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Abstract. A proposed incremental model for the solution of a general class of convex programming
problems is introduced. The model is an extension of that developed by Mahmoud et al. (1993) which is
limited to linear constraints having nonzero free coefficients. In the present model, this limitation is
relaxed, and allowed to be zero. The model is extended to accommodate those constraints of zero free
coefficients. The proposed model is applied to solve the elasto-static contact problems as a class of
variation inequality problems of convex nature. A set of different physical nature verification examples is
solved and discussed in this paper. 
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1. Introduction

Many variation inequality problems could be formulated as convex programming models, where
both the objective function and inequality constraints, representing the kinematic boundary
conditions, are convex functions. These convex programming models could represent various
problems in engineering and applied mechanics. Usually, the convex programming problems could
be formulated as follows: 

 (1)

Subjected to: .
Where, f, gi : Rn → R, ∈ Rn is the vector of the design variables, K is a positive definite matrix of
rank n, , and bi > 0. It should be noted that both functions f and g are convex ones. The
objective of the present paper is to address an adaptive incremental procedure to solve a more
general class of convex programming models. In the present proposed model, the linear constraint
coefficient bi is allowed to be greater than or equal to zero. 

In the following section, a detailed theoretical formulation of the problem is given. Then, the
procedure of the proposed model is presented. 
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2
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2. Formulation of the problem

The class of convex programming problems to be considered in this paper is defined as follows: 

 (2)

Subjected to: .
where, f, gi: Rn → R, ∈ Rn is the vector of the design variables, K is a positive definite matrix of
rank n, , and bi ≥ 0. However, the problem defined by Eq. (2) looks very similar to the
problem defined by Eq. (1), but it should be noticed that the coefficient bi in this model is allowed
to equal zero. 

The Lagrange function for the above problem is defined as follows: 

 (3)

where  is a vector of nonnegative Lagrange multipliers. 

 (4)

where  (5)

By substituting  from (4) into (3), we obtain

Then, there exists a Lagrange multipliers vector  such that the Lagrangian function  is
stationary with respect to both  and . As the problem defined by Eq. (2) is convex, the global
minimum point defined by  and  should satisfy the following Kuhn-Tucker (K-T) conditions,
Arora (1989): 

 (6)

which represent the dual form of the problem. 
Assume that at the minimum point , a part of the constraints set is active and the other one is

inactive. Then the constraint matrix may be partitioned as Mahmoud et al. (1993): 

[C] = [CA  CN]  (7)

where CA is the submatrix corresponding to the subset of active constraints and CN is the inactive
constraints submatrix. According to the definition of the active and inactive constraints, the set of
inequalities shown in Eq. (6) may be reformulated as: 

 (8)
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x̃* ũ*
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where  is a slack vector. Also, the Lagrange multiplier vector  could be partitioned as: 

 (9)

where  is a nonzero vector, corresponding to the active constraints, but  is a zero one which
corresponds to the inactive set. By substitution of Eqs. (8) and (9) into Eq. (6) and rearrangement of
the results, we obtain the dual form of the problem as: 

 (10)

3. The solution procedure of the proposed model

According to the incremental model proposed by Mahmoud et al. (1993), the original model,
defined by Eq. (2), is replaced by a sequence of models of the following type, Hassan et al.: 

 (11) 

Subjected to , such that: 

and the global minimum  is defined by: 

where j is the number of increment and L is the total number of increments. 
The total number of increments L and the capacity of loading vector corresponding for each step

are determined according to the following adaptive procedure. 
1- The algorithm starts by assuming that the set of inactive constraints NI, of the first model,

contains all constraints, whether bi equals zero or not. All Lagrange multipliers corresponding
to these constraints should be zero and the problem turns into: 

(12)

(13)

Now, we can compute the violation vector  such that: 
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ũ* ũA
*

ũN
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The component i of the vector  can be stated as: 

(15)

We can notice that if V1, i, is negative, zero, or positive, the constraint number i is still inactive,
active or violated respectively. Select the maximum positive value of V1, i associated with the
constraint to be active in the next step. Designating this constraint as α1, the adaptive scale
factor a1 required to establish this new active constraint is: 

           (16)

Now, the cardinality of the inactive set NI is reduced by one, where one of its constraints turns
into active and joins the active constraints set. Consequently, N2 and A2 of the next model
would be stated as: 

(17)

The values of , and  are computed as follows: 

 (18)

Therefore,  and  should be updated as 

(19)

2- Set j = 2, where j identifies the step number which is equivalent to the model number. 
3- Set up the next model, according to Eq. (10) as: 

           (20)

4- Solve Eq. (20) by any stationary iterative technique for  and , assuming that the initial trial
values are: 

(21)

5- It is important to notice that the incremental value of uA, i , j of the constrain i may be positive
ornegative according to the proposed model. If the value of  is negative, the active
constraint corresponding to the negative value may be switched to an inactive one in the next
step. To check this condition, we can carry out the following criterion: for , then if
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*=

p̃ b̃

p̃ p̃ p̃1 and b̃ b̃ b̃1–←–←

K  C̃A j,

C̃A j,
t

  0

x̃
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constraints that have negative incremental Lagrange multipliers, that one with maximum ratio
of  is selected as the next active constraint that would turn into an inactive
one. Designating this constraint as Rj, the adaptive scale factor αRj required to establish this
new inactive constraint is: 

Compute the violation components Vj, i for each inactive constraint i as: 

where ma is the cardinality of the inactive set Nj and  is the coefficient vector of the
inactive constraint i. Designating the inactive constraint aj, candidate to be active in the next
step, according to the following condition: 

Compute the adaptive scale factor  required to establish a new active constraint: 

6- From the above two scale factors,  the adaptive scale factor, α, for the next step is
computed as

7- Compute 

8- Update the intensities of the two vectors : 

9- Update the step number j ← j + 1
10- Repeat steps (5-9) until the intensity of the vector  becomes zero. 

4. Formulation of the contact problem as a convex programming model

Frictionless contact problems represent an important class of variation inequality problems
(Duvaut and Lions 1976, Ciarlet 1978, Necas and Hlavacek 1981, Glowinski 1984, Panagiotopoulos
1985, Kikuchi and Oden 1988). The contact area, and consequently the kinematic boundary
conditions along that area, are not known apriori. Furthermore, contact states depend basically on
the capacity of loads, geometry and relative material compliance. Therefore, by changing loading
capacity, a few boundary conditions may be relaxed and others would be added. Accordingly, those
types of problems are highly non-linear ones having inequality type of boundary conditions.
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Consider two elastic bodies, shown in Fig. 1, being subjected to static loads. The boundary Γ of
each body is assumed to consist of three disjoint parts, ΓD, Γp and Γc. ΓD and Γp are the portions of
the boundary on which the displacements and traction are prescribed, respectively. Γc is the
candidate contact area; i.e., Γc is a portion of the boundary that contains the adjacent surfaces which
may come into contact upon the application of loads. It should be noted that the boundary Γc

consists of two parts,  where advancing contact is prescribed and  where receding contact is
prescribed. 

The convex programming model is given by:

Minimize the potential energy 

Subjected to the following non-interpenetration constraints: 

  on inactive Γc

on active Γc

i, j = 1, 2, 3, … NC
where

{x}t = {x1, x2, x3 … xn}
{P}t = {p1, p2 … Pn1}
{G} = {g1, g2, g3 … gm} 

[K] is the overall stiffness matrix of domain, which is symmetric, xin and xjn are the normal
components of the displacements of node pair i and j, and NC is the number of candidate contact
pairs. {G} is the gap vector between the two contacting surfaces. {p} is the applied external force
vector. 

Γc1
Γc2

Fk x{ }( ) 1
2
--- x{ }k

t K[ ] x{ }k x{ }k
t P{ }k–=

xin
k xjn

k– Gij
k– 0<

xin
k xjn

k– Gij
k– 0≥

 Fig. 1 Contact of two linear elastic bodies
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5. Numerical examples

Several examples of different natures are presented and solved using the incremental convex
programming models. The first problem represents the beam resting on elastic foundation with an
initial gap. The second problem represents the pin joints truss on misaligned supports. Both
problems are belonging to a class of non-conformal contact. The third problem detects the history of
contact behavior of beam on elastic foundation. The last one represents a more complicated one of
beam on gap foundation with upper barrier. Those last couple of problems represent a more realistic
problem having both conformal and non-conformal contact type.  

5.1 Example 1: Beam resting on elastic foundation

A typical example of beam resting on elastic foundation shown in Fig. 2 is solved to represent the
validity of the proposed model to accommodate of constraints of zero free coefficient. Table 1
shows the data of beam resting on Winkler springs.

The formulation of the problem 

Subjected to 

x1 − x2 ≤ 0,  x3 − x4 ≤ 0  and  x5 − x6 ≤ 1

The load p is applied vertically at node 7 and, equal to 10 (F), the global solution of the problem
is given in Table 2. 

min
x

f x̃( ) 1
2
--- x̃tKx̃ p̃tx̃–=

Table 1 Data of beam/spring model

Beam: Young’s modulus 
Moment of inertia
Half length
Node spacing 

Spring: Stiffness

= 1 (F/L2)
= 1 (L4)
= 3 (L)
= 1 (L)
= 1 (F/m)

 Fig. 2 Beam resting on elastic foundation
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5.2 Example 2: Truss on misaligned supports

A pin jointed truss on multiple spring supports is loaded by concentrated loads as shown in Fig. 3,
Mahmoud et al. (1982) and Mahmoud (1984). The interior springs have an elastic stiffness of 1.0 ×
106 (F/L). The truss members are steel and have a section area of 10(L2). The contact is initially
assumed at only the two end supports. Table 3 illustrates the contact status after the loading and
displacement of pair of nodes of every candidate pair. Also the table shows the contact force
(Lagrange multiplier) of the contact pairs and the percent of the total load distribution at which the
contact event occurs. 

Table 2 Results of beam on Winkler springs

Candidate 
pair Gap First node 

vertical disp.
Second node 
vertical disp. Contact

Contact force 
(Lagrange 
multiplier)

(% age) 
Load

1
2
3

0
0
1

2.4802 � 1
 −0.9075 � 3
−4.1438 � 5

0         2
−0.9075 � 4
−3.1438 � 6

No
Yes
Yes

0
0.9075
3.1438

0
0

16.47

Table 3 Results for truss on misaligned supports

Candidate 
pair Gap First node 

vertical disp.
Second node 
vertical disp. Contact

Contact force 
(Lagrange 
multiplier)

(% age) 
Load

1
2
3
4

0.8
0.9
1.2
0.5

−0.599
−0.9192
−0.9072
−0.5362

0.0
−0.0192
0.0

−0.0362

No
Yes
No
Yes

-
19200

-
36200

-
67.2

-
59.2

 G1 = 0.8, G2 = 0.9, G3 = 1.2, G4 = 0.5  and P = 4000 (F)

Fig. 3 Truss on misaligned supports
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5.3 Example 3: Beam on elastic foundation

The model is used to detect the response of a beam on elastic foundation. Subgrade reaction is
simulated by a typical Winkler springs of stiffness k = 15000 (F/L). The initial settlement is 0.005 (L)
and extent a distance of 4 (L) about the symmetrical line Fig. 4, Mahmoud (1983). The load is
increased monotonically up to 4000 (F), keeping track of the response of the system in both region
of contact and advancing. Fig. 5 illustrates the corresponding finite element model. Table 4 shows
the history of contact behavior vs load (F).

 Fig. 4 Two elastic strata in contact with initial gap

 Fig. 5 Finite element model for the beam on elastic foundation
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5.4 Example 4: Beam on gap foundation with upper barrier

Several problem configurations involving a beam have been solved and Fig. 6 illustrates the most
complicated one, Mahmoud et al. (1986). The constraints, consisting at most of a foundation and
upper barrier with gaps, react unilaterally against the beam. The load P is increased monotonically,
causing the beam to travel through a sequence of contact states or scenarios. The solution is
generated by the general adaptive incremental approach. The load P is applied to conventional beam
elements which are appropriately constrained by spring elements (the Winkler model). A symmetric
half of the configuration in Fig. 6 is modeled in Fig. 7 with the undeflected beam resting in its
initial state, P = 0. Pertinent data of the problem is provided in Table 5 except that the stiffness of
those springs located at end-regions of the model is halved to better approximate a continuous
foundation. The beam is weightless. 

The problem is begun with at most two springs connected and the center slope set to zero. In
what follows, c denotes the total contact length of noted portions of the beam, while the total
contact length  of the beam on a level foundation equal to 0.31992 m. The center deflection  ofc D

Table 4 History of contact for a beam on elastic foundation 

Load (F) Pair Contact type Release/Contact

0
0
0

870
936
936
1318
1318
2369

17-18
20-21
23-24
1-2
4.5
23-24
7-8
20-21
10-11

R
R
R
A
A
R
A
R
A

C
C
C
C
C
S
C
S
C

R = Receding contact, A = Advancing contact, S = Release, C = Contact

 Fig. 6 Beam on foundation with gap and upper barriers
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 Fig. 7 The discrete beam/spring model

Table 5 Data of beam/spring model

Beam: Young’s modulus 
Moment of inertia
Half length
Node spacing 

Spring: Stiffness
gl = gu

= 0.710 × 1011 N/m2

= 1.041 × 10−7 m4

= 0.381 m 
= 9.525 × 10−3 m
= 2.627 × 106 N/m
= 0.002 m 

 Fig. 8 Contact/load history for beam on foundation with gap and upper barriers

 Fig. 9 Beam deflection at station 30 versus fraction of load
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 Fig. 10 Center deflection of beam versus fraction of load

 Fig. 11 Beam contact force at station 30 versus fraction of load

 Fig. 12 Center contact force of beam versus fraction of load
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0.31992 m is due to a load P of 2.224 × 105 N. Fig. 8 shows the history of contact length versus
load where c/  is plotted against p/p*, p* the load required to just lift the beam off the ledge. 

It is interesting to trace the deflections of the beam, denoted by D, as a function of load and also
the contact forces. In Figs. 9 and 10, the paths followed by a point on the beam at station 30 under
the load are plotted. On the other hand, Figs. 11 and 12 show the contact forces versus fraction of
load at station 30 under the load. 

6. Conclusions

An adaptive incremental procedure is presented to solve a general class of variational inequality
problems of convex nature. The procedure could accommodate linear constraints of zero or non-zero
free coefficients. 

The suggested model is applied to contact problems that represent an important class of
variational inequality problems. Several problems of conformal, non-conformal and multiphase
contact are solved precisely. Both displacements and contact forces, which have been represented by
Lagrange multipliers, were computed through this procedure. 

The history of evolution of contact and separation states versus the monotonic variation of loading
capacity is monitored easily. 
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Notation 

a : The inactive constraint candidate to be active in the next step
CA : Set of active constraints
CN : Set of inactive constraints
G : Gap vector
K : Positive difinite matrix of rank n
L : Lagrange function
ma : The cardinality of the inactive set

: Load vector
: Slack vector
: Lagrange multipliers vector
: Nonzero vector, corresponding to the active constraints
: Zero vector, corresponding to the inactive constraints

V : Violation vector
: The vector of the design variables

Γ : Boundary of the domain
ΓD : Region of prescribed displacement
ΓP : Region of prescribed traction
ΓC : Candidate contact area
α : Scale factor
αaj : Scale factor required to establish a new active constraint
αRj : Scale factor required to establish a new inactive constraint

x̃ ũ,( )

P̃
s̃
ũ*

ũA
*

ũN
*

x̃




