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Abstract. A four-point bending RC beam strengthened with FRP plate is investigated based on the
theory of elasticity. Taking the adhesive layer into account but ignoring some secondary parameters, the
analytical solutions of the normal stress and shear stress on concrete-adhesive interface are obtained and
discussed. Besides, the pure bending region of the beam is analyzed and the ultimate load of the beam is
predicted. The results obtained in the present paper agree very well with both the results of FEM and the
experimental findings. 
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1. Introduction

Due to many advantages, such as low weight, high strength and good durability, Fiber-Reinforced
Polymer (FRP) composite materials have been extensively used for repairing and/or strengthening
damaged structures (Shahawy et al. 1996, Ritchie et al. 1991). The behavior of the strengthened
structures depends not only on the individual materials, but also on the properties of the interfaces,
namely, the concrete-adhesive and FRP/plate-adhesive interfaces. Till now, a great number of
investigations have been made considering flexural members strengthened by FRP sheets or plate.
In these investigations, in order to find the distributions of stresses in the strengthened beam, the
shear-lag model (Zheng 1999) and the contained adhesive layer model (OuYang and Qian 2000,
Roberts 1989) are introduced and modified. Besides, some experimental studies have also been
conducted, such as modeling the global behavior of a beam (Arduini and Nanni 1997, Arduini et al.
1997), single-face shear experiment (Chajes et al. 1996), peel-off experiment (Xie et al. 1995),
double-face shear experiment (Nakaba et al. 2001) and effects of temperatures (Tommaso et al.
2001), etc. Despite a considerable number of theoretical works treating this subject, a few research
papers are identified that provide a simple analytical process and expression that are capable of
producing results in good agreement with results obtained from both numerical analysis and
experimental findings. 

Based on the theory of elasticity, a four-point bending RC beam strengthened with FRP plate is
studied in the present paper. Under the consideration of equilibrium equations and compatibility
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equations for concrete, adhesive layer and the FRP plate, respectively, the analytical solutions for
evaluating the normal stress and shear stress on the interfaces near the FRP plate’s end are obtained.
By ignoring some secondary parameters and making some suitable simplification, the obtained
solutions become very simple yet can produce reasonable accuracy. Finally the pure bending region
of the beam is analyzed and the ultimate load of the beam is predicted. The results obtained in the
present paper agree very well with those obtained by FEM and experimental analysis. The present
investigation provides a very simple analytical method for the types of strengthened engineering
structures considered. 

2. The normal stress and shear stress on the interface 

A four-point bending, simply supported beam is considered in the present paper. The Cartesian
coordinate system x-y is introduced as shown in Fig. 1. Without loss of generality, the following
assumptions are introduced in this section: (A) the concrete and adhesive as well as the FRP plate
are linearly elastic, isotropic and small deformation; (B) the concrete and FRP plate are perfectly
bonded; (C) the distribution of stresses in the cross sections of adhesive layer and FRP plate is
uniform when bending moment is small; (D) no initial cracks are present in the concrete; (E) the
plane sections of the strengthened beam before bending remain plane after bending.

         Fig. 2 Equilibrium forces of a small element with length dx

Fig. 1 Schematic of the simply supported FRP reinforced concrete beam
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Based on these assumptions, the analytical solutions of the normal stress and shear stress on the
interface between concrete and the adhesive layer (or between the layer and FRP plate) are
discussed first. For the strengthened beam, the distribution of stress near the FRP plate’s end
changes greatly due to the abrupt change of the beam’s stiffness. So peeling type failure often takes
place within this section. Based on a small element of length dx as shown in Fig. 2, the equilibrium
equations of the element can be presented as follows

(1a)

(1b)

(1c)

(2a)

(2b)

(2c)

where Mi, Ni and Vi(i = c, p) denote the bending moment, the axial force and the shear force of the
corresponding section, respectively. Subscripts a, c and p denote adhesive, concrete and the FRP
plate, respectively. In addition bp and tp denote the width and thickness of the FRP plate,
respectively, and y0 is the distance from the neutral axis of the FRP plate. Let τa(x) and σa(x)
represent the shear and normal stresses in the adhesive, respectively. When the quantity of the
reinforcement and the size of the beam are known, y0 can be determined. 

Based on the theory of elasticity, the shear stress τa(x) can be expressed as

(3)

where uc and up denote the horizontal displacement of the low surface of the concrete and the upper
surface of the FRP plate, respectively. While Ga and ta represent the shear modulus and thickness of
the adhesive layer, respectively. Further more, τa(x) can also be expressed by strain εp(x) and εc(x)
by differentiating Eq. (3)

(4)

In order to simplify the analysis, the Poisson’s effect is ignored in the present paper. Recognizing
that the thickness of the FRP plate is relatively small, the effect of bending moment of FRP on εp(x)
can also be ignored. So Eq.(4) can be rewritten

(5)

where ω and h represent the width and depth of the concrete beam, respectively, while Ec and Ep

represent the elastic modulus of the concrete and FRP plate, respectively.
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Differentiating Eq. (5) again and substituting Eq. (1a), Eq. (1c), Eq. (2a) into it, we obtain

(6)

Further considering the thickness of the FRP plate is relatively small as compared with the concrete
depth, it is assumed that the contribution of the FRP plate to the shear force in the cross section of
the beam can be neglected, which means we can take . Where Rb and P denote the
vertical reaction force and the applied load, respectively. So Eq. (6) can be expressed in detail as

(7)

The solution of the above equation is given by

(8)

where , . The arbitrary constants C1 and C2 will be

determined by some appropriate boundary conditions. For the four-point bending beam, it is
obvious that the following boundary conditions can be used, i.e., ,

. On the other hand, in the pure bending region of the beam, the shear stress is
equal to zero, i.e., . Using these boundary conditions, we can obtain

(9)

Considering that when , the second term in C1 can be approximated to be zero and

tanh[α(a − d)] to be 1, so we have . Then τa(x) can be simplified to τa(x)= C1e
−αx + η0.

It is obvious that the maximum shear stress can be obtained as follows

(10)

Secondly, let’s find the distribution of the normal stress. Based on the theory of elasticity, the
normal stress can be simply defined as

(11)

where υc and υp denote the vertical displacement of the concrete and the FRP plate, respectively, Ea

and ta the elastic modulus and thickness of the adhesive. On the other hand, we have the following
differential relations 

(12)
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Solving Eq. (11) and Eq. (12) (see Appendix I), the expression of σa(x) can be obtained as 

(13)

where H1 and H2 are arbitrary constants and can be determined by using appropriate boundary
conditions. Considering , the following
equations can be obtained

(14)

(15)

Keeping Eq. (11) in mind and by the use of Eq. (14) and Eq. (15) the constants H1 and H2 can be 

determined as  . It 

is also found that σa(x) gets maximum at x = 0

(16)

where 

3. Analysis of the pure bending region of the beam

In the failure patterns of a strengthened beam, debonding and fracture usually take place. The
former often happens at the end of the FRP plate. In this case, debonding takes place on the
interfaces between the concrete and adhesive or adhesive and FRP plate. The latter often happens in
the pure bending region . In this case, cracking of the concrete or fracture
of the FRP plate usually takes place. In this section, we focus our attention on the ultimate load of
the strengthened beam. In order to simplify the analysis it is assumed that plane sections remain
plane and the effect of adhesive layer is ignored because it is very thin. Without loss of generality,
the singly under-reinforced rectangular beam is considered and the tensile strength of the concrete is
ignored. The schematic of the stress- strain curves for the concrete under compression and for the
FRP plate under tension are shown in Fig. 3(a) and Fig. 3(b), respectively.

This means that Rüsch’s model and the elastic-perfectly plastic model are used to describe the
constitutive relations for the concrete and the FRP plate, respectively. These models can be
expressed as follows:

for the concrete under compression (17)
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for the FRP plate under tension (18)

For the general case of design for a singly under-reinforced beam failure is gradual. Therefore
different failure situations can occur for the beam strengthened with FRP plate depending on the
type and amount of the FRP plate provided. So the analytical procedures to find the ultimate load
are provided in the following four cases. 

Case I: concrete crushing while the FRP plate still being elastic stage
In this case, it is assumed that failure occurs when the strain of the outer face of the compression

concrete gets its ultimate strain εcu (such as 0.0033). The curvature of the neutral axis of the FRP

strengthened beam is . Where  is the distance from the neutral axis of the beam as shown

in Fig. 4. The distance from the neutral axis to the elastic face of the compression concrete can be

obtained as . Where ε0 (usually taken as 0.002) is the strain of the compression concrete 

at which the stress of concrete remains a constant. In this case the tensile steels have not reached yield

σp

Epεp 0 εp εp0≤ ≤
σpy   εp0 εp< εpu≤




=

1
ρ
---

εcu

ŷ0

------= ŷ0

yc

ε0

εcu

------ ŷ0=

Fig. 3 Schematic of the stress- strain curves for the concrete and the FRP plate

Fig. 4 Schematic of the pure bending section when concrete crushing and the FRP plate still being elastic
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and its strain can be obtained as , where as is the thickness of the protective

layer of the tensile steels.
In this region, there is no longitudinal tensile force at any cross section, which means

(19)

where y1, y2 and y3 are the distances as shown in Fig. 4; Es and As denote the elastic modulus and
total area of the tensile steels, respectively. The position of the neutral axis of the beam is
determined as 

(20)

where 

(21)

The moment equilibrium equation of the pure bending section can be expressed as

(22)

Keeping Eq. (20) in mind, the ultimate load of the strengthened beam in case one can be obtained
as:

 

(23)

Case II: concrete crushing while some of the FRP plate yielding
In this case, some of the FRP plate has reached yield and continues yielding before the concrete

fails at the ultimate load. Using εp0 to denote the strain of FRP plate when its stress gets yield stress σpy, 

the distance from the yield point in the FRP plate to the neutral axis can be obtained as .

The analytical model in this case is shown in Fig. 5.
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h ŷ0– tp+

∫+=

ŷ0
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3ŷ0
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In a similar way, the position of the neutral axis of the beam can be determined by the
consideration of the longitudinal force equilibrium of the beam 

(24)

where

(25)

Besides, the moment equilibrium equation can be written as follows

(26)

So we can find the ultimate load of the strengthened beam in this case as follows

 (27) 
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ε0

εcu

------- ŷ0–
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h ŷ0– tp+

∫+

P
Epbpεcu

3aŷ0

------------------ 1
εp0

3

εcu
3

------+
 
 
 

ŷ0
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Fig. 5 Schematic of the pure bending section when concrete crushing and some of the FRP plate has reached
yield
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Case III: the FRP plate rupturing while the whole concrete still being elastic 
In this case, it is assumed that rupture happens when the whole cross section of the FRP plate has

reached yield. At the same time, the reinforcement has reached yield too and the yield stress of the
tensile steels is denoted by σs0. The whole concrete in compression is yet being elastic. The curvature

of the neutral axis of the FRP strengthened beam can be found as . The analytical model

in this case is shown in Fig. 6.
The longitudinal force equilibrium equation of the beam can be found as follows

 (28)

The position of the neutral axis of the beam in this case can be determined as

(29)
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The moment equilibrium equation of the pure bending section can be expressed as
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Keeping Eq. (29) in mind, the ultimate load of the strengthened beam in this case can be found as
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Fig. 6 Schematic of the pure bending section when the FRP plate rupturing and the concrete still being elastic
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Case IV: the FRP plate rupturing while some of the concrete yielding
In this case, it is assumed that some of the concrete has reached yield when the FRP plate is

fractured. At the same time, the stress in tensile steel gets σs0. The curvature of the neutral axis of

the FRP strengthened beam can be found as . The height of the un-yield concrete can be

determined as . The analytical model in this case is shown in Fig. 7.

In a similar way to case three the longitudinal force equilibrium equation of the beam can be
found as 

(33)

The position of the neutral axis of the beam in this case can be determined as 

(34)

The moment equilibrium equation of the pure bending section can be written as

(35) 
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ŷ0

3 σs0As σpybptp+( )εp0 7ε0σc0ωh+
σc0ω 3εp0 7ε0+( )

------------------------------------------------------------------------------------=

σc0ωy3dy3ŷ0–
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h ŷ0–
------------- 

 
2

– y2dy2ε0

εp0

------- h ŷ0–( )–
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Fig. 7 Schematic of the pure bending section when the FRP plate rupturing and some of the concrete yielding



Interface characteristics of RC beams strengthened with FRP plate 325

4. Comparison between numerical and experimental results and theoretical
calculations

The theoretical results presented in the present paper are compared with the results obtained from
both numerical analysis and experimental finding (Malek et al. 1998, OuYang and Huang 2002).
Firstly, in order to compare with the results obtained from FEM analysis, the details of the beam
used in (Malek et al. 1998) are listed as follows: L × ω × h = 4575 × 205 × 455 (mm3), l × bp × tp
= 4265 × 152 × 6 (mm3), d = 155 mm, ta = 1.5 mm, a = 1982.5 mm, P = 100 kN, Ec = 27.990 GPa,
Ep = 37.230 GPa, Ea = 0.814 GPa, Ga = 0.297 GPa, y0 = 227.5 mm. Based on these data and Eq. (8)
and Eq. (13), the distributions of shear stress τa(x) and normal stress σa(x) are obtained and plotted
in Fig. 8 and Fig. 9, respectively. The numerical results of τa(x) and σa(x) obtained in (Malek et al.
1998) are also plotted in Fig. 8 and Fig. 9. It is easily found that the results obtained in the present
paper agree well with that given by the numerical analysis.

Secondly, let’s compare the results obtained in the present paper with the experimental findings
(OuYang and Huang 2002). The material properties and geometrical parameters of the FRP
reinforced beams used in the experiment (OuYang and Huang 2002) are listed in Table 1. 

For the structural need, every tested beam is reinforced by 2φ 12 in the tensile section. It is found
in the experiments (OuYang and Huang 2002) that debonding takes place between the concrete and
adhesive or adhesive and GFRP plate in these beams listed in Table 1. Now let’s calculate the
maximum principal stress σ1 at the interface between concrete and adhesive layer in the GFRP
plate’s end. When d is small, the bending stress in the concrete near the GFRP plate’s end is small
too. So the influence of the bending stress on σ1 can be neglected and we have:

Fig. 8 Distribution of shear stress along the interface Fig. 9 Distribution of normal stress along the interface

Table 1 Constants of the FRP reinforced beams (notes ftk - the tensile strength of the concrete.)

No. of beams tp (mm) d (mm) Other material properties and geometrical parameters

ML02 2 100 L × ω × h = 1400 × 100 × 160 (mm3);
Ec = 24 GPa, ftk = 1.1 MPa; Ep = 11 GPa, bp = 100 mm; 

ta = 0.4 mm, Ea = 5.7 GPa, Ga = 2.05 GPa
ML03 3 100
ML04 1 200
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(37)

When σ1 gets to the tensile strength, the concrete near the GFRP plate’s end will crack. Then the
applied load is usually defined as the anchorage elastic load. Table 2 gives the anchorage elastic
load calculated based on Eq. (10), Eq. (16) and Eq. (37). Listed in Table 2 also gives the
experimental findings and another analytical results based on different model (OuYang and Huang
2002). The results obtained in  are simplified from the formulas of the bonded beam subjected to a
linearly distributed loading at the upper surface. In the analysis (OuYang and Huang 2002), a lot of
unknown parameters should be determined and the analytical process is very complicated. It is also
found that the predicted values given by the present analysis also agree well with the experimental
findings.

5. Parameter effect and some discussions

In order to analyze the effect of material parameters on the analytical solution, a strengthened
beam with size  is considered. At the same time, the applied
load is taken as P = 100 kN. Fig. 10 to Fig. 15 show the effect of different material parameters on
the maximum shear stress and normal stress. It is easily seen in Fig. 10 that the maximum shear
stress and normal stress decrease with the increase of elastic modulus of concrete. However, Fig. 11
and Fig. 12 show that both maximum stresses increase with the increase of elastic modulus and
thickness of the FRP plate, which indicates that it is not always beneficial in practical engineering
to increase the elastic modulus and thickness of the FRP plate.

On the other hand, Fig. 13 to Fig. 15 show that both elastic modulus and shear modulus of the
adhesive layer have little influence on the maximum normal stress. At the same time, the elastic
modulus of the adhesive layer has very little influence on the maximum shear stress too. But with
the increase of the shear modulus or decrease of the thickness of the adhesive layer, the maximum
shear stress will increase. In general, the adhesive with small stiffness is desirable in practical
engineering. When adhesive is adopted, the interfacial stress can be decreased by increasing the
thickness of the adhesive layer to a certain degree. But it is also found that the efficacy of adhesive
may be reduced when the adhesive is too thick. So how to choose the thickness of adhesive layer is

σ1
1
2
---σa max⋅

1
2
--- σa max⋅

2 4τa max⋅
2++=

L ϖ× h× 2300 200× 300 mm3( )×=

Table 2 The anchorage elastic load obtained from different ways (with *----- present paper, others -----
(OuYang and Huang 2002))

Serial 
number

Calculated
value *

(kN)

Calculated 
value
(kN)

τa·max

*
(MPa)

τa·max

(MPa)

σa·max

*
(MPa)

σa·max

(MPa)

Experimental 
value
 (kN)

σ1

(MPa)

∆*

(%)

∆

(%)

ML02 12.43 12.30 0.605 0.607 0.767 0.765 15.0 1.10 17.1 18.0
ML03 9.69 9.65 0.580 0.583 0.794 0.790 10.0 1.10 3.1 3.5
ML04 9.53 9.83 0.650 0.650 0.716 0.717 10.0 1.10 4.7 6.2

notes ∆*= (calculated value * -experimental value)/experimental value; ∆ = (calculated value -experimental
value)/experimental value. ∆* and ∆ represent the errors of the present paper and (OuYang and Huang
2002), respectively.
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also needed to be studied especially a lot of engineering practices are needed. It can be easily seen
from Fig. 8 and Fig. 9 that with the increase of the value d, the shear stress and normal stress at
concrete- adhesive interface decrease rapidly. It means that some special treatments such as anchor
should be used in the part near the FRP plate’s end to avoid interfacial debonding.

Fig. 10 Influence of Ec on interfacial stress Fig. 11 Influence of Ep on interfacial stress

Fig. 12 Influence of tp on interfacial stress Fig. 13 Influence of Ea on the normal stress

Fig. 14 Influence of ta on interfacial stress Fig. 15 Influence of Ga on interfacial stress
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6. Conclusions

Based on the theory of elasticity and ignoring some secondary parameters, the present paper
provides a theoretical analysis for a four-point bending RC beam strengthened by the FRP plate.
The rational simplification taken into the present paper makes both the analytical process and the
expressions of formulas concise. The results obtained in the present paper agree well both with the
numerical and experimental findings. This research work not only provides a sound background for
further investigations of RC beam strengthened by the FRP plate but also is useful for the
application of composites in engineering. 
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Appendix I

Differentiating Eq. (11) two times and substituting Eq. (1) and Eq. (2) into the obtained equation, we
obtain:

(A)

From Eq. (11) and Eq. (A), a differential equation about σa(x) is obtained

(B)

where .

Considering of Eq. (10), Eq. (B) can be rewritten as follows

(C)

So the solution of Eq. (11) can be found:

Notation

The following symbols are used in this paper:
Ac : area of concrete;
Ap : area of FRP plate;
As : area of tensile steels;
a : distance between applied load and support;
as : thickness of the protective layer of the tensile steels;
a1-3 : parameters used in calculating ultimate loads;
a0 : thickness of the protective layer of the tensile steels;
bp : width of FRP plate;
b1-3 : parameters used in calculating ultimate loads;
C1 : parameter used in calculating shear stress;
C2 : parameter used in calculating shear stress;
c1-3 : parameters used in calculating ultimate loads
d : distance from FRP plate end to the nearest support;
d3 : parameters used in calculating ultimate loads;
Ea : elastic modulus of adhesive;
Ec : elastic modulus of concrete;
Ep : elastic modulus of FRP plate;
Es : elastic modulus of tensile steel;
ftk : tensile strength of concrete;
Ga : shear modulus of adhesive;

d4υc x( )
dx4

------------------ bp

EcIc
--------- σa x( ) y0

dτa x( )
dx

---------------+=

d4υp x( )
dx4

------------------ bp

EpIp
---------- dτa x( )

dx
--------------- tp

2
--- σa x( )–=






d4σa x( )
dx4

------------------ 4λ 4σa x( )+ γdτa x( )
dx

---------------=

λ 4 Eabp

4ta
----------- 1

EpIp
---------- 1

EcIc
---------+ 

  , γ Eabp

ta
----------- tp

2EpIp
------------- y0

EcIc
---------– 

 = =

d4σa x( )
dx4

------------------ 4λ 4σa x( )+ αC1γe αx––=

σa x( ) H1e λx– cos x( ) H2e λ x– sin λx( ) σ1 x( )+ +=
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H1 : parameter used in calculating normal stress;
H2 : parameter used in calculating normal stress;
h : height of beam;
Ic : inertia moment of concrete to its own section;
Ip : inertia moment of FRP plate to its own section;
L : length of beam;
l : length of FRP plate;
Mc : bending moment of concrete;
Mp : bending moment of FRP plate;
Nc : normal tensile force of concrete;
Np : normal tensile force of FRP plate;
P : applied load of beam;
p : parameter used in calculating ultimate loads;
q : parameter used in calculating ultimate loads;
Rb : vertical reaction load of support;
ta : thickness of adhesive;
tp : thickness of FRP plate;
uc : horizontal displacement of concrete;
up : horizontal displacement of FRP plate;
Vc : shear force of concrete;
Vp : shear force of FRP plate;
y0 : distance between neutral axis of concrete section and x axis;

: distance between neutral axis of whole section and z axis;
yc : distance from neutral axis to compression concrete face that strain gets ε0;
yp : distance between neutral axis and plate face that strain gets εp0;
α : parameter used in calculating shear stress;
ε0 : strain of compression concrete when the stress gets σc0;
εc : strain of concrete;
εcu : ultimate strain of compression concrete;
εp : strain of FRP plate;
εp0 : strain of FRP plate when the stress gets σpy;
εpu : ultimate strain of FRP plate;
εs : strain of tensile steel;
γ : parameter used in calculating normal stress;
η0 : parameter used in calculating shear stress;
λ : parameter used in calculating normal stress;
ρ : curvature of neutral axis;
σa : normal stress of interface between FRP plate and concrete;
σa, max : maximum normal stress of interface between FRP plate and concrete;
σc : normal stress of concrete;
σc0 : yield stress of compression concrete;
σp : normal stress of FRP plate;
σpy : yield stress of FRP plate;
σs : normal stress of tensile steel;
σs0 : yield stress of tensile steel;
σ1 : maximum principal stress of concrete;
σpu : ultimate normal stress of FRP plate;
τa : shear stress of interface between FRP plate and concrete;
τa, max : maximum shear stress of interface between FRP plate and concrete;
υc : vertical displacement of concrete;
υp : vertical displacement of FRP plate;
ω : width of beam.

ŷ0




