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Abstract. There is an ever-increasing demand for assessment of earthquake effects on transportation
structures, emphasised by the crippling consequences of recent earthquakes hitting developed countries
reliant on road transportation. In this work, vulnerability functions for RC bridges are derived analytically
using advanced material characterisation, high quality earthquake records and adaptive inelastic dynamic
analysis techniques. Four limit states are employed, all based on deformational quantities, in line with
recent development of deformation-based seismic assessment. The analytically-derived vulnerability
functions are then compared to a data set comprising observational damage data from the Northridge
(California 1994) and Hyogo-ken Nanbu (Kobe 1995) earthquakes. The good agreement gives some
confidence in the derived formulation that is recommended for use in seismic risk assessment.
Furthermore, by varying the dimensions of the prototype bridge used in the study, and the span lengths
supported by piers, three more bridges are obtained with different overstrength ratios (ratio of design-to-
available base shear). The process of derivation of vulnerability functions is repeated and the ensuing
relationships compared. The results point towards the feasibility of deriving scaling factors that may be
used to obtain the set of vulnerability functions for a bridge with the knowledge of a ‘generic’ function
and the overstrength ratio. It is demonstrated that this simple procedure gives satisfactory results for the
case considered and may be used in the future to facilitate the process of deriving analytical vulnerability
functions for classes of bridges once a generic relationship is established.
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1. Introduction and preliminaries

1.1 Significance of bridge structures

Transportation networks are vital for the development of modern societies and hence their
integrity must be protected. Bridges are the most sensitive elements of a transportation system. The
closure of a bridge that represents the only or most important link between two areas separated by
water or other geological feature would potentially lead to severe consequences for industry,
commerce and society as a whole. If the economic loss due to closure of a main arterial bridge is
assessed alongside the cost of seismic retrofitting of the structure, the case for assessment and re-
design of bridge structures in seismic areas will be immediately apparent. It is therefore of priority
to re-assess bridge structures in areas subjected to appreciable seismic hazard with a view to
estimate and minimise earthquake damage. In this respect, the use of vulnerability functions, i.e.
relationships between a ground motion parameter and the probability of a limit state being
exceeded, assumes an important role.

Accepting the limitations of deriving vulnerability functions from observations, the objective of
this study is to analytically derive vulnerability curves for reinforced concrete bridges based on
deformational limit states. Whereas it is appreciated that comparing vulnerability curves for a
specific structure with observational data for a wide range of bridges is not theoretically meaningful,
the results of this procedure are compared with the limited available empirically-derived
vulnerability curves to establish a degree of confidence in the derivation. Moreover vulnerability
assessment of bridges would be significantly simplified if a procedure to approximate vulnerability
curves of reinforced concrete bridges, with the same basic configuration, were available. Towards
this objective, the relationship between vulnerability curves of different bridges with similar basic
configuration is examined. Finally, the possibility of parametrising bridge vulnerability functions in
terms of structural response is explored with some success.

1.2 Assessment techniques for seismic safety

The seismic vulnerability of a civil engineering facility is the probability that a given intensity of
earthquake input will cause a limit state criterion to be achieved or exceeded. Vulnerability studies
are in general undertaken employing relationships that express the probability of damage as a
function of a ground motion parameter, since neither the input motion nor the structural behaviour
can be described deterministically. The two widely used forms of motion-versus-damage
relationships are vulnerability curves and damage probability matrices (DPM). A plot of the
computed conditional probability versus the ground motion parameter is defined as the vulnerability
curve for the damage state, whilst the discrete probability of reaching or exceeding a damage state
for a certain input motion severity represents an element of the DPM. The damage level is
randomly described corresponding to random input variables. Out of the large number of
parameters, which affect the behaviour of structures under seismic action, only those considered to
influence significantly the response are assumed as random variable. The principal steps for the
evaluation of vulnerability curves and DPMs are:

i. identification of random input variables and hence likely scenarios of systems based on a
prototype structure;

ii. quantification of potential ground motion;
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iii. evaluation of structural response;
iv. comparison between demand, corresponding to the seismic hazard, and limit states of the

considered structural system.
Vulnerability analyses may be either empirical or analytical depending on whether observational

or analytical results are utilised, respectively. In the first case the information available on structures
similar to those for which the seismic vulnerability is sought must be selected (e.g. Basöz et al.
1999, Yamazaki et al. 1999, both for bridges, Rossetto and Elnashai 2003 for buildings, amongst
others). A flow chart of the analytical definition of vulnerability curves and DPMs is represented in
Fig. 1.

1.3 Review of vulnerability assessment methods for bridges

RC bridges, like other structural forms, may be grouped according to the characteristics that are
deemed to influence their seismic response (e.g. foundation system, bent configuration, deck-pier
connection, deck type, abutment type etc). Bridges in the same class are expected to exhibit similar
seismic performance and damage levels under a given earthquake scenario. Special care should be
taken in grouping bridges into classes, as an extremely detailed classification may lead to extreme

Fig. 1 Flow chart for the analytical evaluation of Vulnerability Curves
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complexity of applications. This is inconsistent with the expected errors in probabilistically-derived
vulnerability curves, especially when comparing analytical curves to field observations.

When vulnerability curves are analytically derived, they represent the behaviour of a prototype
structure and material dispersions thereof, hence the need for comparison with observational data.
Whereas such comparisons do not strictly validate the derivation, since the probabilistic curves
represent a class of structure not a single bridge, they lend some credence to the derived
formulation. Valuable empirically-calculated vulnerability curves were obtained by Basöz et al.
(1999) and Yamazaki et al. (1999). The former utilised a dataset compiled for the 1994 Northridge
earthquake, whilst the latter employed data from the 1995 Hyogo-ken Nanbu (Kobe) earthquake of
1995.

In the current work methods based on vulnerability curves are adopted to assess the seismic
behaviour of existing bridges. The advantages of employing vulnerability curves and DPMs is that
the effect of the behaviour of structural components and material proprieties on the vulnerability can
be better interpreted than with other statistical methods. Furthermore, uncertainties emanating from
engineering judgment just affect the definition of damage level. They might, therefore, be reduced
since the choice of limit states that quantify the level of damage may be verified by comparison
with observations and experimental results on an individual structure basis. 

1.4 Characterisation of ground motion and structural damage
 
A brief review of the available options for characterising structural damage and the severity of

input motion is presented in the following. This is not intended as a review of the available
literature, but rather an overview of the available options leading to the selection of hazard
characterisation for the current study.

1.4.1 Ground motion
It is difficult to determine a single parameter that best characterises earthquake ground motion.

Recorded time-histories, even at the same site, show variations in details. Earthquake ground motion
amplitude, frequency content, duration and the number of peaks (and even their sequence) in the
time-history above a certain amplitude are some of the important characteristics that affect structural
response and damage. The frequency content of an earthquake time-history is important for the
identification of the amount of energy imparted at different frequencies. Numerous parameters have
been used to relate ground motion to the degree of damage sustained by a structure. Perhaps the
most commonly used parameter is peak ground acceleration (PGA), and more recently spectral
acceleration and displacement. Nevertheless, many other parameters, such as Housner spectral
intensity, Arias intensity, root mean square acceleration and perceived intensity (e.g. MMI, MSK,
MCS, JMA etc) may be employed to describe the input motion severity.

1.4.2 Structural damage
During strong earthquakes the cumulative damage caused by repeated load reversals degrades the

resistance of structures. In order to quantify the cumulative damage of structures, damage indices
have been introduced, the classification of which may depend on:

• displacement quantities;
• hysteretic dissipated energy;
• stiffness degradation;
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When indices based on displacement or stiffness degradation are used, only the cycle with the
maximum amplitude is considered. Other cycles are simply neglected. On the other hand,
considering hysteretic energy as the damage parameter and assuming that collapse occurs when the
structure dissipates an amount of energy equal to the limiting value, the contribute of all cycles is
accounted for. Therefore, indices considering both displacement quantities and energy dissipation
seem to be the most appropriate for describing the level of damage sustained by structures.
However, the parameters that combine the damage due to excessive deformation and dissipated
energy have a large variability, rendering recommending definitive values rather difficult.

Notwithstanding its limitations, PGA was selected to characterise earthquake intensity in this
study, whilst structural limit states are described in terms of displacements. The former choice is a
consequence of how the observational data used, to lend weight to the derivation, is expressed. The
latter decision is a consequence of the increasing significance of deformation-based assessment and
design approaches within a framework of performance targets for structural systems.

2. Derivation of empirical vulnerability curves

2.1 Approach used

Hereafter, observational vulnerability curves are reviewed and homogenised. Two data sets are
employed. Caltrans compiled a data set for bridge damage during the 1994 Northridge earthquake
whilst the Japan Highway Public Corporation (JH) gathered data for the 1995 Hyogo-ken Nanbu
(Kobe) earthquake. This information was employed in previous work to obtain vulnerability curves
for the Northridge and Kobe earthquakes independently (Basöz and Kiremidjian 1997, Yamazaki
et al. 1999). In order to describe the damage condition of bridges, 5 ‘states’ were considered: no
damage, minor damage, moderate damage, major damage and collapse.

No subdivision of the bridges into different structural forms is attempted, due to lack of a viable
sample per structural form. The vulnerability functions are meant to be average values for
populations of bridges. However, it is obvious that vulnerability curves depend on the seismic code
and the structural type of bridges used. A further classification based on other structural parameters,
such as number of spans, abutment type, column bent type and span continuity was also employed.
However, due to lack of data, important parameters in terms of bridge vulnerability such as previous
reconstruction history or upgrading, seat width and column height were not included.

2.2 Damage probability matrices of the 1994 Northridge earthquake

Basöz and Kiremidjian (1997) and Basöz et al. (1999) utilised a data set compiled for the 1994
Northridge earthquake to obtain vulnerability curves for most significant structural types of bridges.
The data set gives four sets of data:

• structural characteristics;
• bridge damage;
• repair costs;
• ground motion levels.
Bridge inventory data contains information on the physical characteristics of bridges in Los Angeles,

Ventura, Riverside and Orange Counties. Structural characteristics include abutment type, number of
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spans, type of superstructure and substructure, length and width of the bridge, skewness, number of
hinges at joints and bents, abutment and column foundation types and design year to represent design
standards. The data set was extracted from the Caltrans Bridge Maintenance Database (Caltrans 1993).
The assumed ground motion parameter is the peak ground acceleration (PGA).

In Table 1 the number of bridges belonging to each level of damage at different PGA values for
highway bridges in the Greater Los Angeles, from the work of Basöz and Kiremidjian, area are
reported.

2.3 Damage probability matrices of the 1995 Hyogo-ken Nanbu (Kobe) earthquake

Japan Highway Public Corporation (JH) is in charge of the 6400 km long highway network. JH
deployed a network of 123 accelerometers (1 instrument per 40 km) before the Kobe earthquake. A
further 202 instruments were deployed after the earthquake. Yamazaki et al. (1999) collected
damage data for the JH structures after the Kobe earthquake. As in Basöz et al. (1999) the objective
of this investigation was to define a relationship between earthquake damage to highway structures
and input motion intensity.

In the work of Yamazaki et al. (1999) a method for estimating the spatial distribution of
earthquake ground motion was proposed. The Kriging technique, a method of stochastic
interpolation, is employed to estimate ground motion indices from recorded values. Since the
earthquake motion at the ground surface is affected by amplification characteristics of the surface
layers, an amplification ratio was also evaluated. The parameters considered representative of the
ground motion were PGA, PGV and JMA intensity.

Table 1 Damage matrix for all highway concrete bridges in Greater Los Angeles area (Basöz and Kiremidjian
1997)

Peak Ground Acceleration (g)

Observed 
Damage 0.15-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 >1.0 Total

None 318 502 234 50 34 29 24 29 16 16 1252
Minor 2 10 25 2 6 4 6 1 7 3 66

Moderate 1 15 13 11 10 9 5 4 9 4 81
Major 0 10 2 6 7 3 2 5 11 1 47

Collapse 0 0 1 0 0 0 0 2 2 1 6

Table 2 Damage matrix for all the JH concrete bridges (Yamazaki et al. 1999)

Peak Ground Acceleration (g)

Observed 
Damage 0.15-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 >1.0 Total

None 80 34 23 28 12 3 3 1 0 0 184
Minor 0 0 2 1 0 4 0 1 0 0 8

Moderate 0 0 1 3 3 6 0 0 0 0 13
Major 0 0 0 1 0 5 1 0 0 0 7

Collapse 0 0 0 2 0 2 0 0 0 0 4
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In the 1995 Kobe earthquake heavy damage was inflicted on highway structures. In the data set of
Yamazaki et al. (1999), 216 bridges on 4 routes were investigated. The DPM employed in the latter
study is shown in Table 2.

2.4 Vulnerability curves for reinforced concrete bridges based on observational data

The DPMs reported in Tables 1 and 2 are herein used to derive vulnerability curves based on
observational data, in order that the procedure used herein is verified versus the work reported in
the above two references. Moreover, a set of curves using the combined USA and Japan data is
sought. Table 3 summarises the size of the sample for all the assumed damage states.

The vulnerability curves must be representative of the cumulative probability of occurrence of
damage equal to, or higher than, a certain level. Therefore, the first step of this analysis is the
determination of an appropriate statistical distribution. Towards this end, the histograms of the
sample distribution were plotted as shown in Fig. 2 and examined for trends.

Table 3 Sample size for the assumed damage levels

Observed Damage Sample Size

None 1436
Minor 74

Moderate 94
Major 54

Collapse 10

Fig. 2 Observed distribution of the sample for all the considered damage levels 
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This indicates that both normal and lognormal distributions are suitable models for the sample
under consideration. It is shown, however, that an asymmetric distribution is more appropriate to
represent the low damage states, whilst the distribution of the sample is almost symmetric for
high damage levels. Therefore, the cumulative probabilities may be given by either of the
following:

PR (PGA) = Φ ((ln PGA − λ)/ξ) (1)

PR (PGA) = Φ ((PGA − µ)/σ) (2)

where Φ is the standard normal distribution, λ and ξ are the mean and standard deviation of ln
(PGA) and µ and σ are the mean and standard deviation of PGA. The parameters in the Eqs. (1)
and (2) were estimated using the sample data and are reported in Table 4 for PGA in g.

The Kolmogovov-Smirnov test (K-S test) is used to assess the quality of the statistical fit. The
procedure involves comparison between the experimental cumulative frequency and the assumed
theoretical distribution functions. The maximum difference DMAX between the theoretical
distribution and the observed cumulative distribution is taken as a measure of viability. Fig. 3 shows
the considered theoretical distributions (for lognormal and normal models) and the cumulative
distribution directly evaluated by the sample for each damage level. The values of DMAX calculated
for all damage levels are reported in Table 5.

The K-S test confirms the observation from the frequency distribution of the sample (Fig. 2). For
low levels of damage the lognormal model fits better the observed distribution, whilst the normal

Table 4 Parameters for the normal and lognormal distributions

Normal Distribution Lognormal Distribution

Observed Damage µ σ λ ξ
None 0.315 0.193 −1.315 0.566
Minor 0.516 0.249 −0.766 0.458

Moderate 0.554 0.239 −0.677 0.414
Major 0.618 0.255 −0.561 0.397

Collapse 0.733 0.239 −0.362 0.318

Table 5 DMAX from the K-S test

Observed Damage Lognormal Distribution Normal Distribution

None 18.2 26.4
Minor 23.2 24.7

Moderate 12.7 11.7
Major 16.6 11.0

Collapse 18.8 16.1
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distribution is a more suitable model for high level of damage. In the current study the lognormal
distribution is assumed to represent vulnerability curves for all the damage conditions. This choice
is supported by the following considerations:

• The collapse limit state, and in its vicinity, is unlikely to occur for bridges designed to modern
seismic codes, such as the bridges studied analytically hereafter.

• Medium-near or large-distant earthquakes are more frequent than large-near events; hence the
probability of sustaining low-to-medium damage is higher than otherwise.

• The statistical viability of the sample used is more convincing for the low-to-medium damage
states.

The assumption made is therefore considered appropriate for the description of damage levels for
a large population of reinforced concrete bridges.

In Fig. 4 the vulnerability curves for Northridge, Kobe and their combination are shown. The
Kobe results are less smooth than for Northridge. This is attributable to the sparseness of the data
(Table 2.2). It may therefore be that the Hyogo-ken Nanbu data are statistically non-viable if viewed
in isolation. It is, however, a useful addition and verification of the available Northridge data.

Fig. 3 Comparison between the observed cumulative distribution and normal and lognormal distributions
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2.5 Remarks

Consistent, viable and evenly distributed (spatially and limit-state-wise) data for seismic damage
of bridges are unavailable; a situation that is observed, to a lesser extent, for buildings (Rossetto and
Elnashai 2003). However, it is likely that the quality of data points for bridges (the consistency and
reliability of field-collected data) is higher than for buildings, as a consequence of the smaller
number of damaged structures and also the training of engineers undertaking damage surveys.
Above, the best available (published) data was employed to explore the feasibility of deriving
vulnerability functions. Emphasis was placed on low and medium damage levels; therefore the
statistical model that fits best the data in this range was employed. The derived curves exhibit the
shape and features expected, in qualitative comparisons with building vulnerability functions. Their
reliability as a predictive tool, though, requires further work. One option is to enrich the
observational functions with analytical investigations. This option is pursued further hereafter.

Fig. 4 Vulnerability curves for the two events considered
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3. Analitically-derived vulnerability functions

Based on deformational quantities, a procedure is outlined herein to enrich observational
vulnerability curves with analytical counterparts and provide both approaches with a degree of
mutual verification if the results are not vastly different. Typical material variability values are
determined with the aim of describing deformational quantities that represent different limit states.
Subsequently, vulnerability curves for a particular bridge are determined using the proposed
procedure. These curves are compared to the observational functions derived in previous sections of
this paper. Finally vulnerability curves for three different configurations (variations of the first
model) are compared and the possibility of parametrically-described curves is explored. The latter
work is undertaken to explore the feasibility of deriving vulnerability curves that represent not just
the bridge investigated but a wider variety of bridges of the same type, thus reducing or eliminating
the required extensive analytical effort. It should be emphasised at the outset that close agreement
between the observational curves and their analytical counterparts is not, strictly, a verification of
the latter, which are derived using detailed section-level limit states of a specific bridge. This is
discussed further in subsequent sections.

3.1 Description of the procedure

The proposed procedure for the definition of vulnerability curves uses a displacement-based
approach to define the damage inflicted on the bridge. Therefore, the probability of reaching or
exceeding a damage state is derived by comparing the displacement response of the bridge and the
displacement demand corresponding to certain input motion intensity, described in terms of PGA.
The procedure requires the use of a verified inelastic dynamic analysis tool. Consideration has been
given to the use of an inelastic static procedure, such as Capacity Spectrum Method. However, in
the work of Shinozuka et al. (2000), it was reported that the latter approach matches well fragility
curves derived by inelastic dynamic analysis only for low damage limit states. At higher damage
levels and limit states approaching collapse, the static and dynamic methods diverge. It was
therefore decided to employ inelastic dynamic analysis.

The uncertainties associated with the displacement capacity of the bridge are accounted for by
assuming variable material proprieties. According to common seismic design practices, the
structural elements in which damage is concentrated are the bridge piers. Therefore, to evaluate the
displacement capacity corresponding to different damage levels, pushover analysis of the bridge
piers is employed. A sample of randomly generated material proprieties is used in the pushover
analyses as subsequently discussed in detail. The outcome of the analyses is the distribution of
displacement capacity of the bridge piers.

To evaluate the displacement demand, inelastic dynamic analyses are required. The PGA levels
assumed in the definition of the vulnerability curves are used to scale the accelerograms employed
as input motion in the aforementioned analyses. The displacement demand is represented by the
peak transient displacement recorded at the top of the piers. In this step of the procedure the
average values of material proprieties are employed. The outcome of these analyses is the
distribution of probability of the displacement demand. Thereafter, a code spectrum-compatible
artificial accelerogram is employed as input motion for the whole range of PGA by successively
scaling its PGA. The assumption employed in so doing is that for all the considered PGA values the
displacement demand follows the same distribution determined for the selected single value of
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PGA. This assumption could be abandoned in future studies and the set of accelerograms used in
the whole range of limit states. For the current study, the level of detail in the structural model is
given priority.

The probability of reaching a certain limit state (PLSi) is given by:

(3)

where fC and FC are the probability density functions and the cumulative probability of the
displacement capacity, FD is the cumulative probability of displacement demand and ∆ is the
random variable. In this procedure ∆ corresponds to a displacement.

3.2 Limit states definition

Five post-earthquake damage states are employed. These are as follows:
• Undamaged; 
• Slightly damaged, but usable without repair or strengthening;
• Extensively damaged, but still repairable
• No collapse, but so severely damaged that must be demolished;
• Collapse. 

To assess these five possibilities four limit states have to be defined. In the case of bridges design
to modern seismic codes, it is not necessary to distinguish between the latter two states of the list
above, since collapse should not occur. Therefore, the classes can be reduced to four. On the basis
of experimental results reported in the technical literature the limit states are defined as follows:

• LS1 Below this LS no damage should take place and the expected response is of small
displacement amplitude. To define the position of the yield point on the force-displacement
curve of the piers the proposals of Park and Pauley (1975) and Pauley and Priestley (1992) are
invoked. These depict that yielding of the first longitudinal row of reinforcing bars occurs at a
level of transverse load equal to 75% of the yield load Vy.

• LS2 Below this LS only minor structural damage should be observed and the bridge is usable
after the earthquake. Member flexural strengths may have been reached, and limited ductility
developed, provided that concrete spalling in plastic hinges does not occur and that residual
crack widths remain sufficiently small. The deformation of the cover concrete εc is assessed to
identify this limit state. It is compared with the ultimate compression deformation capacity of
unconfined concrete. US practice (ACI 318) recommends a maximum usable strain of 0.3%, but
at this strain level, the compressed concrete in a flexural member will not normally show
crushing or spalling. Experimental results reported by Mattok et al. (1961) indicate that the
limit of deformation of unconfined concrete is variable, therefore the experimental results of
Hognestad (1951) are used. In the latter work tests of 120 reinforced concrete columns are
reported, 90 of which are of square and 30 of circular cross-section. The average values and
the COVs calculated considering individual groups and all the groups together are reported in
Table 6.

PLSi fC ∆( ) 1 FD ∆( )–( ) ∆d
0

∞

∫ fD ∆( )FC ∆( )d∆
0

∞

∫= =
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• LS3 Below this LS significant structural damage is expected. The bridge will be out of service
after the earthquake unless significant repair is undertaken. However, repair and strengthening is
feasible. Rupture of transverse reinforcement or buckling of longitudinal reinforcement should
not occur and core concrete in plastic hinge regions should not need replacement. Experimental
results that enable the evaluation of the limiting deformation in the concrete or steel
representative of this damage state are not available. Therefore, a displacement capacity that is
the average of LS2 and LS4 is herein assumed pending further refinement, as information
becomes available.

• LS4 Below this LS extensive damage is expected, but the bridge should not have collapsed.
Repair may be neither possible nor cost-effective. The structure will have to be demolished after
the earthquake. Beyond this LS global collapse endangering life is expected since it corresponds
to the inability of the structure to sustain gravity loads. The results of experimental tests
undertaken by Hoshikuma et al. (1997) on bridge piers with circular, square and wall sections
showed that crushing of confined concrete and buckling of longitudinal reinforcement occurs
when the compression stress drops to less than 0.5 f 'cc. Because such damage is excessive and
irreparable, the strain corresponding to 50% f 'cc is assumed as the ultimate strain εcu. A random
variable X, that represents the ratio of analytical and experimental values of εcu, is assumed to
account for the uncertainty in terms of confinement. The statistics of this random variable were
obtained by Kappos et al. (1998) for the Kent and Park empirical confinement model. The
collapse criterion considered in the latter work is that proposed by Park and Pauley (1975) in
which εcu corresponds to a residual stress of 85% of the unconfined resistance fc. However, the
statistics of X are applicable to other criteria, since the post-peak branch of the stress-strain
curve of concrete is not far from linearity, as confirmed by experimental results. The average
value and the COV of X are reported in Table 7.

The deformation of steel is also investigated for this limit state. From the values proposed by Pipa
and Carvalho (1995) a strain of 9% is assumed. No further refinement is warranted, because the
deformational capacity of the steel is very rarely exceeded before other limit states are satisfied.

Table 6 Average and COVs values of εc (Hognestad 1951)

Group Average COV

Group I 3.71‰ 15.16%
Group II 4.22‰ 17.17%
Group III 3.88‰ 10.23%
Group IV 3.20‰ 19.31%

Total 3.65‰ 19.10%

Table 7 Statistics of the ratio experimental-to-analytical values of εcu for the 
Kent and Park confinement model

Xm COV

1.140 38.5%
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3.3 Application example

The procedure outlined above is intuitive and reflects the current state-of-art in vulnerability
functions. Several assumptions were made that were based on observational data. Herein, an
example application is undertaken to gain insight into the proposed analytical procedure. The bridge
analysed is straight 60 metres long and 16 metres wide and is part of the Egnatia Othos road
network currently under construction in northern Greece. A similar treatment applies to skew
bridges, if use is made of simplified procedures to represent such bridges (e.g. Ming et al. 2001).
The superstructure is supported by the abutments and by two rows of piers. The superstructure is a
hollow prestressed concrete deck, while the piers comprise three reinforced concrete circular
columns directly connected to the deck, which is connected to the abutments by elastic bearings.
The characteristics of the concrete and reinforcement of the piers are B25 and S500, respectively.
The bridge model considered is shown in Fig. 5.

The finite element package employed to analyse the bridge is ADAPTIC. This program is specific
to the inelastic large displacement analysis of frames and was mainly developed by Izzuddin and
Elnashai (1991) with contributions from many other researchers from Imperial College, London, UK.

3.4 Modelling of material variability

3.4.1 Steel model
The behaviour of the reinforcement is represented by means of the bilinear elasto-plastic model

with kinematic hardening. The parameters of this model are the yield stress fy, Young’s modulus E
and the post-elastic stiffness coefficient α. Based on previous studies on effect of random variability
of steel materials on seismic response (Elnashai and Chryssanthopoulos 1991), the random variable
used for reinforcing bars is the yield stress of the reinforcement fy. The results of an investigation of
the characteristics of steel reinforcing bars were presented in Pipa and Carvalho (1995), where a
normal distribution of steel resistance was assumed. The coefficient of variation (COV) proposed in
the latter study for B500 steel is adopted. The characteristic value represents the resistance below
which 5% of the sample falls. Therefore, knowing the COV and the 95% fractile values, the
nominal value of resistance, which corresponds to the average value of the distribution, is
calculated. The parameters of the distribution, including characteristic, average and COV values are
reported in Table 8.

Fig. 5 Finite element model of Bridge 1
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Young’s modulus E is assumed as deterministic and equal to 200 kN/mm2 (EC2), because low
levels of variability of this parameter have been observed. As a consequence of the high
deformation capacity of steel and the limit imposed by modern seismic design codes on the ratio
between the ultimate stress (fu) and the yield stress (fy), the coefficient α, representing strain-
hardening, which accounts for the post-elastic stiffness, is rather low. Therefore, it is not significant
to take into account the variability of this parameter. A deterministic value of α equal to 0.5% is
proposed for the analyses.

3.4.2 Concrete model
The stress-strain relationship for the concrete model implemented in ADAPTIC, was employed

(Martinez-Rueda and Elnashai 1996). The parameters of the model are the concrete compressive
strength (f 'c), the concrete tensile strength (ft), the crushing strain εc0 and a confinement factor. The
compression resistance is the only random variable that is allocated a normal distribution in
common with previous studies. Mirza et al. (1979) suggest COV values for the distribution of
compressive resistance of cylinder specimens equal to 12%, 15% and 18% for precast, ready-mix
and in-situ concrete, respectively. In this case, the COV value that represents the assumed
construction of the bridge is 18%. The characteristic, average and COV values of the concrete
compressive resistance are reported in Table 9.

The tensile resistance ft of concrete is neglected, since it was observed that this parameter does
not have a significant influence on the response of RC structures responding in flexure. Concrete
stress-strain relationships obtained by tests on cylinders subjected to axial loads have shown that the
peak stress approximately corresponds to a deformation of 0.2%, the value associated with the
cracking deformation εc0.

3.5 Bridge model

In the finite element model of the bridge, the abutments and the deck are modelled using elastic
elements while fibre elements that describe the behaviour of reinforced concrete members are used
for the bridge piers. The piers are considered fully restrained at the base. Elastic spring elements are
used to model the bearings and the expansion joints between the deck and abutments. The stiffness
of the expansion joint KL is assumed 5.43 × 106 kN/m. The spring that represents the connection
between abutment and deck in the transverse direction has a stiffness KT of 8 × 103 kN/m. This
stiffness value corresponds to almost 5%Wmm−1 (Ghobarah and Ali 1988) where W is the

Table 8 Statistics of the steel yield stress

fyk fyn COV

500 MPa 550 MPa 5.2%

Table 9 Statistics of the concrete compressive strength

fck fc' COV

25 MPa 35 MPa 18%
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superstructure weight on the abutment. The stiffness suggested by Ghobarah and Ali (1988) can be
considered as a lower bound. An uncertainty on the stiffness of the bearings has to be taken into
account. This is due to the fact that the behaviour of these devices is a function of the axial load as
well as the relative displacement between abutment and deck. Those parameters are variable under
earthquake loads. The uncertainty factor is assumed to be 2 (Priestley et al. 1996). Therefore KL is
assumed to be in the range of 8 × 103 to 16 × 103 kN/m.

Rigid elements are used to connect the top of the columns, in order to represent the large stiffness
of the deck in the transverse direction and to locate the centre of masses on the deck axes in the
dynamic analyses. The model is shown in Fig. 5.

3.6 Analysis of the bridge

3.6.1 Pushover analysis of the piers
To quantify the deformational supply (capacity) of the piers, static inelastic pushover analysis is

employed. The load conditions are:
• vertical loads on the columns representing the dead and live loads;
• horizontal displacements normal to the deck axis.
In order to identify the displacement capacity corresponding to the selected limit states, the stress

and deformations in the reinforcement, confined and unconfined concrete are monitored and
mapped into the load-displacement curve. 

To quantify the uncertainty in the displacement capacity of the system a sample of randomly-
generated numbers was used for material properties. As a first trial a sample size of 30 values was
used. This was contrasted with a sample of 40 random values. The average and COV of random
variables was calculated to assess the viability of the sample, as reported in Table 10.

In Tables 11 and 12 the average and COV of the displacement capacity for the two sample sizes
are reported. The average and standard deviation seem insensitive to the sample size, for the limited
range considered. Therefore, further increase of the sample size is not necessary, at least in the
vicinity of the two sizes tested in Tables 10, 11 and 12.

Table 11 Average and COV values of the displacement capacity of pier 1

∆LS1

[mm]
∆LS2

[mm]
∆LS3

[mm]
∆LS4

[mm]

Average COV Average COV Average COV Average COV

30 47 6 64 11 103 18 142 25
40 47 5 65 11 103 17 142 24

Table 10 Average and COV of the randomly generated samples

fy
[kN/mm2]

fc'
[kN/mm2] εc X

Average COV Average COV Average COV Average COV

30 547.8 5% 35.2 17% 3.60‰ 19% 1.19 38%
40 548.0 5% 34.8 17% 3.68‰ 19% 1.15 39%
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A suitable model for the distribution of the displacement capacity is required. The normal and
lognormal cumulative distributions are tested and the parameters of the idealised distribution are
reported in Table 13. As in previous sections of this paper, the Kolmogovov-Smirnov test (K-S test)
is used to study which of the candidate distributions fits better the calculated points. The maximum
difference DMAX between the theoretical distribution and the observed cumulative functions are
reported in Table 14. For both piers at the limit states corresponding to a low level of damage, the
normal distribution provides a better fit. On the other hand, the lognormal model fits better cases of
high damage.

3.7 Dynamic analyses

Inelastic time-history analyses were undertaken to evaluate the displacement demand on the bridge
piers using 7 accelerograms. Table 15 lists the characteristic of the earthquakes from which the natural
strong-motion records were obtained. The number and specific records selected have a negligible effect
on the vulnerability curves since they are used only to define a displacement demand distribution. They
have been selected, however, to represent earthquakes with magnitudes below 7 and above 5.5, typical
of areas of moderate seismic hazard, which constitute the majority of earthquake-prone areas in the
world. Moreover, short-to-moderate epicentral distances from the source to the measuring station were
chosen because at longer distances, such magnitude earthquakes produce low acceleration values that
would have required substantial scaling. The accelerograms were scaled to the design value of PGA
(0.2 g). The results were used to assess the uncertainty in displacement demand. A lognormal
distribution is assumed to fit the results obtained with the aforementioned inelastic dynamic analyses.
This is a decision taken, since the seven points obtained do not constitute a sample amenable to
statistical representations. The parameters of the lognormal distribution are reported in Table 16.

Table 12 Average and COV values of the displacement capacity of pier 2

∆LS1

[mm]
∆LS2

[mm]
∆LS3

[mm]
∆LS4

[mm]

Average COV Average COV Average COV Average COV

30 34 6 47 11 78 18 110 26
40 34 6 47 11 78 18 109 25

Table 13 Parameters of the statistical distribution of displacement capacity

Normal Distribution Lognormal Distribution

µ σ λ ξ

Pier 1

LS1 47.27 2.54 3.85 0.05
LS2 64.76 7.04 4.16 0.11
LS3 103.19 17.31 4.62 0.17
LS4 141.63 34.34 4.92 0.24

Pier 2

LS1 34.26 1.94 3.53 0.06
LS2 47.02 5.38 3.84 0.11
LS3 78.06 13.75 4.34 0.17
LS4 109.09 27.37 4.66 0.25
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The average values of material proprieties and stiffness of the bearings are used in the dynamic
analyses. This assumption has been verified by comparing the response of the bridge for mean,
mean ±σ and the upper/lower bound values. For this comparison a synthetic accelerogram generated
to fit the Eurocode 8 spectrum, as a representative of modern seismic codes, was used, scaled to a
PGA value of 0.4 g. This choice is based on the fact that the selected value of PGA should produce
yielding in the bridge piers, otherwise the limiting resistance of materials is not exceeded and it is
not possible to check their influence on the displacement demand. The results of this analysis show
that the influence of the variability of material properties on seismic demand can be neglected and
the recorded maximum displacements are given in Table 17. The influence of material resistance
and stiffness of bearings is appreciable. However, those parameters seem to give an uncertainty in
terms of displacement requirements that can be neglected compared to the influence of input
motion.

Finally, displacement demand from inelastic dynamic analyses using the generated accelerogram
is reported in Fig. 7, as a function of the PGA level for both bridge piers.

Table 14 K-S test for two statistical distribution model for displacement capacity

DMAX, Normal DMAX, Lognormal

Pier 1

LS1 25% 26%
LS2 9% 11%
LS3 13% 11%
LS4 13% 11%

Pier 2

LS1 29% 30%
LS2 10% 12%
LS3 12% 9%
LS4 14% 11%

Table 15 Characteristics of selected earthquakes

Earthquake Date Magnitude Epicentral Distance

Erzincan, Turkey 13/03/1992 6.8 4 km
Friuli, Italy 11/09/1976 5.5 7 km

Patras, Greece 14/06/1993 5.6 8 km
Aegion, Greece 18/11/1992 5.7 25 km

Thessaloniki, Greece 20/06/1978 6.4 33.8 km
Kalamata, Greece 13/09/1986 5.8 12.8 km

Table 16 Parameters of the idealized distribution of displacement demand

Lognormal Distribution

λ ξ
Pier 1 3.37 0.40
Pier 2 3.12 0.38
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It is noteworthy that in general using many more records in the dynamic analysis is preferable.
However, this would increase very substantially the analysis effort without a definable improvement
in results. The true variability, in a probabilistic sense, comes into the application of vulnerability
analysis through using probabilistically-based seismic demand quantities (e.g. intensity, PGA or
other outputs of probabilistic seismic hazard analyses). Such an issue requires more extensive
studies and is not discussed further herein.

3.8 Vulnerability curves

The bridge vulnerability curves were obtained assuming that a certain limit state is reached when
one of the two piers attains that limit state, which is a conservative assumption. The vulnerability
curves obtained are reported in Fig. 8, for the two piers and the entire bridge. The irregular shape of
the vulnerability curves of pier 2 is due to the deformed shape of the first vibration mode. The
average values and the standard deviations obtained on the basis of the obtained cumulative
distributions are reported in Table 18.

Table 17 Maximum displacement for different values of material resistance and bearing stiffness

Mean Mean +1σ Mean −1σ
Pier 1 93.93 mm 98.78 mm 86.40 mm
Pier 2 48.27 mm 56.56 mm 58.44 mm

Fig. 6 Peak recorded displacements at the top of the bridge piers for code-compatible synthetic accelerogram

Table 18 Average and standard deviation values corresponding to the evaluated cumulative distribution

Limit State Average Standard Deviation

1 0.355 g 0.154 g
2 0.429 g 0.165 g
3 0.563 g 0.178 g
4 0.666 g 0.180 g



234 A.S. Elnashai, B. Borzi and S. Vlachos

The vulnerability curves calculated for the bridge were compared with the empirical functions
derived in the first part of this paper, obtained from damage observations in previous earthquakes.
These were classified for the damage states: none, minor, moderate, major and collapse. The
empirical and calculated vulnerability curves are compared as indicated below:

• no damage with limit state 1;
• minor damage with limit state 2;
• moderate damage with limit state 3;
• major damage with limit state 4;
The calculated and empirical vulnerability curves are reported in Fig. 9 for the damage levels

employed. The comparison is satisfactory for limit states 1, 3 and 4, whilst for limit state 2 large
differences are observed. This is due to limit state 2 corresponding to the spread of cracks in only
one of the structural elements of the bridge, an assumption leaning towards the over-conservative.

Fig. 7 Vulnerability curves for the (a) pier 1, (b) pier 2 and (c) bridge 
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Globally, however, the level of agreement between observational and analytical vulnerability
functions is reassuring. It is emphasized that this is not a formal validation of analytical curves, the
validation of which can only be undertaken by comparison to large databases of damage to RC
bridges similar to the above-described prototype bridge. The analytical functions derive their
plausibility from the sound basis for their derivation, the rigour of the analytical models used and
the general acceptability of their shape and the damage levels they predict.

4. Generalization of analytical functions

The curves derived above pertain to a specific bridge with fixed dimensions (i.e. pier and deck
dimensions, span length etc). In principle, to investigate damage distribution in a region where
similar but not identical bridges exist would require repeating the analytical study described above,
using identical assumptions in order that the level of uncertainty in the results is maintained.

Fig. 8 Comparison between calculated and empirical vulnerability curves
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Hereafter an attempt is made to short-circuit the intensive analytical work required to derive
vulnerability functions for bridges that are similar but not identical to the structure used as the basis
of the example application above.

4.1 Geometric parameters influencing seismic response

Two parameters were selected for analysis aimed at generalizing the vulnerability functions,
namely the diameter of the columns cross-section and the length of the spans of the bridge. The
first (pier diameter) directly influences the capacity of the bridge as a whole, while the second (span
length) causes an increase in design base shear. Both parameters will have a direct bearing on the
overstrength (ratio of available-to-design base shear) of the bridge. This particular approach derives
its validity from the correlation between level of observed damage and code base shear for the
Hyogoken Nanbu, Japan, earthquake of 17 January 1995, as described by Kawashima and Onjoh
(1996).

Three bridge configurations ensued. The first configuration has a reduced diameter of columns by
13%, in comparison with the first bridge, and is referred to as Bridge 2. A further decrease of 15%
and an increase of 10% of the spans were applied for the second configuration, Bridge 3. The third
configuration, Bridge 4, has the same columns diameter as Bridge 2 but has a 30% increase in span.
The model characteristics are given in Table 19. Both the volumetric ratio of longitudinal
reinforcement and the mechanical ratio of transverse reinforcement were kept constant.
Consequently, the behaviour (or response modification) factor, referred to as R in US practice and q
in European practice, is expected to remain constant. This is verified by the results of the pushover
analyses were the behaviour factor, R or q, for the four bridges is around 3.

The geometry and overstrength parameters for the four bridges are given in Table 19, calculated
from the peak of the pushover curve and the design base shear.

The same procedure for vulnerability curve definition as described above is applied for each
bridge. The ensuing vulnerability curves are illustrated and compared in Fig. 9.

It is confirmed from Fig. 9 that the overstrength ratio is an appropriate parameter to use for
distinguishing bridges that belong to the same class. From the four vulnerability curves examined in
this study two pairs have almost identical shape. The curves of the two bridges with the higher
overstrength ratio and the two with the lower overstrength ratio have almost identical shape but
different values. Parameterizing the vulnerability curves by use of the overstrength ratio (ratio of
available-to-required base shear) is therefore undertaken to derive simple expressions for deriving
new curves once the overstrength ratio is defined from pushover analysis.

Table 19 Structural and geometric characteristics of studied bridges

Bridge 1 Bridge 2 Bridge 3 Bridge 4

Pier Diameter (m) 1.5 1.3 1.3 1.1
Central Span (m) 30.5 30.5 39.65 33.55
External Span (m) 16.25 16.25 21.15 18.15
Behaviour Factor 3.2 2.9 2.7 2.9
Overstrength ratio 4 2.6 1.7 2.2
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4.2 Parametric vulnerability functions

It was observed above that the vulnerability curves are distinct but have common features. It was
further concluded that the overstrength ratio is a significant parameter influencing the vulnerability
curves (it should be noted that the deformational capacity of the four bridges is similar, since they
are all detailed to modern practice. In cases where this is not true, the deformation or rotation
ductility of pier may be another influential parameter). It was therefore decided to attempt to define
a ‘generic’ vulnerability curve and scaling factors that are related to the overstrength parameter. The
application of the scaling factors would enable the individual structure vulnerability functions to be
retrieved.

First the average of damage probability points at each PGA level is obtained and a cubic spline is
fitted to the resulting points. Due to the differences in shapes of curves for different limit states, sets
of curves for each LS is dealt with separately. The cubic spline and the analytically-derived values
for each bridge at each limit state are presented in Figs. 10, 11, 12 and 13.

Fig. 9 Comparison of vulnerability curves of all the configurations for four limit state
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In general the shape of the vulnerability curves is well-represented by the cubic spline
interpolation. In all cases it seems that a single curve can represent the general pattern of the
vulnerability curves of all the different configurations. Some significant differences are observed in
the vulnerability curves of Bridge 1. This is mainly due to the fact that these usually start from
higher values of PGA. Since the curve is just multiplied by a constant factor and starts from lower
values of PGA, it cannot follow very closely the vulnerability curve but instead is parallel to it and
fits in the higher values of PGA. The results collectively confirm the feasibility of the procedure.

In Table 20 the multipliers that were used for each case are reported. It is noteworthy that the
factors for the three limit states that refer to higher damage levels are practically constant. This
indicates that there may be a correlation between vulnerability curves for different limit states for
the same structure that can be further parameterized. This is, however, not attempted here.

The curves derived from this simple procedure are approximations of the analytically-derived
curves. The errors for each case are reported in Tables 21 and 22. The error in some points is high
but the main purpose is to approximate the shape of the curves and not to estimate the exact

Fig. 10 Curve fitting for the first limit state
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analytical values. Taking into account the uncertainty involved in validating vulnerability curves by
comparison to field data, the results are adequately representative of the analytical values.

The multipliers used to derive one curve from another may be related to structural characteristics
of the bridge such as the ductility or the overstrength ratio. As previously mentioned, member
detailing is the same in all cases, hence deformation ductility is expected to be comparable. This is
verified by the results of the pushover analyses presented in Table 19. Assuming that the
overstrength parameter is the single most influential variable in this study, an attempt is made at
relating the vulnerability curves scaling factor to the overstrength parameter, as described below.

For each pair of bridges the difference in the overstrength parameter and the corresponding
scaling factors for the curves of the two bridges are estimated and reported in Table 23. It is
observed that in two cases there is almost identical change in the overstrength ratio. In these two
cases the corresponding multipliers are almost identical, indicating the possibility of relating the two
quantities. Furthermore, it is observed that the two quantities vary in the same direction (increase or
reduction).

Fig. 11 Curve fitting for the second limit state
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The strong correlation between overstrength and curve multiplier is emphasised by the results
shown in Table 20. This indicates that for the three limit states that correspond to higher damage
levels (LS 2, 3 and 4) a constant set of curve multipliers exist. In Fig. 14 the variation of the
overstrength parameter is plotted versus the curve multiplier (scaling factor), indicating linear inter-
dependence.

It is therefore straightforward to derive vulnerability curves for a bridge with given configuration
once the curves for a different bridge have been derived. For this limited study of four bridges, the
linear best-fit curves given in Eq. (14) below may be employed.

LS 1:   k = 0.076 · x + 0.9
LS 2-3-4: k = 0.0053 · x + 0.96 (14)

where k is the required scaling factor and x is the change in the overstrength ratio (%).
The emphasis in this part of the current study is on the ‘feasibility’ as opposed to the ‘accuracy’

of the proposed approach. It is fully recognised that many more bridges belonging to clearly defined

Fig. 12 Curve fitting for the third limit state
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categories should be studied before a generally-applicable ‘generic’ vulnerability functions are
derived alongside scaling factors, given as functional representations of bridge strength and
deformational characteristics. However, the results given above are clearly promising and the
simplicity of the procedure is rather appealing.

Fig. 13 Curve fitting for the fourth limit state

Table 20 Factors used for the curve fitting for each bridge at each limit state

Bridge 1 Bridge 2 Bridge 3 Bridge 4

LS1 0.95 1.1 1.27 1.18
LS2 0.9 1.02 1.15 1.08
LS3 0.9 1.02 1.15 1.08
LS4 0.9 1.02 1.15 1.08
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Table 21 Differences between analytically-derived and parameterized vulnerability curves B1-B2

PGA
Bridge 1 Bridge 2

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4

0.1 1 1 1 1 1 1 1 1
0.2 3.190 13.128 689.925 591.211 0.048 1.248 4.850 5.580
0.3 0.238 0.465 5.069 15.169 0.075 0.553 2.141 4.253
0.4 0.059 0.097 0.692 1.848 0.069 0.057 0.157 0.235
0.5 0.024 0.022 0.325 0.959 0.078 0.044 0.137 0.244
0.6 0.010 0.038 0.062 0.275 0.086 0.020 0.052 0.096
0.7 0.026 0.061 0.008 0.087 0.092 0.008 0.016 0.042
0.8 0.036 0.080 0.053 0.005 0.095 0.004 0.020 0.036
0.9 0.038 0.085 0.073 0.057 0.096 0.003 0.024 0.050
1 0.038 0.085 0.071 0.058 0.096 0.001 0.019 0.041

Table 22 Differences between analytically-derived and parameterized vulnerability curves B3-B4

PGA
Bridge 3 Bridge 4

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4

0.1 0.509 0.629 0.640 1 0.167 0.196 0.391 1
0.2 0.010 0.500 0.567 0.560 0.062 0.086 0.074 0.123
0.3 0.010 0.031 0.464 0.512 0.017 0.116 0.218 0.226
0.4 0.000 0.006 0.175 0.311 0.005 0.013 0.094 0.092
0.5 0.000 0.004 0.067 0.158 0.000 0.008 0.093 0.203
0.6 0.000 0.003 0.042 0.025 0.000 0.004 0.005 0.079
0.7 0.000 0.002 0.025 0.091 0.000 0.001 0.013 0.010
0.8 0.000 0.001 0.004 0.026 0.000 0.000 0.006 0.030
0.9 0.000 0.000 0.001 0.009 0.000 0.000 0.003 0.020
1 0.000 0.000 0.000 0.004 0.000 0.000 0.001 0.007

Table 23 Ratio of the multipliers according to the difference of overstrength

Difference of the
Overstrength ratio

(%)
LS1 LS2 LS3 LS4

Bridge 2-Bridge 4 16 1.03 1.06 1.06 1.06
Bridge 4-Bridge 3 23 1.07 1.065 1.065 1.065
Bridge 1-Bridge 2 35 1.16 1.13 1.13 1.13
Bridge 2-Bridge 3 35 1.16 1.13 1.13 1.13
Bridge 1-Bridge 4 45 1.24 1.2 1.2 1.2
Bridge 1-Bridge 3 57 1.34 1.28 1.28 1.28
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5. Conclusions

The paper presents three contributions to the important and fast-developing subject of
vulnerability analysis of bridges. First, two observational data banks from two previous earthquakes
presented by Basöz et al. (1999) and Yamazaki et al. (1999) are used to derive a set of
observationally-based vulnerability curves. Next, a simple, transparent and pragmatic analytical
procedure to derive vulnerability functions for reinforced concrete bridges is outlined. The
procedure utilises recent developments in deformation-based assessment. The selected limit states
provide a clear correspondence between local deformation quantities (strain) and structure-level
measures (displacements). Four limit states are employed, ranging from no damage to severe levels
of distress. In arriving at a complete procedure a number of assumptions were made and justified. It
is however emphasised that considerable room for further development exists. Moreover, of the
analytical curves comparison with observational data (Northridge 1994 and Kobe 1995)
vulnerability functions provides a degree of confidence in the analytical results. Based on the
acceptable level of correlation between analytical and observational functions derived in this work,
the curves are feasible for use in seismic damage assessment.

The third contribution to vulnerability analysis presented in this paper is a simple procedure to
derive vulnerability curves for one structure from another whilst bypassing simulation and analysis
requirements. In this study, the vulnerability functions are parameterized using the overstrength ratio
(ratio of available-to-design base shear) of four bridges that belong to the same class of bridge but
have different geometric, hence strength, properties. Simple relationships were derived to establish
vulnerability functions of one bridge from those of another once the overstrength ratio was obtained
from pushover analysis. One of the main applications of this procedure is in large projects where
many bridges have the same basic configuration with some changes in member sizes, spans and pier
heights. Given the vulnerability curves of one bridge, the proposed relationships could be used to
derive vulnerability functions for the rest of the group directly.
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