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Abstract. In this paper, the behavior of a crack between two half-planes of functionally graded
materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the
Schmidt method. To make the analysis tractable, it is assumed that the Poisson’s ratios of the mediums
are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of
the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in
which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the
dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series
of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical
examples are provided to show the effect of the crack length and the parameters describing the
functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results
of the present paper are the same as ones of the same problem that was solved by the singular integral
equation method. As a special case, when the material properties are not continuous through the crack
line, an approximate solution of the interface crack problem is also given under the assumption that the
effect of the crack surface interference very near the crack tips is negligible. It is found that the stress
singularities of the present interface crack solution are the same as ones of the ordinary crack in
homogenous materials.
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1. Introduction 

In recent years, functionally graded materials (FGMs) have been widely introduced and applied to
the development of thermal and structural components due to its ability to not only reduce the
residual and thermal stresses but to increase the bonding strength and toughness as well. To help the
development of such materials, many analytical and theoretical studies in fracture mechanics have
been widely done. Erdogan and Wu (1997) analyzed a FGM strip containing an imbedded or an
edge crack perpendicular to the surfaces. In particular, the use of a graded material as interlayers in
the bonded media is one of the highly effective and promising applications in eliminating various
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shortcoming resulting from stepwise property mismatch inherent in piecewise homogeneous
composite media (Lee and Erodogan 1994, Suresh and Mortensen 1977, Choi 2001). From the
fracture mechanics viewpoint, the presence of a graded interlayer would play an important role in
determining the crack driving forces and fracture resistance parameters. In an attempt to address the
issues pertaining to the fracture analysis of bonded media with such transitional interfacial
properties, a series of solutions to certain crack problems was obtained by Erdogan and his
associates (Delale and Erdogan 1988, Chen 1990, Ozturk and Erdogan 1996). Among them there
are the solutions for a crack in the non-homogeneous interlayer bounded by dissimilar
homogeneous media (Delale and Erdogan 1988); and for a crack at the interface between
homogeneous and non-homogeneous materials (Chen 1990, Ozturk and Erdogan 1996). Similar problems
of delamination or an interface crack between a functionally graded coating and a substrate were
considered in (Jin and Batra 1996, Bao and Cai 1997, Shbeeb and Binienda 1999). The dynamic
crack problem for non-homogeneous composite materials was considered in Wang et al. (2000) but
they considered the FGM layer as a multi-layered homogeneous medium. The crack problem in
FGM layers under thermal stresses was studied by Erdogan and Wu (1996). They considered an
unconstrained elastic layer under statically self-equilibrating thermal or residual stresses. 

In this paper, the same problem that was treated by Delale and Erdogan (1983) is reworked using a
somewhat different approach, named the Schmidt method (Morse and Feshbach 1958, Itou 1978). To
make the analysis tractable, it is assumed that the Poisson’s ratios η ( j) ( j = 1, 2) of the medium are
constants and the material modulus µ ( j) ( j = 1, 2) varies exponentially with coordinate parallel to the
crack. The Fourier transform is applied and a mixed boundary value problem is reduced to two pairs
of dual integral equations in which the unknown variables are the jumps of the displacements across
the crack surface. To solve the dual integral equations, the jumps of the displacements across crack
surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those
adopted in the (Erdogan and Wu 1997, Lee and Erdogan 1994, Suresh and Mortensen 1977, Choi
2001, Delale and Erdogan 1988, Chen 1990, Ozturk and Erdogan 1996, Jin and Batra 1996, Bao and
Cai 1997, Shbeeb and Binienda 1999, Wang et al. 2000, Erdogan and Wu 1996, Delale and Erdogan
1983) as mentioned above. In the previous works (Erdogan and Wu 1997, Lee and Erdogan 1994,
Suresh and Mortensen 1977, Choi 2001, Delale and Erdogan 1988, Chen 1990, Ozturk and Erdogan
1996, Jin and Batra 1996, Bao and Cai 1997, Shbeeb and Binienda 1999, Wang et al. 2000, Erdogan
and Wu 1996, Delale and Erdogan 1983), the unknown variables of dual integral equations are the
dislocation density functions. This is the major difference. The numerical results are same as in
Delale and Erdogan (1983) when the material properties are continuous through the crack line. It is
also proved that the Schmidt method is performed satisfactorily. On the other hand, as discussed in
Itou (1986), an exact solution of the interface crack problem had been given in England (1965) in
spite of the incomprehensibility in fracture mechanics. However, from an engineering viewpoint, it is
more desirable to seek a solution that is physically acceptable. Hence, the solving process of the
present paper is expanded to solve the special case problem when the material properties are not
continuous through the crack line. In this case, an approximate solution of the interface crack
problem is given under the assumption that the effect of the crack surface interference very near the
crack tips is negligible as discussed in (Erdogan and Wu 1993, Zhang 1989, 1986). For this special
case (From practical view points, researchers in the field of functionally graded materials will not
pay their attention in this case), it is found that the stress singularities of the present interface crack
solution are the same as ones of the ordinary crack in homogeneous materials, while much problems
have to be considered when the material properties are not continuous through the crack line. 
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2. Formulation of the crack problem

It is assumed that there is an interface crack of length 2l along the x-axis between two dissimilar
FGM half-planes ,   and ,  as shown in Fig. 1. In the
global x-y coordinates the shear modulus of the FGM is assumed to be as follows

                                    (1)

where β ( j) is a constant (The superscript j = 1, 2 correspond to the upper half plane and the lower
half plane through in this paper.). If , η (1) = η (2) and β(1) = β(2), the problem in this paper
will return to the same problem as discussed in Delale and Erdogan (1983). η ( j) (j = 1, 2) is the
Poisson’s ratio.

u(j)(x, y) and v(j)(x, y) represent the displacement components in the x- and y-directions, respectively,
the constitutive relations for the non-homogeneous material are written as

 (2)

(3)

 (4)

Where k( j) = 3 − 4η( j) ( j = 1, 2) for the state of plane strain, k( j) = (3 − η( j)) / (1+η( j))( j = 1, 2) for the
state of generalized plane stress. The Poisson’s ratio η( j) ( j = 1, 2) for FGMs, is taken to be a
constant; owing to the fact its variation within a practical range has the rather insignificant influence
on the value of the near-tip driving for fracture (Delale and Erdogan 1988, Chen 1990, Ozturk and
Erdogan 1996). In the present paper, we just consider the plane strain problem.

In the absence of body forces, the elastic behavior of the medium with the variable shear modulus
in (1) is governed by the following equations
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Fig. 1 Geometry of the interface crack between two dissimilar FGM half-planes and the variation of the
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(5)

 (6)

3. Solution

The system of above governing equations is solved, using the Fourier integral transform technique
to obtain the general expressions for the displacement components as

(7)

                                

(8)

                                

and from Eqs. (2)-(4), the stress components are obtained as

(9)

(10)

where s is the transform variable, Aj (j = 1, 2, 3, 4) are arbitrary unknowns.
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λj (s)( j = 1, 2) are the roots of the characteristic equation

(11)

and mj (s) ( j = 1, 2) are expressed for each root λj (s) ( j = 1, 2) as

(12)

λj ( j = 3, 4) are the roots of the characteristic equation

(13)

and mj (s) ( j = 3, 4) are expressed for each root λj(s)( j = 3, 4) as

(14)

The roots may be obtained as

(15)

(16)

where 

  

From Eqs. (7)-(10), it can be seen that there are four unknown constants (in Fourier space they are
functions of s), i.e., Aj, j = 1, 2, 3, 4, which can be obtained from the following conditions:

(17)

(18)

(19)

where σ0(x) and τ0(x) are known functions.
To solve the problem, the jumps of the displacements across the crack surfaces can be defined as

follows: 
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In the solution of such problem, it is obviously that some unsurmountable mathematical
difficulties will be encountered and have to be resort to a succinct procedure. In the present paper, it
is decided to assume . Applying the Fourier transforms and the boundary conditions
(17)-(19), it can be obtained

(22)

(23)

where 

A superposed bar indicates the Fourier transform. The Fourier transform is defined as follows:

(24)

By solving four Eqs. (22)-(23) with four unknown functions, substituting the solutions into Eq. (17)
and applying the boundary conditions, it can be obtained
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To determine the unknown functions  and  the above two pairs of dual integral Eqs.
(25)-(28) must be solved.

4. Solution of the dual integral equations

To solve the problem, the jumps of the displacements across the crack surfaces can be represented
by the following series: (When the material properties are not continuous through the crack line, as
mentioned above, the problem is solved under the assumptions that the effect of the crack surface
overlapping very near the crack tips is negligible. These assumptions had been used in (Erdogan and
Wu 1993, Zhang 1986, 1989). It can be obtained that the jumps of the displacements across the
crack surface are finite, differentiable and continuous functions. Only in this case, the jumps of the
displacements across the crack surfaces can be represented by the following series:)

(29)
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where an and bn are unknown coefficients,  is a Jacobi polynomial (Gradshteyn and
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(36)

From the relationships (Gradshteyn and Ryzhik 1980)
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For  and , δ1 = 0 and . When  and k(1) = k(2) = k,

this is the same case as in Delale and Erdogan (1983). The semi-infinite integral in Eqs. (39)-(40) can
be evaluated directly. Eqs. (35)-(36) can now be solved for the coefficients an and bn by the Schmidt
method (Morse and Feshbach 1958, Itou 1978). For briefly, Eqs. (35)-(36) can be rewritten as 
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So it can be rewritten

(48)

Substituting Eq. (48) into Eq. (41), it can be obtained

(49)

So it can now be solved for the coefficients an by the Schmidt method again as above mentioned.
With the aid of Eq. (48), the coefficients bn can be obtained.

5. Stress intensity factors

The coefficients an and bn are known, so that the entire stress field can be obtained. However, in
fracture mechanics, it is important to determine stresses  and  in the vicinity of the crack
tips. In the case of the present study,  and  along the crack line can be expressed as:

(50)
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By examination of Eqs. (50)-(51) shows that, the singular part of the stress field can be obtained
from the relationships as follows (Gradshteyn and Ryzhik 1980):

For l < x, the singular part of the stress field can be expressed respectively as follows:

(52)

(53)

where 

For x < −1, the singular part of the stress field can be expressed respectively as follows:
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The values of the stress concentration at the right tip of the crack can be given as follows

(56)

(57)

The values of the stress concentration at the left tip of the crack can be given as follows

(58)

(59)

6. Numerical calculations and discussion

As discussed in the works (Morse and Feshbach 1958, Itou 1978, Zhou et al. 1999a,b, Itou 1999,
2001), it can be seen that the Schmidt method is performed satisfactorily if the first ten terms of
infinite series in Eqs. (35)-(36) are retained. The behavior of the sum of the series keeps steady with
the increasing number of terms in Eqs. (35)-(36). For the case in which the material constants of the
materials are different, the material constants of the upper half plane functionally graded materials
are assumed as , η(1) = 0.28, and the material constants of the lower half
plane functional graded materials are assumed as  and η(2) = 0.3. The
crack surface loading  and  will simply be assumed to be a polynomial of the form
as follows:

Since the problem is linear, the results can be superimposed in any suitable manner. The results
are obtained by taking only one or two of the eight input parameters p0, p1, p2, p3, s0, s1, s2 and s3

nonzero at a time. The values of the stress concentration K are calculated numerically. The results of
the present paper are shown in Fig. 2 to Fig. 6 and the Table 1 to Table 2. 

From the results, the following observations can be made:
 (i) The aim of the present paper is to give a new approach to resolve the same problem as in

Delale and Erdogan (1983). It can be seen that the results of the present paper is the same as
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Fig. 2 Stress intensity factors versus βl for σ0(x) =
p0, τ0(x) = 0 and = =
(66.5 × 109 N/m2, 0.3)

µ0
1( ) η 1( ),( ) µ0

2( ) η 2( ),( )
Fig. 3 Stress intensity factors versus βl for σ0(x) =

p1 , τ0(x) = s0 and = , η(2))

= (66.5 × 109 N/m2, 0.3)

x
l
-- 

  µ0
1( ) η 1( ),( ) µ0

2( )(

Fig. 4 Stress intensity factors versus βl for σ0(x) =

p3 , τ0(x) = s0 and = , η(2))

= (66.5 × 109 N/m2, 0.3)

x
l
-- 

 
3

µ0
1( ) η 1( ),( ) µ0
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Fig. 5 Stress intensity factors versus βl for σ0(x) =

p2 , τ0(x) = s0 and = , η(2))

= (66.5 × 109 N/m2, 0.3)

x
l
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µ0
1( ) η 1( ),( ) µ0
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Fig. 6 Stress intensity factors versus η for l = 1.0, σ0(x) = p0, τ0(x) = 0 and 66.5 × 109 N/m2,
η(1) = η(2) = η
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ones in Delale and Erdogan (1983) when  as shown in Fig. 2. It is also
proved that the Schmidt method is performed satisfactorily. In the paper (Delale and Erdogan
1983), the unknown variables of dual integral equations are the dislocation density functions.
However, the case of  was not considered in Delale and Erdogan (1983).

(ii) When the material properties are not continuous along the crack line, an approximate solution
of the interface crack problem is given as shown in Table 1 to Table 2 under the assumption
that the effect of the crack surface interference very near the crack tips is negligible (From
practical view points, researchers in the field of functionally graded materials will not pay
their attention in this case). The solving process is quite different from the other works such
as in (Erdogan and Wu 1997, Lee and Erdogan 1994, Suresh and Mortensen 1977, Choi 2001,
Delale and Erdogan 1988, Chen 1990, Ozturk and Erdogan 1996, Jin and Batra 1996, Bao
and Cai 1997, Shbeeb and Binienda 1999, Wang et al. 2000, Erdogan and Wu 1996, Delale
and Erdogan 1983). It can be obtained that the stress singularities of the present paper are the
same as ones of the ordinary crack in homogeneous materials when the material parameters
don’t continue through the crack line. During the solving process for this case, the
mathematical difficulties would not be met, i.e., the oscillatory stress singularity and the
overlapping of the crack surfaces do not appeared near the interface crack tips, while much
problems have to be considered. 

(iii) It can be obtained that the shear stress field is independent of the tension loading when
 from the results in Fig. 3 to Fig. 5. However, the shear stress field is

dependent of the tension loading when  as shown in Table 1 to Table 2.
(iv) From the results as shown Fig. 2 to Fig. 5, it can be obtained that the values of the stress

intensity factors vary approximately linearly with the variable βl for a uniformly loading. The
values of the stress intensity factors KI and KII tend to increase with increasing of βl as shown

µ0
1( ) η 1( ),( ) µ0

2( ) η 2( ),( )=

µ0
1( ) η 1( ),( ) µ0

2( ) η 2( ),( )≠

µ0
1( ) η 1( ),( ) µ0

2( ) η 2( ),( )=
µ0

1( ) η 1( ),( ) µ0
2( ) η 2( ),( )≠

Table 1 The values of the stress concentration K versus βl for the case of  and l = 1.0
under crack surface loading σ0(x) = p0 and τ0(x) = s0 ( = 77 × 109 N/m2, η(1) = 0.28, = 66.5 ×
109 N/m2 and η(2) = 0.3)

βl  (the right 
tip of the crack)

  (the right 
tip of the crack)

 (the left
tip of the crack)

 (the left
tip of the crack)

0.1 1.02500 1.02608 0.975972 0.974991
0.2 1.04856 1.04902 0.949966 0.949902
0.3 1.07096 1.07212 0.923700 0.922808
0.4 1.09255 1.09375 0.897719 0.896868
0.5 1.11343 1.11469 0.872256 0.871447
0.6 1.13366 1.13497 0.847452 0.846682
0.7 1.15329 1.15465 0.823406 0.822673
0.8 1.17235 1.17376 0.800188 0.799492
0.9 1.19086 1.19233 0.777848 0.777186
1.0 1.20886 1.21040 0.756413 0.755783
1.1 1.22634 1.22795 0.735895 0.735295
1.2 1.24329 1.24498 0.716289 0.715719
1.3 1.25965 1.26143 0.697583 0.690740
1.4 1.27531 1.27720 0.679755 0.679237

µ0
1( ) η 1( ),( ) µ0

2( ) η 2( ),( )≠
µ0

1( ) µ0
2( )

KI p0⁄ l KII s0⁄ l KI
* p0⁄ l KII

* s0⁄ l
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in Fig. 2 to Fig. 5. However, the values of the stress intensity factors  and  decrease
with increase of βl.

(v) The effect of Possion’s ratio on the stress intensity factors in plane strain is shown in Fig. 6.
The result is shown that this effect is rather insignificant.

(vi) From the results, it can be obtained that the Schmidt method can be used to solve the mix
boundary crack problem. 
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