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Abstract. A new process for estimating the natural frequency and the corresponding damping ratio in
large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely
because they are too complex to model using the finite element method and too heavy to excite using the
exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In
order to identify the structural impulse response associated with the information of natural frequency and
the corresponding damping ratio in large structures, the analysis process, a so-called “multiresolution blind
system identification algorithm” which combines Mallat algorithm and the bicepstrum method. High time-
frequency concentration is attained and the phase information is kept. The experimental result has
demonstrated that the new analysis process exploiting the natural frequency and the corresponding
damping ratio of structural response are useful tools in structural analysis application.
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1. Introduction

There are two processes for the structural analysis. One is the numerical method, which sets up
the analyzed model and then analyzes it using the finite element method. The model is complex and
the boundary condition of structures is needed. The other is the exciting force method, which offers
a force to excite the structure and uses Fourier Transform to obtain frequency response.
Unfortunately, for large structures, like buildings, bridges, hoisting machines and the Howell-Bunger
gate, which is a large control floating valves at a dam, it is difficult to determine the natural
frequency and damping ratio of structures by using the finite element method because the analyzed
model is so complex. Furthermore, the exciting force method cannot offer enough forces to excite
the structure because the weight of structure is too great. Even though the structures are excited by
enough force, the measured signals from large structures include serious ambient noise. For those
reasons, it is worth paying greater attention to the problem of how to obtain the natural frequency
and the corresponding damping ratio in large structures.

Blind system identification algorithm is a fundamental signal processing technology aimed at
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reconstructing an unknown system. Most blind system identification algorithms are basically
adaptive filtering algorithms (Haykin 1991, Doroslovacki 1996, Qu et al. 1996, Petraglia and Torres
2002), designed in such a way that they do not need the external supply of desired response. On the
other hand, they are blind to the desired response. 

In this paper, a so-called “multiresolution blind system identification algorithm” (MBSI) for
estimating the natural frequency and the corresponding damping ratio in large structures is
presented. The measured signal is to decompose a multicomponent signal into a number of single
component signals by using Mallat algorithm (Mallat 1989). The MBSI algorithm with biceptrum
method is used to reconstruct the single component signal. Since Gaussian noise has zero mean
value after high order statistics analysis, the additive Gaussian noise of each single component is
diminished by using the biceptrum method (Petropulu and Nikias 1993). Then, the enhanced signal
is obtained after reconstructing and combining each single component. The new process is
characterized by its strong robustness against additive Gaussian noise and the low computing cost.

The structure of the paper is as follows. The MBSI algorithm is demonstrated in Section 2.
Section 3 introduces the relationship between WT and structural analysis. The experimental results
by analyzing the natural frequency and its damping ratio of the Howell-Bunger Valve located at the
bottom of a dam are discussed in Section 4. Finally, a brief summary is offered in Section 5.

2. Multiresolution blind system identification algorithm

During recent years, there has been a lot of interest in using higher order statistics (HOS)
(Boumahdi 1996, Martin and Nandi 1996) in blind system identification (BSI). The word “blind”
simply means that the system’s input is not available to (cannot not be seen by) the signal processor.
The task of BSI is to identify the input and the system function from the output. There are several
reasons behind the interest. First, higher order cumulants are blind to all kinds of Gaussian
processes, hence cumulants suppress additive colored Gaussian noise. Therefore if the signal to be
analyzed is contaminated by additive Gaussian noise, the noise will vanish in the cumulant domain.
Thus, a greater degree of noise immunity is possible. Second, cumulants are useful for identifying
non-minimum phase systems or for reconstructing non-minimum phase signals if the signals are
non-Gaussian. That is because cumulants preserve the phase information of the signal. Third,
cumulants are useful for detecting and characterizing the properties of nonlinear systems.

The multiresolution blind system identification algorithm (MBSI) combines Mallat algorithm and
the bicepstrum method. The multiresolution analysis of L2(R) is an important concept for Mallat
algorithm. Decomposition coefficients in a wavelet orthogonal basis are computed with a Mallat
algorithm. The decomposition and construction algorithm is as shown in Fig. 1.

Compared to traditional FIR and IIR mode blind system identification, the concept of the MBSI
algorithm is that the raw signal is decomposed into several different resolution subspace signals with
wavelet orthogonal basis, and then the bicepstrum method is used to estimate the inverse filter of
each subspace. After the subspace signals are reconstructed with inverse filter, the enhanced signal
is obtained by reconstructing each subspace signal and combining it.

The MBSI algorithm uses a time-frequency domain filter instead of traditional time domain filter.
The multiresolution gives a controlled frequency resolution and the bicepstrum enhances the
accuracy of the decomposition coefficients. Even though MBSI algorithm increases the operation of
decomposition and construction for multiresolution and filtering operation in each subspace, the
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number of operations of MBSI algorithm is lower than traditional FIR mode deconvolution.
Considering the Mallat algorithm, the operations are accompanied with a subsampling process,
which allows the number operation to be gradually reduced. The multiplication operation of the
MBSI algorithm and traditional FIR mode deconvolution are shown as Table 1.

3. Wavelet transform 

Wavelet transform (WT) of time-signal f (t) is defined by Daubechies (1990). 

(1)

The quantity  given in the definition is referred to as the wavelet function.

The position variable b shifts the wavelet function along the time axis t of f (t) while the scale
variable a expands or compresses the wavelet function Ψa, b(t). Compared to Fourier transform, the
scale variable a is equivalent to the inverse of the frequency. 
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Fig. 1 Multiresolution blind system identification algorithm

Table 1 The number of multiplication operations of the MBSI algorithm at 3 level and traditional FIR mode
deconvolution

Deconvolution method The number of multiplication operation

MBD at 3 level (3MN/2) + (3NL/2) + (3NL/2) = ((3M/2) + 3L) N
Traditional FIR 2MN

where M is the order of inverse FIR, N is the length of input signal, and L is the length of scaling function
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In frequency domain, wavelet transform is rewritten as Eq. (2).

(2)

where the f (ω) and  are the frequency domain f (t) of and Ψ.
In order to demonstrate the relationship between WT and structure analysis, the Morlet wavelet

(Daubechies 1992) is introduced because it is a modulated Gaussian signal from which the
information of amplitude and phase can be kept. Its frequency domain is expressed as Eq. (3).

(3)

Where σ is Gaussian parameter, ω0 is modulated frequency, the scale is a.
If a signal is as Eq. (4), for example, A is amplitude, ωs is the frequency and φ is the initial phase.

(4)

WT of the signal is as Eq. (5).

(5)

According to Eq. (5), the coefficient of WT is proportional to the amplitude of the signal. The
phase  of WT is consistent with the phase of the signal.

For structural analysis, the impulse response of a single degree of freedom system with a viscous
damper is shown as Eq. (6).

(6)

(7)

where A is amplitude, ωn is the frequency without damping, ωd is the frequency with damping, ξ is
the damping ratio, and ϕ0 is the initial phase.

The WT of Eq. (6) is expressed by Eq. (8).

(8)

If  and ωd are known and then ξωn can be determined by Eq. (9).

(9)

Finally, ωn and ξ are calculated by Eqs. (7) and (9).
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4. The natural frequency and damping resolution of Howell-Bunger gate

The Howell-Bunger gate (shown in Fig. 2) located at the bottom of a dam is used to release
excessive water to control the flowing rate of water for emergent discharging. However, the structure
of the Howell-Bunger gate is frustrated by hydroelastic instability and resonant vibration, caused by
the interaction between the valve and rapid water (Lucey and Carpenter 1993, Bhattacharyya et al.
2000). There are two methods to find the natural modes of the system. For numerical FEM solution
of natural modes, the model is so complex to set up and the boundary condition of the model is
needed. The traditional exciting force method to get impulse response is hard to apply to this valve
because the hammer cannot offer enough force to make this valve resonant in a practical situation.
Consequently, the impact force is provided by rapid water when the gate is opened. Unfortunately,
the impact force is unknown, moreover; ambient noise is generated and the signal-noise ratio (SNR)
is reduced. To avoid the complex computation in numerical analysis and to enhance the impulse
response signal of the Howell-Bunger gate in a practical situation, the MBSI algorithm based on
Mallat algorithm and the bicepstrum method are used for extracting the natural frequency and
damping ratio from the measured signal from the Howell-Bunger gate, especially in the case when
impact force is unknown.

The measured signal and its wavelet transform (WT) are shown in Fig. 3 and Fig. 4, respectively.
There are two main impulse responses at scale 86 and 36 in Fig. 4 and the amplitude and phase
frequency responses of the corresponding coefficients are shown in Fig. 5 and Fig. 6, respectively.
With the results of frequency responses, the identification of modes is very difficult because of the
effect of ambient noise, especially where there is a low SNR. 

In order to increase SNR and to reduce the effect of ambient noise, the MBSI algorithm is used to
reconstruct the noise-free signal. The reconstructing signal and its WT are shown in Fig. 7 and Fig. 8.
At scale 86 and 36, the amplitude and phase frequency response of the corresponding coefficient are
shown in Fig. 9 and Fig. 10. The phase information of the signal is kept because the MBSI

Fig. 2 Howell-Bunger gate
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algorithm is used and the coefficient of WT is proportional to the amplitude of the signal. It helps to
identify the exact natural frequency from the impulse response, since for real natural frequency, its
phase should be 180o out of phase in its phase frequency response. This ensures that the scale 86
and 36 are really natural frequencies. In addition, SNR is increased from −9 dB to 23 dB by using
MBSI algorithm. 

Fig. 4 The WT of measured signal

Fig. 3 Measured signal from Howell-Bunger gate when it is opened
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Fig. 5 Frequency response and phase at scale 86 of WT of measured signal 

Fig. 6 Frequency response and phase at scale 36 of WT of measured signal

Fig. 7 Measured signal after MBSI algorithm
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Comparing Fig. 5 with Fig. 9, the results indicate that the MBSI algorithm can predict the natural
frequency much more precisely than a regular WT analysis does. Fig. 6 and Fig. 10 also give the
same indication. The damped frequency ωd and the natural frequency ωn, and its corresponding
damping ratio of the Howell-Bunger gate can be evaluated from Eq. (7) and Eq. (8) and are shown
in Table 2.

Fig. 8 The WT of measured signal after MBSI algorithm

Fig. 9 Frequency response and phase at scale 86 of WT of measured signal after MBSI algorithm
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5. Conclusions

This paper has demonstrated that the impulse response using the MBSI algorithm and WT can
provide a reliable method to identify natural frequency and corresponding damping ratio for structural
analysis. The advantages of the proposed approach are: First, use of the MBSI algorithm precludes the
requirement of using the boundary condition for the finite element method to solve the natural
frequency and its corresponding damping ratio. Second, in a practical situation, use of the MBSI
algorithm based on Mallat algorithm and the bicepstrum method reduces the ambient noise and
reconstructs the measured signal. It is helpful to identify structures from the impulse response,
especially for structures which cannot be easily excited. In addition, MBSI can enhance SNR
significantly, therefore, it can better predict natural frequency and damping ratio than a regular WT
analysis does. Finally, the application of WT on structural analysis can be used to calculate the natural
frequency and the damping ratio, because the coefficient of WT is proportional to the amplitude of the
signal and phase information of the impulse response is kept by using MBSI algorithm.

Although this paper demonstrates reports for only two natural frequencies, the simultaneous
occurrence of multiple natural frequencies can also be explored using this MBSI algorithm.

Fig. 10 Frequency response and phase at scale 36 of WT of measured signal after MBSI algorithm

Table 2 The corresponding frequencies with damping and without damping, and the corresponding damping
ratio of the Howell-Bunger gate

       Item
Scale of WT

Natural frequency with 
damping, (ωd/2π)

Natural frequency without 
damping, (ωn/2π) Damping ratio, ξ

36 95.2148 Hz 95.3313 Hz 0.0494
86 40.4358 Hz 40.4466 Hz 0.0231
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