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An assumed-stress finite element for static and free 
vibration analysis of Reissner-Mindlin plates
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Abstract. An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the
Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational
principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to
show that the validity and efficiency of the present element for static and free vibration analysis of plates.
Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for
thin plate analysis.
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1. Introduction

The early approach to the finite element analysis of plates relied mostly on the Kirchoff thin plate
theory, in which transverse shear deformation is neglected. The plate finite element based on this
theory requires that the displacement and its derivatives should be continous across element
boundaries. This requirement limited the number of possible choices for constructing the
interpolation of this kind. Therefore, many works have turned towards the Reissner-Mindlin plate
theory (Reissner 1945, Mindlin 1951) as a starting point of the finite element discretization in order
to reduce the continuity requirements on the displacement interpolation.

For the Mindlin plates, only C0 continuity is required, and therefore the difficulties of C1

continuity requirement for thin plate element are solved easily. Moreover, both thin and thick plate
analyses can be integrated into one element model. 

All existing Reissner-Mindlin plate elements can be generally classified into two groups. One is
displacement-based element method, while the other is the mixed/hybrid element method. In order
to avoid the shear locking phenomenon in the displacement-based models, the method of reduced,
Zienkiewicz et al. (1971), and selective integration, Hughes et al. (1978), is an efficient approach to
prevent the appearance of the shear locking phenomenon. A number of successful displacement
based Reissner-Mindlin plate elements have been developed in recent years, Choi and Park (1999),
Wanji and Cheung (2000), Sydenstricker and Landau (2000), Brezzi and Marini (2003), Zengjie and
Wanji (2003).

As an alternative to the displacement models, mixed-hybrid models with multiple independent
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variables appears to be more attractive in developing thin and thick plate elements. A number of
effective elements which are free from shear locking have been developed by authors such as Lee
and Pian (1978), Cheung and Wanji (1989), Dong et al. (1993), Ayad et al. (2001), Ayad and
Rigolot (2002) and  and Akoz (2002). The mixed/hybrid method appears to be an easier
technique to satisfy the constraint of the shear strain.

In this paper, an assumed stress hybrid quadrilateral plate element is derived. Reissner-Mindlin
theory that incorporates transverse shear deformation is assumed in the plate formulation.

2. Element stiffness formulation

The assumed-stress hybrid method is based on the independent prescriptions of stresses within the
element and displacements on the element boundary. The element stiffness matrix is obtained using
Hellinger-Reissner variational principle. The Hellinger-Reissner functional of linear elasticity allows
displacements and stresses to be varied separately. This establishes the master fields. Two slave
strain fields appear, one coming from displacements and one from stresses.

The Hellinger-Reissner functional can be written as

 (1)

where {σ} is the stress vector, [S ] is the compliance matrix relating strains, {ε}, to stress
({ε}=[S]{σ}), [D] is the differential operator matrix corresponding to the linear strain-displacement
relations ({ε}=[D]{u}) and V is the volume of structure.

 (2)

 (3)

The approximation for stress and displacements can now be incorporated in the functional. The
stress field is described in the interior of the element as

Eratli
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{σ} = [P]{β}  (4)

and a compatible displacement field is described by

{u}=[N]{q}  (5)

where [P] and [N] are matrices of stress and displacement interpolation functions, respectively, and
{β} and {q} are the unknown stress and nodal displacement parameters, respectively. Intra-element
equilibrating stresses and compatible displacements are independently interpolated. Since stresses
are independent from element to element, the stress parameters are eliminated at the element level
and a conventional stiffness matrix results. This leaves only the nodal displacement parameters to be
assembled into the global system of equations.

Substituting the stress and displacement approximations Eq. (4), Eq. (5) in the functional Eq. (1)

  (6)

where

 (7)

 (8)

Now imposing stationary conditions on the functional with respect to the stress parameters {β}
gives

 (9)

Substitution of {β} in Eq. (6), the functional reduces to 

 (10)

where

 (11)

is recognized as a stiffness matrix.
The solution of the system yields the unknown nodal displacements {q}. After {q} is determined,

element stresses or internal forces can be recovered by use of Eq. (9) and Eq. (4). Thus

 (12)

Nodal d.o.f. consist of lateral deflections wi and rotations θxi and θyi of midsurface normals so the
4-node HQP4 element (Fig. 1) has 12 d.o.f.s. The corresponding deflections and rotations within an
element are obtained by independent shape functions.

The displacement and rotations are expressed in terms of their nodal values and shape functions
which are as follows

ΠRH β[ ] T G[ ] q[ ] 1
2
--- β[ ] T H[ ] β[ ]–=

H[ ] P[ ] T S[ ] P[ ] dV
V
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2
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 (13)

 (14)

for i = 1, 2, 3, 4  (15)

where i denotes the node number.
Coordinates x and y within the element are defined by 

(16a)

By the relations between the global Cartesian coordinate system (x, y) and the normalized nodal
coordinate system (ξ, η), matrix J is defined as

 (16b)

Initial polynomials are usually assumed for the stresses after which the equilibrium equations are
applied to these polynomials yielding relations between the β’s and ultimately the final form of [P].
The equilibrium equations which are applied to stress field polynomials yielding relations between
the β’s are given in Eq. (17).
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Fig. 1 HQP4 element



An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates 203

The biggest difficulty in deriving hybrid finite elements seems to be the lack of a rational
methodology for deriving stress terms, Feng et al. (1997). It is recognized that the number of stress
modes m in the assumed stress field should satisfy

 
  (18)

with n the total number of nodal displacements, and r the number of rigid body modes in an element.
If Eq. (18) is not satisfied, use of too few coefficients in {β}, the rank of the element stiffness matrix
will be less than the total degrees of deformation freedom and the numerical solution of the finite
element model will not be stable and produces on element with one or more mechanism. 

Increasing the number of β’s by adding stress modes of higher-order term, each extra term will
add more stiffness and stiffen the element, Pian and Chen (1983), Punch and Atluri (1984).

The element has 12 d.o.f, three of which are associated with the out of plane rigid body motions.
Therefore, a stress field with a minimum of 9 independent parameters is needed to describe the
stress field. 

The assumed stress field for the plate element which satisfies the equilibrium conditions (Eq. 17)
for zero body forces and avoids rank deficiency is given as

 (19)

Numerical experimentations indicate that these 13 parameter selections of stress field are
somewhat more accurate and less sensitive to geometric distortion than fewer parameter selections.
This selection of stresses produces no spurious zero energy modes. It is observed stress field
remains invariant upon node numbering.

3. Element mass matrix

The problem of determination of the natural frequencies of vibration of a plate reduces to the
solution of the standard eigenvalue problem , where ω is the natural angular
frequency of the system. Making use of the conventional assemblage technique of the finite element
method with the necessary boundary conditions, the system matrix [K] and the mass matrix [M] for
the entire structure can be obtained.

Element mass matrix is derived from the kinetic energy expression

 (20)

where  denotes the velocity components and [R] is the inertia matrix.
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 (21)

The nodal and generalized velocity vectors are related with the help of shape functions

 (22)

Substituting the velocity vectors in the kinetic energy, Eq. (20) yields the mass matrix of an element.

 (23)

  (24)

where [m] is the element consistent mass matrix and is given by

 (25)

4. Numerical examples

Some standard numerical examples have been used for assessing the accuracy of the HQP4
element. The results obtained are compared with analytic and some other element solutions that are
available in open literature.

Example 1: Absence of spurious modes: examination of the stiffness matrix rank
The eigenvalues of the stiffness matrix [K] for one element are computed for different values of

the thickness and for various shapes of the element. Three zero eigenvalues corresponding to the
three rigid body motions of a plate are always obtained, showing thus a proper rank for the matrix
[K] and the absence of spurious modes in consequence. Three sample elements are depicted in Fig. 2.
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Fig. 2 Number of zero eigenvalues
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Example 2: Simply supported square plate
The classical test problem of a simply supported square plate under uniform loading is considered.

The plate is made of linear elastic isotropic material with Elasticity modulus E = 10.92 kN/m2 and
Poissons’s ratio ν = 0.3. The side length a = 10 m and different h/a values are selected. The
numerical results are obtained by modeling one quadrant using uniform finite element meshes given
in Fig. 3.

The results obtained for h/a = 0.001 (thin) to h/a = 0.2 (moderately thick) values are presented in
Table 1 and results showed that the behaviour of the HQP4 element is satisfactory, converges to the
analytical value. The analytical solution is extracted from Timoshenko and Woinowsky-Krieger (1959).

Example 3: Uniform loading on a rhombic plate
The rhombic plate model selected in this example given in Fig. 4 is made of linear elastic material

with Elasticity modulus E = 10 × 106 kN/m2, Poisson’s ratio ν = 0.3, plate side a = 100 m and plate
thickness h = 1 m. The solution for the center displacement under unit uniform load q = 1 kN/m2,
analytical solution obtained by Morley (1963), is used for comparison with numerical results.

Fig. 3 Uniform loading on a simply supported square plate

Table 1 Displacement parameter (wmaxEh3/pa4) at the centre of uniformly loaded simply supported square plate 

h/a

0.001 0.05 0.1 0.2

HQP4 (This study)
Pryor et al. (1970)
Rao et al. (1974)
Bhashyam, Gallagher (1983) 
Bergan, Wang (1984)
MITC4 Bathe, Dvorkin (1985)
Yuan, Miller (1989)
MITC9 (Bathe et al. 1989)
Akoz, Uzcan (1992)
Q4Bla (Xu et al. 1994)
Wanji, Cheung (2000)
Analytical 

0.04445
---
---
---
---
---

0.04396
0.04436

---
---
---

0.04436

0.04504
0.04469
0.04483
0.04510

-
---

0.04636
---

0.0450
---

0.04485
0.04486

0.04678
0.04612
0.04627
0.04760
0.04663

---
0.05015

---
-

0.04728
---

0.04632

0.05376
0.05186
0.05201
0.05690
0.05296
0.05344
0.06045

---
0.0520

---
0.05338
0.05360
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Results showed that the behaviour of the HQP4 element is satisfactory, converges to the analytical
value.

Example 4: Uniform loading on a circular plate
The Fig. 5 shows the geometry and finite element mesh used for the analysis of an isotropic

moderately thick (R/h = 5) and thin (R/h = 50) circular plate subjected to a q = 1 kN/m2 uniform
loading. The radius is chosen as R = 5 m and the material properties are Elasticity modulus
E = 10 × 106 kN/m2, Poisson’s ratio ν = 0.3. This problem is interesting owing to the arbitrarily
distorted mesh.

Fig. 4 Uniform loading on a simply supported rhombic plate

Table 2 Displacements at the centre of uniformly loaded simply supported rhombic plate 

Mesh

2 × 2 4 × 4 8 × 8 16 × 16

HQP4 (This study)
Q4-R (Malkus and Hughes 1978)
DKQ (Batoz, Tahar 1982)
T1 (Hughes, Tezduyar 1989)
Ibrahimbegovic (1993)
Q4BL (Zienkiewicz et al. 1993)
RDKQM (Wanji, Cheung 2000)
RDKTM* (Wanji, Cheung 2001)
ANSYS 
Analytical (Morley 1963)

0.03984
---

0.20804
0.02780
0.04627

---
---
---

0.07601
0.04455

0.04160
0.04509
0.08303
0.03918
0.04271
0.05606
0.08266
0.04958
0.05082
0.04455

0.04137
0.04433
0.05533
0.03899
0.03971
0.04807
0.05503
0.04641
0.04669
0.04455

0.04361
0.04477
0.04835
0.04187
0.04206

0.04816
0.04597
0.04528
0.04455

*Triangular element

Fig. 5 Uniform loading on a simply supported and clamped circular plate
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A quarter of a plate with symmetry conditions on x and y axes is discretized using 12 and 48
elements. Two types of boundary conditions are considered: 

SS: Simply supported plate with w = 0 on the boundary
CL: Clamped plate with w = θx = θy = 0 on the boundary
The analytical solutions for displacement w and moment M at the centre including transversal

shear effects are obtained for axisymmetric plates as follows, Ayad and Rigolot (2002).

Simply supported plate   

Clamped plate         
Where

The results are presented in Table 3 with the results obtained by other researchers and analytical
solution.

wref
qR4

64D
---------- ν 5+

ν 1+
------------- φ+ 

  Mref
qR2

16
--------- ν 3+( )==
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qR

3

64D
---------- 1 φ+( )=         Mref

qR
2

16
--------- ν 1+( )=

φ 8
3k 1 ν–( )
----------------------- h

R
--- 

 
2

= D
Eh3

12 1 ν2–( )
------------------------- k=

5
6
---=

Table 3 Central deflection of clamped circular plate (uniform load)

R/h = 5 R/h = 50

12 48 12 48

HQP4 (This study)
Q4-R (Malkus and Hughes 1978)
MITC4 (Bathe, Dvorkin 1985)
Ibrahimbegovic (1993)
Q4BL (Zienkiewicz et al. 1993)
Q4Bla (Xu et al. 1994)
RDKQM (Wanji, Cheung 2000)
Akoz,  (2000)
Analytical

11.076
11.125
11.421
11.367
10.760
10.927
11.748

11.561*
11.551

11.432
11.405
11.529
11.505

---
11.399
11.604

11.549**
11.551

9296
9392
9693
---

9003
9115

10079
9792*
9784

9612
9641
9769
---
---

9628
9870

9781**
9784

*15 sectorial elements, **54 sectorial elements

Eratli

Table 4 Bending moment Mx at the center of clamped circular plate

R/h = 5 R/h = 50

12 48 12 48

HQP4 (This study)
Q4-R (Malkus and Hughes 1978)
MITC4 (Bathe, Dvorkin 1985)
Q4BL (Zienkiewicz et al. 1993)
Q4Bla (Xu et al. 1994)
RDKQM (Wanji, Cheung 2000)
Akoz,  (2000)
Analytical 

2.060
1.967
2.046
1.910
1.965
2.178

2.277*
2.031

2.029
2.015
2.033

---
2.017
2.070

2.047**
2.031

2.061
2.010
2.075
1.910
1.692
2.149

2.595*
2.031

2.029
2.035
2.031

---
2.009
2.064

1.960**
2.031

*15 sectorial elements, **54 sectorial elements

Eratli



208 Kutlu Darilmaz

Table 5 Central deflection of simply supported circular plate (uniform load)

R/h = 5 R/h = 50

12 48 12 48

HQP4 (This study)
Q4-R (Malkus and Hughes 1978)
MITC4 (Bathe, Dvorkin 1985)
Ibrahimbegovic (1993)
Q4BL (Zienkiewicz et al. 1993)
Q4Bla (Xu et al. 1994)
RDKQM (Wanji, Cheung 2000)
Akoz,  (2000)
Analytical

40.039
38.787
40.766
42.201
41.744
41.722
41.093
41.220*
41.599

40.997
40.912
41.395
41.750

---
41.644
41.470

41.192**
41.599

37915
37052
39037

---
40007
39899
39423
39858*
39831

39236
39148
39634

---
---

39871
39735

39840**
39831

*15 sectorial elements, **43 sectorial elements

Eratli

Results showed that the behaviour of the HQP4 element is satisfactory, converges to the reference
value.

Example 5: Natural frequencies of a square plate
The natural frequencies of a square plate with three different support conditions are determined.

Dimensions and material properties of the plate are taken for each case as h = 0.15 m, E = 25000 Mpa,
ν = 0.15, a = 10 m, ρ = 24 kN/m3. In Table 7, Table 8 and Table 9 the values of the non-dimensional

Table 6 Bending moment Mx at the center of simply supported circular plate

R/h = 5 R/h = 50

12 48 12 48

HQP4 (This study)
Q4-R (Malkus and Hughes 1978)
MITC4 (Bathe, Dvorkin 1985)
Q4BL (Zienkiewicz et al. 1993)
Q4Bla (Xu et al. 1994)
RDKQM (Wanji, Cheung 2000)
Akoz,  (2000)
Analytical

5.128
4.935
5.098
5.121
5.169
5.229

5.192*
5.156

5.136
5.095
5.139

---
5.164
5.176

5.163**
5.156

5.186
5.004
5.124
5.121
5.101
5.201

5.205*
5.156

5.158
5.151
5.137

---
5.152
5.170

5.163**
5.156

*15 sectorial elements, **43 sectorial elements

Eratli

Table 7 Non-dimensional frequency ϖmn for a square plate simply supported on four edges 

Frequency
Parameters

Leissa 
(1973)

Omurtag et al. 
(1997)

, Akoz 
(2002)

Wang et al.
(2004)

ANSYS
(Shell63)

HQP4 
(This study)

ϖ11

ϖ12

ϖ21

ϖ22

ϖ31

ϖ32

19.739
49.348
49.348
78.957
98.696
98.696

19.911
50.112
50.112
80.090

---
---

19.703
49.069
49.069
78.354

---
---

19.739
49.348
49.348
78.957
98.694
98.694

19.653
48.993
48.993
77.750
97.870
97.870

19.812
48.337
48.337
81.764
98.382
98.382

Eratli
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Table 8 Non-dimensional frequency ϖmn for a square plate clamped on four edges 

Frequency
Parameters

Leissa 
(1973)

Omurtag et al. 
(1997)

, Akoz 
(2002)

Wang et al.
(2004) ANSYS HQP4 

(This study)

ϖ11

ϖ12

ϖ21

ϖ22

ϖ31

ϖ32

35.999
73.405
73.405
108.237
131.64
132.24

36.018
74.497
74.497

108.949
---
---

35.931
73.823
73.823
110.14

---
---

35.985
73.393
73.393
108.22
131.57
132.19

35.623
72.372
72.372

105.388
129.528
130.364

35.696
72.683
72.683
106.361
130.268
130.842

Eratli

Fig. 6 First six modes of the square plate simply supported on four edges

Table 9 Non-dimensional frequency ϖmn for a square cantilever plate 

Frequency
Parameters

Zienkiewicz 
(1971) ANSYS HQP4 

(This study)

ϖ11

ϖ12

ϖ21

ϖ22

ϖ31

ϖ32

3.469
8.535
21.450
27.059

---
---

3.472
8.544

21.357
27.226
31.156
54.550

3.463
8.517

21.309
27.114
30.195
52.917

frequencies ϖmn  obtained by some other researchers are given together with
the HQP4 results for comparison.

The first six mode shapes of the simply supported, clamped and cantilever plate are depicted in
Fig. 6, Fig. 7 and Fig. 8, respectively.

Results showed that the behaviour of the HQP4 element is satisfactory and results are in a good
agreement with other solutions.

ϖmn ωmna2 ρh D⁄=( )
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Example 6: Natural frequencies of a rhombic plate 
To validate the accuracy of presented finite element model, the frequency parameter λ = (ωmna

2/π2)
 of a rhombic plate with different support conditions has been determined. The dimensions

and material properties are the same with the plate given in Example 3, except the thickness of
plate. h = 20 (h/a = 0.2) is used for this example.

In Table 10 the values of the non-dimensional frequencies obtained by Woo et al. and ANSYS
solutions are given together with the HQP4 results for comparison.

Results obtained are in a good agreement with the ANSYS and element solutions presented in
Woo et al. (2003).

ρh D⁄

Fig. 8 First six modes of the square cantilever plate 

Fig. 7 First six modes of the square plate clamped on four edges
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Example 7: Natural frequencies of a circular plate 
A circular plate with a simply supported (w = 0 at edges) boundary condition is considered. The

dimensions and material properties are the same with the plate given in Example 4.
Nondimensionalized frequencies, , where r is the radius, are computed for such a
circular plate with different thickness/diameter ratios. In Table 11, the first six nondimensionalized
frequencies are shown and compared with other solutions. Obviously, a good agreement has been
obtained for the thin cases.

The first six mode shapes of the circular plate are depicted in Fig. 9.

ωr
2 ρh D⁄

Table 10 Frequency parameter λ = (ωmna
2/π2)  for the rhombic plate with various edge conditions 

Edge condition Mode number HQP4 
(This study)

Woo et al.
(2003) ANSYS

CCCC

1
2
3
4
5
6

6.423
8.331
9.914
12.011
12.193
14.971

6.238
8.070
9.643
11.376
11.543

---

5.932
8.681
11.395
13.885
14.303
17.295

CSCS

1
2
3
4
5
6

5.603
7.597
9.328
11.201
11.605
12.973

5.506
7.429
9.103
10.875
11.344

---

5.689
7.717
9.617
11.481
11.859
13.374

FCFC

1
2
3
4
5
6

3.647
3.692
5.616
6.704
8.012
9.082

3.560
3.635
5.501
6.456
7.740

---

3.761
3.789
5.836
6.907
8.449
9.320

FFFC

1
2
3
4
5
6

0.483
1.351
2.265
2.969
4.187
5.371

0.479
1.342
2.243
2.941
4.142

---

0.489
1.419
2.464
3.142
4.436
5.693

ρh D⁄

Table 11 Nondimensionalized frequencies  for a simply supported circular plate

h/2r Mode number HQP4 
(This study)

Wiberg et al.
(1994) ANSYS Thin plate solution

Leissa and Narita (1980)

0.2

1
2
3
4
5
6

4.497
10.91
10.91
17.22
17.25
19.33

4.405
10.49
10.49
16.62
16.63
19.01

4.508
10.85
10.85
17.07
17.10
19.47

4.9352
13.8982
13.8982
25.6133
25.6133
29.72

ωr2 ρh D⁄
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6. Conclusions

The main goal of this study is to investigate the performance of the HQP4 element in static and
free vibration analysis of thin to moderately thick plates. A number of numerical problems are
utilized to assess the performance of the present element. Numerical comparisons show that the
present element yields comparatively satisfactory results and does not exhibit shear locking. The
behaviour in case of element distortion deviates but is still in general qualitatively comparable. 

Table 11 Continued

h/2r Mode number HQP4 
(This study)

Wiberg et al.
(1994) ANSYS Thin plate solution

Leissa and Narita (1980)

0.1

1
2
3
4
5
6

4.799
12.898
12.898
22.304
22.352
25.664

4.779
12.66
10.67
21.81
21.82
25.35

4.809
12.895
12.895
22.269
22.288
25.989

4.9352
13.8982
13.8982
25.6133
25.6133
29.72

0.01

1
2
3
4
5
6

4.915
13.84
13.84
25.37
25.39
29.70

4.932
13.88
13.89
25.53
25.55
29.96

4.921
13.84
13.84
25.37
25.42
29.64

4.9352
13.8982
13.8982
25.6133
25.6133
29.72

Fig. 9 First six modes of the circular plate 
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Notations

a : length of the plate edge
h : thickness of plate
E : modulus of elasticity
G : shear modulus of elasticity
D : flexural rigidity of the plate
Mx, My, Mxy : internal moment components
Qx, Qy : internal shear force components
q : distributed load
R : radius 
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λ : frequency parameter
ν : Poisson ratio
ρ : mass per unit volume
ω : natural angular frequency
ϖ : non-dimensional frequency
[D] : differential operator matrix
[G] : nodal forces corresponding to assumed stress field
[N] : shape functions
[R] : inertia matrix
[P] : interpolation matrix for stress
{q}, {q

.
} : displacement and velocity components 

{u} : displacements
{β} : stress parameters
{σ} : internal forces




