density, the charge equation of electrostatics is expressed as Dunn and
Taya (1994)

dDrr(ri T) + 2Drr
or r

=0 ©)
Solving Eq. (3), yields
D, (1, 1) = d(t) @
where d(t) is an undetermined function.
Substituting Eg. (4) into Eq. (2c), gives

o  Budr  Burt PBu r? 11
Substituting Eg. (5) into Egs.(28) and (2b), yields

2
_ €194 Gulul  eud(t)
Oy = %311'*' B0 or + 28512"' B, Ur 12 Typ(r, t) (69)
2
_ €118119Y; 2e U e d(t)
Ogp = %312+ B, Uor + %22‘F Cxs ™t B,0T _Bll 2 =Top(r,t) (6b)
Where T,o(rt) = Er\i—%%ﬂr,t) (i =12) (7ab)

Substituting Eq. (6) into the motion equation of a spherically symmetric problem (Lekhniskii
1981), the basic displacement equation of thermo-electro-elastic motion of a transversely isotropic
piezoelectric hollow sphere is expressed as
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Fu,(r, t) 4 20 (r, 1) _qur(r,t) _ idzur(r, B, I%? fg(r D)

- 2 2
o’ rooor r? C°~ ot
where
2
H2 = 2(Cyp + Cy3) B1y + 4€1, — 2C1 31, — 2€4,€p5 | = 2ey, m= co+ en
= y - - ) - 11
mpBy, mﬁn

2 m

1 €;P1170T €10 —
C.=—, r,t) = —[ J + 2 + A
L= g(r, t) ml A1 By, 0 Bl p11 1Ay,

Boundary conditions of stress and electric are expressed as

] : .
o(r,t),=; = ug b, u(: t)Lj = 6(t) (j=ab)

®at) = @) @b t) = @t)

where
_ 2(CpPu + ener) _ __ €n o
h= T 8 = A0 TGy (= aD)
Initial conditions are
_d ,
(0o = () [Z5E] = w

3. Solution of the problem

(88)

(8b)

(9ab)

(9c,d)

(%)

(10a,b)

The general solution of the basic displacement Eq. (8a) may be decomposed into the form as

follows

Ur(r, t) = ug(r, t) +ugy(r, t)

(11)

where uq(r,t) and uy(r,t) are, respectively, defined as the quasi-static term which satisfies
inhomogeneous boundary conditions and dynamic term which satisfies homogeneous boundary

conditions.
The quasi-static term u,(r, t) satisfies Eq. (12) as follows

Fug(r, t) , 20Ug(r, ) H
or? r or

au(r, t o1t B o
[uq;: ) 4 pY (: )L =gt (j=ab)

Solving Eq. (12), we have

ug(r, t>-lil+g(r f)

(124)

(12b,c)
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Ug(r, 1) = A(r, t) + Ay(r)d(t) (13)
where
A, 1) = gy(r, t) + LyLar" 0+ L,L,r 09 (149)
A1) = Lll_s[b_(n;lf’)—a_(n;l's)}“—o% LZLS[b(n_:S)—a(n;:a}‘(“”*‘)—'—z (14b)
a b a b Hr

= J0.25+H? gy(r,t) = "% arZ"_l[J’ar_"”'Sg(r,t)dr] dr

— oy h _ 1
9%(r 1) = air. )+ rg(l‘, D, L= (n+ h—0.5)[a”—0_5b—(n+1.5)_bn—o.s —(n+1.5)]
L - 1 L~ (h-1)

(n—h+ 0_5)[an—o.5b—(n+1.5) _ bn—O.Sa—(n+l.5)] ’ 5 mg;, H2
Ls = 1[T1p(a b " T (b, )@ " ] ~[g,(a, )b —gy(b, )a "
= SlTu(a, OB = Tyy(b, "% ~[g.(a, Db~ g(b, D" (14c4)

Substituting Eqg. (11) into Eqg. (8) and utilizing Eqg. (12) provides an inhomogeneous dynamic
equation with homogeneous boundary conditions and the corresponding initial conditions for uy(r, t)

Fuy(r, t zo"'u(rt) H dzu r,t dzu rt
duy(r, , .
[ Uda(: t) +hUd(: t)l:j =0 (j=ahbh) (15b,0)
Ug(r, 0) + Ug(r, 0) = Ug a“d((;t’ 0) +‘7“qg' -\ (15d,e)

In order to transform Eq. (15a) into a normal Bessel equation, a new function f(r, t) is introduced

by
ug(r, t) = ro%(r, 1) (16)

Substituting Eq. (16) into Eq. (15), yields

FH(r,t) | 10f(r, 1) sz _ sz(r 1) o”'zuql(r t)} 17
PR (ro) = c’ o ot (17
K@Y ot =0 FEYhtm1 =0 (17b,0

or or
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o(1.0) , Nr(r,0) _
ot ot

f(r,0) + ug(r, 0) = u; (17d,e)

where

Uga(F 1) = By(r, 1) + By(r)d(t), By(r,t) = r°°Ai(r, 1), By(r) =r*°Ay(r)  (18a<c)
R* = 025+H*, u, = r®uy, v, =1, h,= gh%ao.sg, h, = §h‘—b°'52 (18d-h)

a

A finite Hankel transform to f(r, t) is defined as
f(k,t) = H[f(r,t)] = ﬁrf(r,t)GR(kir)dr (19)

The inverse transform of Eq. (19) is given by
f (ki 1)

(9 = 3 iy Gelkn) (20)
where
F(k) = [or[Ga(kn)] dr
szz i+ - wﬂﬁ‘kgn%‘ '[1‘%1% (13
Gr(kr) = Ja(kr)Ya=JaY(kir) (21b)
where

Ja = kiJr(kia) + hJr(kia) Jp = kiJr(kib) + hyJg(kib)
Y, = kYr(kia) + h,Yg(ka) Y, = ki Yr(kib) + h,Yg(kib) (22)

Jr(kir) and Yg(kr) are, respectively, the first and the second kind of the R"-order Bessel function,
where k;(i = 1,2, ...,n) express a series of postive roots for natural eigen-equation as follows:

J.Yy—3Y, =0 (23)
The natural frequencies are expressed as
@ = Ck (24)

Applying the finite Hankel transform (19) to Eq. (17a) and utilizing the homogeneous boundary
condition (17b,c), we have
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_kizf_(ki, t) = Ciz dzf;:;i’ t) + dzaf;fzkh t)} (25)
where
Uga(ki, 1) = Hlug(r, t)] (26)

Applying Laplace transform to the two sides of Eq. (25) and utilizing the initial condition (17d,e),
yields
— wZ
f (ki,p) = —Uq(k, p) + —5—Uq(k, p) +
(af +pY)

where p is the parameter of Laplace transform, and

pu,(k) + vi(k)
(wf+p°) (af +p?)

(27)

ui(k) = H{uy(n)],  Va(k) = H[Vy()]
The inverse Laplace transform of Eq. (27) is expressed as
F(k,t) = —Uq(k, t) + @[Ug(k, )sin(wt)] + Uy (k) cos(wt) + Vl(ki)isin(w.t) (28)
where
Uga(ki )sin(@it) = [, Uqu(k, T)sin[@(t—1)]d7 (29)
Substituting Eq. (18a) into Eq. (26), yields
Uga(ki, t) = Ba(k;, t) + Ba(k)d(t) (30)

where Ba(k, t) = H[By(r,t)], Ba(k) = H[B,(r)].
Substituting Eq. (30) into Eqg. (29), gives

Ugu(ki, t)sin(awt) = R[El(kia 1) + Ba(k)d(7)]sin[a(t - 7)] dT (31)
Substituting Eq. (31) into Eq. (28), yields
f(k,t) = Iy(k,t) +Ba(k)ly(k, t) + 15(k, t) (32)
where
li(ki, T) = —Bu(ki, t) + &Rﬁl(ki, nsinfw(t—1)]dr
(ki t) = —d(t) +w.ﬁ)d(T)Sin[w.(t—T)]dT

(ki 1) = Ul(ki)COS(w.t)+\71(ki)é5in(0%t) (33)
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Substituting Eqg. (32) into Eq. (20), the dynamic solution for inhomogeneous dynamic Eq. (17)
with homogeneous boundary conditions is given by

(K -
0,0 = 5 S a0+ Bl 0 + 1ok, ) (3

Thus, from Egs. (11), (13), (16) and (34), the solution of the basic displacement equation of
thermo-electro-elastic motion in the piezoelectric hollow sphere is expressed as

kr _
W 1) = Ag(r, 1) + Ag(r)d(t) + Zﬁ[ ik ) + Balk) (ke ) + 1 (ko O] (35)

Noting that in the above expression d(t) still is an unknown function which is relation to the electric
displacement. It is necessary to determine d(t) in the following.
Integrating Eq. (5) and utilizing the corresponding electric boundary condition (9c), yields

@Ar, ) = Oy(r, 1) + Dy(r)d(D) + F Py(rFi() + (1) (36)
where
_en °Gg(kir) —a **Ggp(ka))
(Dl(r!t) - ﬁll|:All(r!t)_Al(av t)_Z F(kl) Bl(klit)}
+2112J’1 Ay — 5 —CkDg ar + B2 T(r o (373)
By Jar | Z F(k) ; pda T
_ en ~ ~ Gr(kir) —a *°Gg(ka)) =
q)Z(r) - Bl]__AZ(r) AZ(a) Zl F(kl) B (k):|
o2 ey - 3 o o+ L @m)
‘ Z Flk) 2 o,
_ en (7 °Gr(kir) —a °Gg(ka)) | 2ey,» 1 Gg(kir)
0 =5, Fk) ks E ) 70
Fi(t) = Fy(t) + Ba(k) @[, d(7)sin[w(t - 1)] dT (37d)
Fu(t) = aajzél(ki,t)sin[u(t—r)]dwal(ki)cos(w.t)+vl(ki)ﬁs'n(aat) (37¢)

Substituting r = b into Eqg. (36), yields

@(1) = Py(b, 1) + Do(b)d(t) + 5 Pyi(D)Fi(t) + @u(t) (38)
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Substituting t = 0 into Eq. (38), we have
$(0) = 9.(0) = P4(b, 1) = % @5(b)F;(0)

d(0) = O (39)
Substitution of Eq. (37d) into Eq. (38), gives
9(t) = Myd(t) + 5 My fyd(D)sin[w(t- )] dr (40)
where
() = B(t) ~ @u(t) = Pa(b, 1) = 5 Da(B)Fuy(1)
M; = ®,y(b), My = q:si(t;)él(ki)wl (41)
Time derivative of Eq. (40) gives
9(t) = Myd(t) + 5 Mz fyd(T)cos] ay(t - T)] dT (42)

It is seen that EQ. (40) is Volterra integral equation of the second kind (Kress 1989). In the
following, Eq. (40) will be solved by using the recursion formula based on non-linear Hermite
interpolation function. In order to describe the method solving the integra Eq. (40), the time
interval [O, t] is divided into n subintervals and the discrete time points are t, = 0,t;,t,,...,t,. The
interpolation function at the time interval [t;_,, tj] may be expressed as

d(t) = E)(t)d(f_y) + E/(t)d(y) + EX®d(t_)E(Dd(t_) (=12 ...,n) (43

where
o =ttt t—t =t f 2 t-t 7
-t it .
EF(t) = (t—tj)g‘_—_tﬁg ,d(t) = (dd)/dt)oy (=1,2,...,n) (44)
] 1=

Substituting Eq. (43) into Egs. (40) and (42), gives

J(t) = Md(t)) + Z My ]z [ Roijkd(te—1) + Ryjjed(ty) + R2ijkd(tk—l) + R3ijkd(tk)] (453)

K=1

79(tj) = Mld(tj) + z My @ ]Z [ Soijud(te_1) + Syjd(ty) + SZijkd(tk—l) + S3ijkd(tk)] (45b)
1 k=1
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where
Rijk = [ E(1)sin[w(t-1)]dT

(1=0,1,2,3;k=12,...,j;i=1,2,...,n)
Sik = [ E(Dsn[@(t-1)]dr

From Eq. (45), the recursion formula for d(t;) and d(tj) can be expressed as

Xqjp0; = Xy Xpj@41 — Xqj8;

d(ty) = d(ty) =

, ] (=1,2,...,n)
Aqqj Az — Ay Ay A1) 8295 — 81282,

where

m j—1 . .
Xy = () =5 My ]z [Roijid(ti-1) + Rujjed(t) + Raijid(ti—1) + Raijd(ti)]
i1 =
_'ZlMZi[ROijkd(tj—l) + R2ijkd(tj—l)]
. m -1 . :
Xy = S(t) -y mefz [Soijed (ti-1) + Stijed(t) + Spijed(ti—1) + Ssipd(ti)]
i< K=
_'ZlMZi(‘)l[SOijkd(tj—l) + SZijkd(tj—l)]
) = Ml"‘_iMziRlijja Qgj = _iMZiRaijj

m m
ay; = Moiw S, Ami = M1+ § My S5
21 i; 2i M 1ijj 22] 1 i; 2i P =3ijj

(46)

(47)

(48)

Substituting d(0) in Eq. (40) and d(0) in Eq. (42) into Eq. (47), we can obtain d(t) and d(t;),
(j=1,2,...,n) step by step, and determine d(t). Substituting d(t) in Eq. (47) into Eq. (35), gives
the exact expression of the solution, u(r, t), for the basic equation of thermo-electro-elastic motion
in the transversely isotropic piezoelectric hollow sphere. Thus, the corresponding transient stresses
0, (r, t), Oge(r, t), the transient eectric displacement D,(r, t) and the transient electric potentia ¢(r, t)

are easly obtained from Egs. (4) to (6).

4. Numerical results and discussions

Thermo-dectro-dlagtic interaction in a transversely isotropic piezoelectric hollow sphere subjected
to thermal shock and eectric potentia is considered. A transitory temperature change produced by a
sudden electric current pulse or by absorption of electromagnetic wave, is typicaly of a duration

much less than 1 us and may be expressed as
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T(r,t) = ToH(t) (49)

Where H(t) expresses the Heaviside function.

In numerica calculations, material constants for the transversely isotropic piezoelectric hollow
sphere are taken as c;; = €33 = 111.0 GPa, ¢,, =125.6 GPa, ¢, =77.8 GPa, ci3= %3 =74.3 GPa,
e =151 (C/m%), ep=e,=-52(C/m?), a;=a3=2.0%x10" (V/k), a,=20x10"° (/K), Bu=
5.62x10"° (C/Nm’), and py =-2.5%10" (C/m’K). In al results, the dimensionless time is
taken as 7= C t/b—a, the dimensionless radial coordinate is taken as, S=r—a’/b—a, the response
time istaken as 1 = 10, and the ratio of the externa radii to the internal radii is taken as b/a= 2.

Example 1. Thermo-electro-elastic interaction in the transversely isotropic piezoelectric hollow
sphere, with homogeneous electric boundary conditions, permeated by change thermd field, T(r, t),
in Eq. (49), is considered. The homogeneous dectric boundary conditions are

@(at) =0, @(bt)=0 (50)

O D *

g = “—(i=r,0),D=——"— and @ = — % __ aeintroduced in Figs. 2-6.
arTOCll( ) D a,To/CrBu Y a,To/CrBu ’

Figs. 2, 3 and Fig. 4 show, respectively, the response histories of radial, and hoop stresses at
different radial points. Because of the small wall thickness, the reflected effects of wave between the
inner-wall and outer-wall occur. From Fig. 2 and Fig. 3, it is shown that except the radial stresses at
the internal and externa surfaces of the transversely isotropic piezoelectric hollow sphere satisfy the
given zero boundary condition, the stresses at other points oscillate dramatically because of the
reflected effect of wave. From Fig. 4 and Fig. 5, it is shown that the peak values of hoop stresses
and electric displacement decrease gradually from inner-wall to outer-wall at the identical time T.
The distribution of eectric potential ¢ in the transversely isotropic piezodectric hollow sphere
subjected to only thermal shock is seen in Fig. 6. The eectric potentia ¢ at the internal and

c, 3.75 G, 3.0
2.50 A 1.54
1.25
0.0 4
0.00 fo- ] --ref-b--pcf b
-1.5 4
1.25
-2.50 T T T T -3.0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10
T T
Fig. 2 Response histories of the transent radiad Fig. 3 Response histories of the transient radia
— Ct - Cit
stresses o, where S=1=2 ==L 4 = sresses g, where S=1=2 1= g =
o b-a a o b-a a
I I

,and @,=0
0, ToCu ® 0, ToCu

,and ¢ =0
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Gy 3.0

1.5
0.0-.’:":%", ® ,';
-1.5 --
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0 2 4 6
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8 10

Fig. 4 Response histories of the transient hoop

D, 2.4
1.2

~
N N
0.04" A
N
A

-1.2

-2.4

0 2 4 6 8
T

10

Fig. 5 Response histories of the transient eectric

stresses g, at R=0.5and R=1, where R= ) r—a Cit
displacements D,, where S=——, 1=—,
r—a _Cit ) _ b-a a
— Tl=—, Og,= and ¢,=0 _ D, _
b-a a a,ToCry Di=——— and ¢, =0
a; To/CuPu
6" 0.12
1=0.1
5 =0.5
006 1=1.0
0.00 iimrimomrimsimomrim e
e =
-0.06 4 T~
0124  Treee--
-0.18 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
S
) L . . . . - Ct
Fig. 6 Distributions of the transient electric potentials ¢, where S:%—E, T:B‘L—, Q= —% _ ad
@»=0 —a —a a; To/CuPu

external boundary equal zero, which satisfy the prescribed electric boundary conditions in Eqg. (50).
The distribution of the electric potential ¢" along radius is non-linear as time .

Example 2. Consider that the thermo-electro-elastic interaction in the transversely isotropic
piezoelectric hollow sphere is induced by both therma shock, T(r, t) in Eq. (49) and eectric
excitation in inhomogeneous electric boundary conditions which is expressed as

In the numerical calculation, g; =

introduced.

¢a(ay t) = Ol %(bl t) = H(T) (51)
Gii . Drr * [
(i=r,0), D,=————— and ¢ = are
a;ToCra A, To/Cr1Bir a,To./Cr1 B

From Figs. 7, 8 and Fig. 13, it is seen that the radial stresses and the electric potential at the
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boundaries R = 0, 1 satisfy the given boundary conditions. Except the points at the given boundary
condition, transient responses at other points oscillate dramaticaly as shown in Figs. 7-13. It is seen
from Figs. 7, 8 that the maximum amplitude of radial compression stress is smaller than that of
radial tension stress. Fig. 9 shows that the amplitude of hoop compression stress of the transversely
isotropic piezoelectric hollow sphere is smaller than that of hoop tension stress. The response
histories of electric displacement always are negative as shown in Figs. 10-12. It is shown from
Figs. 10-12 that the peak values of electric displacement decrease gradualy from inner-wall to outer
wall at the identical time 1. It is seen in Fig. 13 that the electric potential ¢ at the externa
boundary equals to 1, which satisfy the prescribed electric boundary conditions (51), and the
distribution of electric potential ¢" aong radius is weak non-linear at different non-dimensional
time 1.

G, 3 G, 0.25
—— $=0.5
----- $=1.0
0.00 4 - - - m e
-0.25 -
-0.50 |
-2 : ; ; ; -0.75 : . ; ;
0 2 4 6 8 10 0 2 4 6 8 10
T T
Fig. 7 Response histories of the transient radia Fig. 8 Response histories of the transient radial
— Cit — Cit
dresses g, where S=1=2 ==L = sresses g, where S=1—2, r== g =
b-a a b-a a
Orr % = 1 Orr (ﬂ) = 1
a;ToCy ' a;ToCuy '
D, -9.4
Gy 3.0
—— $=0.0 — $=0.0
————— $=0.5
1.51 S=1.0 =96
e A 9.8
-1.5
3.0
45 i : : . -10.2 , T T T
0 2 4 6 8 10 0 2 4 6 8 10
T T
Fig. 9 Response higtories of the transient hoop  Fig. 10 Response histories of the transient electric
. - Cit . — Cit
stresses 0,, where S= r-a ,-x g,= displacements D,, where S = r=a ;-
b-a a b-a b-a
o @=1 D, = — 20 @=1
] r — ] -
0 ToCu a,To/CuBu
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Example 3. Although the transient responses of coupled fields have been studied by a number of
authors, no published experiment results can be used for a comparison with the present model. In
fact, most of the previous experiment works have focused on the electro-elastic transient responses
of beam and plate structures. To our knowledge, no experiment results on the problem of transient
wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock
and electric excitation are available in the literature. This is apparently due to the fact that the
experiment research on the transient wave propagation in a piezoelectric hollow sphere under

thermal shock and electric excitation remains a formidable task.

In order to prove the validity of these numerical results further, the present method can be applied
to solve the transient problem of isotropic hollow sphere subjected to only thermal shock (Hata
1991). The equations of motion of this problem (Hata 1991) can be rewritten as
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BZU(z, t) , 20U(r, 1) —%U(r, ) = %fU(g, ), ,LHVIT(r. 1)
or ror r c? ot 1-v or
_ oU_ 22, ETa _
oy = [M+ 2w+ Fu-=2| =0
u(r,0) = 0, [Mr—tq -0 (52)
dt t=0
By using the present method, one can express the solution of Eq. (52) as
. OU+g l—V% 2v 4
9 = ZE?[1+ vor (1+ v)rCRJCOS(E‘Ct)E
* DUTB \' % 1 0
e IZE?[l v (1+ v)rCRJCOS(EiCt)E (53)
where Ure = —Hankle[r*"], Cq = 1™ *[J32(&r) Ya— Yao( &) 3]
F = [[3a/2Ya=Jo/2d] ‘o (54)

For ease of comparison with reference (Hata 1991), the same parameters are taken: t" = Ct/a,
0 = 0,/(5TypC%), £TopC’ = aETy/(1-2v) and v = 0.3. From Fig. 14, one can see that the results
from the two different methods are nearly the same. Note that solving the hollow sphere problem,
the number of eigenvalue terms was taken to be only 40, and the error of the results obtained is less
than 1%.
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Fig. 14 Response histories of isotropic elastic hollow sphere subjected to only thermal shock, for b/a=>5,
t* = Ct/a, where —— expresses the result in Hata (1991) and ——— expresses the result in this paper.
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5. Conclusions

1. Comparing Example 1 with Example 2, it is seen that the response histories and distributions of
stresses, electric displacement and electric potential in a transversely isotropic piezoelectric
hollow sphere are obvioudy different for two kinds of electric excitation which is, respectively,
shown in Eg. (50) and Eq. (51). Thus, it is possible to control the response histories and
digtribution of thermal stresses in the transversely isotropic piezodectric hollow sphere by
applying a suitable dectric excitation load to the structure, or to assessment the response
histories and distribution of thermal stresses in the transversely isotropic piezoelectric hollow
sphere by measuring the response histories of eectric potential in the structure.

2. It is concluded from the above analyses and discussions that the presented method is simple
and effective. So it may be used as a reference to solve other coupling problems in a
piezoelectric hollow sphere. From the knowledge of the response histories of transient stresses,
eectric displacement and electric potential in a piezodectric hollow cylinder, one can design
various thermo-electro-elastic elements subjected to therma shock and electric excitation to
meet specific engineering requirements.
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Notation

&ij
u(r, t)
G, €, O, Py -

A, Gi
Uija Drr
¢ (r, 1)
T(r, t)
ot

r

ab
C

w

: components of strains
: radial displacement [m]

elastic constants [N/m?], piezoelectric constants [C/m?], thermal expansion coefficients [1/K]
and dielectric constants] C?/Nm?|

: thermal modulus [N/m?k], and pyroelectric coefficient [C/mK]

: components of stresses [N/m? and radial electric displacement [C/m?]
: electric potential [W/A]

: temperature change function [k]

: mass density [kg/m®] and time variable [s]

: radia variable [m]

: inner and outer radii of piezoelectric hollow cylinder [m]

: eectroglastic wave speed [m/g)]

: inherent frequency of piezoelectric hollow cylinder [1/s]





