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Abstract. A mixed eight-node hexahedral element formulated via the Hu-Washizu principle as well as
the field extrapolation technique is presented. The mixed element with only three translational degrees of
freedom at each node can provide extremely accurate and reliable performance for popular benchmark
problems such as spacial beams, plates, shells as well as general three-dimensional elasticity problems.
Numerical calculations also show that when extremely skewed and coarse meshes and nearly
incompressible materials are used, the proposed mixed element can still possess excellent behaviour. The
mixed formulation starts with introduction of a parallelepiped domain associated with the given general
eight-node hexahedral element. Then, the assumed strain field at the nodal level is constructed via the Hu-
Washizu variational principle for that associated parallelepiped domain. Finally, the assumed strain field at
the nodal level of the given hexahedral element is established by using the field extrapolation technique,
and then by using the trilinear shape functions the assumed strain field of the whole element domain is
obtained. All matrices involved in establishing the element stiffness matrix can be evaluated analytically
and expressed explicitly; however, a 24 by 24 matrix has to be inverted to construct the displacement
extrapolation matrix. The proposed hexahedral element satisfies the patch test as long as the element with
a shape of parallelepiped.

Key words: Hu-Washizu principle; field extrapolation; assumed strain formulation; eight-node parallel-
epiped; mixed formulation; shear and membrane locking.

1. Introduction

Existence of continuum finite element models with high predictive capabilities in both continuum
and structural applications is very important in the analysis of various complex structural forms, that
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are common in civil, mechanical, and aerospace applications. These structural forms often include
irregular geometry and cutouts, which form large two-dimensional or three-dimensional continuum
zones connected by regions with dimensions characteristic of structural elements (e.g., beams,
arches, plates, shells, etc.) rather than continuum. While the behaviour of continuum zones is
governed by differential equations of the appropriate continuum, the connecting structure-like
regions are more adequately described by higher order equations of structural mechanics. In
situations like that, either a mixture of structural and continuum elements is needed or else a single
continuum finite element model should be able to adequately represent the behaviour of large
continuum zones and the behaviour of structural-like components of the system.

Existing commercial finite element codes usually include large libraries of continuum and
structural finite elements. These finite element models often can be combined quite freely to form
various structural forms. However, in many applications, the transition from the definitely structural-
like zone to the clearly continuum zone is gradual and the user of a commercial package is forced
to arbitrarily define the boundary between the two zones if two different finite element models are
to be used. This is one example in which it has clearly advantageous to use one element model
whose range of applicability covers both the continuum and structural parts. An additional aspect of
this example testifying in favour of an appropriate single element is the sensitivity of the results on
the type of the connection between the structural and continuum elements used in the code. This
aspect would be totally bypassed if a single continuum element could be employed in the analysis.

Another example, where the continuum elements applicable to both continuum and structural
problems are useful, can be found in the analysis of plates and shells. Here the so-called
“degenerate continuum elements” have been used for a long time. The main reason behind that use
is due to the fact that the continuum elements allowed to formulate shell (or plate) elements without
intricacies of the shell theory. However it was immediately realized that the continuum finite
element models were for shell too stiff - a phenomenon related to shear locking and membrane
locking. In other to obtain meaningful solutions for shells, some ‘modifications’ of the continuum
finite elements were necessary; but then the modified continuum finite elements for shells could not
be used in the analysis of a general three-dimensional continuum. As the history of the shell
analysis indicates, continuum elements need to be modified if their applicability is to be extended to
structural problems. It is understandable that the need for the modification decreases as the order of
the element sufficiently increases. High order elements are rich enough to incorporate a complex
behaviour of any structural form. However, these elements are inefficient in the sense that their
accuracy can be matched by the lower order, but properly developed continuum elements.

In recent years, researches in the development of efficient low order eight-node hexahedral
elements (typically trilinear) have been extensively discussed in the literature. The main goal of the
research is to improve its poor performance resulting from the presence of the so-called parasitic
shear terms in the analysis of bending dominated situations. Such an inadequate performance of the
eight-node hexahedral element is further deteriorated when highly distorted and high aspect ratio
meshes are considered or when nearly incompressible materials are used. In addition, in the analysis
of various geometrically complex structural forms in which a large number of elements may be
needed to describe the geometric condition and to catch stress concentration phenomenon
realistically. When low order elements with enhanced coarse mesh accuracy and improved bending
properties are used in such a condition, a significant reduction in the computational efforts can also
be achieved resulting from the reduction of global degrees of freedom. For nonlinear analysis,
coarse and skewed mesh accuracy will become more important than that in the linear analysis. For
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instance, under large deformation analysis, when a beam, originally modeled by regular 3D brick
elements, is subjected to pure bending, cross section of the beam and the element’s faces intersected
by the vector in the bending direction will deform to a trapezoidal shape. This kind of deformed
situation can be found quite common in the analysis, particularly, for bending dominated problems.
As a result, it will be useful if an element can possess high accurate bending properties and
extremely low sensitivity to mesh distortions.

Broadly speaking, representative methods emerged as a result of aiming at an improved bending
properties of the low-order eight-node hexahedral element include: (1) Incompatible mode methods
(Wilson et al. 1973, Taylor et al. 1976, Chandra and Prathap 1989, and others); (2) Drilling degrees
of freedom methods (Yunus et al. 1991, Ibrahimbegovic and Wilson 1991, Sze et al. 1996, and
others); (3) Mixed methods (Pian 1964, Pian and Chen 1983, Pian and Sumihara 1984, Pian and
Tong 1986, Sze and Ghali 1993, Cheung and Chen 1988, Chen and Cheung 1992, Weissman 1996,
Yeo and Lee 1997, Sze and Yao 2000, Cao et al. 2002, and others); (4) Reduced integration
methods (Flanagan and Belytschko 1981, Wang and Belytschko 1987, and others); (5) Assumed
strain methods (Belytschko and Bindeman, Chen and Stolarski 1998, and others). A more detailed
and more extensive description of the above mentioned methods has been reported in Chen and
Stolarski 1998, and the reader can refer there for details.

The basic idea proposed in Chen and Stolarski 1998 consists in introduction of a parallelepiped
associated with a given general hexahedral element, subsequent formulations of the assumed strain
field in this parallelepiped domain, and extrapolation of the displacement and assumed strain fields
to the domain of the original hexahedral element. The eight-node assumed strain hexahedral
elements proposed by Chen and Stolarski 1998 didn’t pass the C0 patch test for a general
hexahedral shape. However, various numerical tests have confirmed their excellent convergence
characteristics as long as the initially general form of the hexahedral element approaches a
parallelepiped shape with the refinement of the mesh. In addition, they are also found to be very
accurate and reliable for both structural and continuum mechanics problems while using coarse and
irregular meshes in incompressible limits.

Very recently, a mixed four-node quadrilateral has been successful formulated by means of the
Hu-Washizu variation principle in conjunction with the concept of strain and displacement
extrapolation (Chen 2002). Numerical performance demonstrates that the mixed element formulated
in this way can provide excellent properties for both bending and membrane dominated problems.
In this work, similar approach of using Hu-Washizu principle and field extrapolation technique is
investigated to formulate a mixed eight-node hexahedral element. The assumed nodal strain of the
associated parallelepiped is established via the Hu-Washizu principle and evaluated at the nodal
level. Procedure of performing strain and displacement extrapolation (Chen and Stolarski 1998) is
followed to establish the assumed strain field of the original hexahedral element. Predictions of the
proposed mixed element for a variety of testing problems including element’s response relating to
the C0 patch test are quite similar to those assumed strain elements provided in Chen and Stolarski
1998. However, the computational efforts required in formulating the element stiffness matrix of the
element presented here have been greatly reduced.

The remainder of the paper is outlined as follows. General description of the Hu-Washizu
principle and the procedure of establishing the assumed strain-displacement operator are given in
Section 2. In Section 3, a parallelepiped domain associated with a given general eight-node
hexahedral element is introduced. Finite element approximation based on the Hu-Washizu principle
for the associated parallelepiped element is described in Section 4. In Section 5, concept of the
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strain and displacement extrapolation are adopted to obtain the assumed strain field of the given
hexahedral element. Section 6 describes test problems and numerical results obtained. The last
section reports conclusions.

2. Hu-Washizu principle and assumed fields

For completeness, general procedure involved in deriving finite element model via Hu-Washizu
principle as described by many researchers in the literatures is recalled hereinafter. The linearlized
Hu-Washizu variational principle states that all of the field equations and the natural boundary
conditions can be obtained as the stationary conditions of the following linearlized functional

(1)

where u, σ, and ε* are the assumed displacement, stress, and strain fields, respectively; D represents
the matrix of material elastic constants;  is the symmetric part of the displacement gradient;
Ω is the domain considered; P states the potential of external work. In other to obtain the finite
element formulations corresponding to the functional of Eq. (1), assumed fields u, σ, and ε* have to
be specified, and they are approximated over each element domain and expressed as follows

u = Nd (which leads to ), σ = Ss, ε* = Ee, (2,3,4,5)

where d, s, and e are the vectors of nodal displacements, independent stress parameters, and
independent strain parameters, respectively; N, S, and E are the shape functions for the
displacements, stresses, and strains, respectively. Substituting the above assumed fields into the
linearlized Hu-Washizu functional and making this functional stationary with respect to d, s, and e
respectively, one gets

(1) Equilibrium equations: (6)

(2) Strain-displacement relationships: (7)

(3) Constitutive equations: (8)

where f ext is the vector of external force resulting from body forces and natural boundary
conditions. By using Eq. (5) and Eq. (7), the assumed strain field can be expressed in terms of the
vector of element nodal displacements

(9)

where B* is the assumed strain-displacement operator. Note that the assumed strain field of Eq. (9)
can be obtained only when  is invertible, and that in this work the domain considered
under the framework of Hu-Washizu principle is referred to a parallelepiped, which is associated
with a given general hexahedral element (to be explained in section 3).
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3. The eight-node hexahedral element and its associated parallelepiped

For a general eight-node hexahedral element, an associated parallelepiped shown in Fig. 1 can
always be defined. Its nodal position vectors  of node  is given by the following expressions

, (10,11,12)

where  is the position vector of point  which is the centre of the associated parallelepiped,
uppercase K represents parameters (ξ, η, ζ ),  is the vector of coordinates of the nodal
point  in the space of the isoparametric parameters  of the associated parallelepiped
whereas  is the coordinates of the nodal point I in the space of isoparametric
parameters (ξ, η, ζ) of the hexahedral element, XI is the nodal position vector at nodal point I of
the hexahedral element, and subscript or superscript k represents kth component of the vector
relative to the fixed global system ek = ek. Throughout this work, indices repeated on two different
levels imply summation over their range, the superscript “T” designates the transpose of a matrix,
and a “�” on the top indicates that a quantity is related to the associated parallelepiped, unless
otherwise stated.

A physical natural coordinate system , as shown in Fig. 1, is defined and attached to
point . Its definition is given as follows

, which leads to , (14,15)

where  represents length of vector  and a “−” on the top indicates that a quantity is related to
the  frame.

X Î Î
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Fig. 1 The original Hexahedral and its associated parallelepiped
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4. Finite element approximation for the associated parallelepiped element

In the context of Hu-Washizu variational principle, the finite element model is established by
approximating three independent (assumed) fields. In this work, these three assumed fields are
interpolated for the associated parallelepiped and expressed in the physical natural coordinates
system. Construction and interpretation of these three assumed fields are, respectively, given in the
following subsections.

4.1 Assumed covariant displacement field

From tensor algebra, the assumed covariant displacement field  of the associated parallelepiped
in the  frame can be related to that in the global fixed system and then, as usual, be
approximated in terms of nodal displacements by using standard trilinear shape functions. The result
is

, (16a,b)

where  is the  component of  in the  frame whereas  represents the kth

component of  relative to the global fixed system ek = ek, and N denotes the standard trilinear
shape functions. By virtue of the assumed covariant displacement field defined above, the
corresponding covariant strain field  of the associated parallelepiped in the  frame can be
evaluated by using the following well-known linear strain-displacement equations

(17)

which leads to the covariant strain field of the associated parallelepiped as follows

, (18a)

(18b)

where  denotes , and  is the vector of element nodal displacements of the associated
parallelepiped. From tensor algebra, the conventional covariant strain field  in the global fixed
frame can be related to  of Eq. (18a) as follows

, or in the matrix form , (19)

4.2 Assumed contravariant stress field

In the development of finite element models, suppression of any possible zero-energy deformation
modes is necessary for satisfying stability considerations in the analysis. Pian and Chen 1983
proposed a systematic approach in determining the necessary assumed stress parameters for

û
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  ûk g

K
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Î

Lζ

-------------
gζ

kN,η̂
Î
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assumed stress hybrid models such that zero-energy deformation modes can be eliminated on
element level. As suggested by Pian and Chen 1983, the optimal number of stress parameters is
equal to the total number of displacement degrees of freedom minus the number of rigid body
modes, but with the suppression of the zero-energy deformation modes. Many research results have
also indicated that assumed stress hybrid elements will behave too stiff if stress parameters are
overused. For an 8-node hexahedral element, the optimal number of stress modes will be 3 × 8−
6 = 18. Pian and Tong 1986 established 18β-stress parameters in the formulation of 8-node
hexahedral hybrid element. These 18β-stress terms are exactly the same as that discussed in Pian
and Chen 1983. Following the same shape functions proposed by Pian and Tong 1986, the assumed
contravariant stress field of the associated parallelopiped in the coordinates system  is
approximated by

(20a)

,  , (20b,c)

where the uppercase  is the matrix of shape functions describing the distribution of the assumed
contravariant stresses in the associated parallelepiped while the lowercase  is the vector comprised
of eighteen independent stress parameters; the superscript “cb”  indicates that quantities will match
with three constant strain modes , six constant bending modes, and three linear
bending modes as defined in Eqs. (32, 37, 40); and the superscript “s” denotes that quantities will
match with three constant shear strain modes  and three linear shear modes as
described in Eqs. (32, 34). For the associated parallelepiped, the contravariant stress  is expressed
in terms of stress parameters , which is independent from one element to the other. And each
stress parameter matches individually with one deformation mode specified in Eq. (30) excluding
six rigid body modes. For an associated parallelepiped, stresses induced by those deformation
modes are relatively clear and consistent with the variation of . For instance,  is expressed by
shape functions  and the first four stress parameters of the vector . Each term of shape
functions  matches, respectively, with the stress induced from constant strain mode

, constant bending modes  and , and linear bending mode  as stated in Eqs. (32, 37, 40).
Similar explanation can be given for other stress components. Similarly, by virtue of tensor algebra,
the conventional contravariant stress field  of the associated parallelepiped in the global fixed
frame can be related to  of Eq. (20a) as follows

,  or in the matrix form  . (21)

4.3 Assumed covariant strain field

Adopting the same shape functions of Eqs. (20b,c) and incorporating some modifications to take
the effects of Poission’s ratio into account, the assumed (modified) covariant strain field of the
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associated parallelepiped in the  frame is approximated by

, (22a)

, (22b)

where  is the matrix of shape functions used to describe the assumed covariant strain field in the
associated parallelepiped,  is the vector comprised of eighteen independent strain parameters,

, and ν is the Poisson’s ratio. In the above equation,  and ν are used to take into
account the effects of Poisson’s ratio for the assumed covariant strain field corresponding to the
bending part. Since that shape functions  are used to express the variation of *, incorporation of
Poission’s ratio in  provides modification of strain field such that each strain parameter matches
individually with one deformation mode specified in Eq. (30). For instance, constant bending mode

 in Eq. (37) represents the rigid body rotation of the pyramid  about the vector  while
keeping pyramid  fixed. It describes the mode of deformation in which stretching of the
parametric lines (in  direction) varies linearly in the direction of . This deformed
configuration creates a strain state matches with the variation of strain , the part expressed by the
shape function  and the second strain parameter of the vector . If Poisson’s ratio is not equal
to zero, it will generate stretching of the parametric lines in  direction varies linearly in the
direction of . This is a deformed situation similar to that generated by bending mode  (in
negative direction). This Poisson’s ratio related strain matches with the variation of strain , the
part expressed by the shape function  and the second strain parameter of the vector . It
provides justification of introducing Poisson’s ratio in 2nd column of matrix . Similar
explanation can be given for other strain components. Note that no modification of constant strain
and linear shear strain is needed.

With the use of shape functions  of Eq. (20a) and  of Eq. (22a), and since that the
determinant of the Jacobian is constant for any parallelepiped, integration of  over the
associated parallelepiped domain can be easily achieved as follows

(23)

where  represents one eighth of the volume of the associated parallelepiped. Since that Eq. (23)
is a diagonal matrix, inverse of Eq. (23) can be easily obtained. The result is

(24)

By using the matrix  of Eq. (20a) and matrix  of Eq. (18b), explicit expression of 
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ξ η ζ, ,( )

ε̂
*

ε̂ξξ
* ε̂ηη

* ε̂ζζ
* 2ε̂ξη

* 2ε̂ηζ
* 2ε̂ξζ

*{ }T Ê
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ŜTÊdΩ̂
Ω̂∫ 8 Ĵ diag 1
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k
dΩ̂

Ω̂∫



A mixed 8-node hexahedral element based on the Hu-Washizu principle 121

(25a)

(25b,c,d)

(25e)

(25f)

Noting that Eq. (23) and Eq. (25a) are evaluated in the natural coordinate system; however, the
results given in Eq. (23) and Eq. (25a) are also valid in the fixed global system since that

 (unit matrix) holds for both regular and irregular elements. Substitution of matrix  of
Eq. (22a), Eq. (24), and Eq. (25a) into Eq. (9), the explicit form of assumed covariant strain field 
for the associated parallelepiped can then be expressed in terms of  as follows

(26)

In other to obtain the extrapolated nodal values of the assumed strain field for the original
hexahedral element, nodal values of the assumed strain field with respect to the associated
parallelepiped need to be evaluated. It can be easily accomplished by substituting the isoparametric
coordinates of each nodal point  into Eq. (26a). The result is

(27)

5. Assumed strain field for the eight-node hexahedral element

The assumed strain field  of Eq. (27) is evaluated at the nodal points of the associated
parallelepiped and expressed in terms of its nodal displacements. Therefore, in order to obtain the
assumed strain field for the original hexahedral element, strain and displacement extrapolations
identical to that proposed by Chen and Stolarski 1998 are implemented. It leads to the assumed
strain-displacement operator for the original hexahedral element. For completeness, the procedure
required to achieve this goal is outlined hereinafter.

5.1 Strain extrapolation

The extrapolation of the strain field at the nodal level is implemented by using the trilinear shape
functions. The result is given by the following expressions
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5.2 Displacement extrapolation

As shown in Eq. (28a),  is still expressed in terms of the nodal displacement of the associated
parallelepiped. To relate the vector of element nodal displacements of the associated parallelepiped
to that of the original hexahedral element, the following expression need to be established

, (29)

where Ψ denotes the displacement extrapolation matrix (to be defined in section 5.2.2), and d
represents the vector of element nodal displacements of the original hexahedral element.

The procedure of establishing the displacement extrapolation matrix starts with the identification
of deformation modes for the original hexahedral element and its associated parallelepiped. With the
deformation modes participating in the deformation process identified, the vector of element nodal
displacements of the original hexahedral element and that of the associated parallelepiped can be
expressed in terms of those modes of deformation. Eventually, by postulating that those deformation
modes are common for both original hexahedral element and the associated parallelepiped, Eq. (29)
can be obtained. Since that extrapolation of displacement field is much more intricate, for more
detailed discussion readers can refer to Chen and Stolarski 1998. In this work, general procedure
and presentation will be provided for completeness.

5.2.1 Identification of deformation modes
For a general eight-node hexahedral element, there are totally twenty-four modes of deformation

corresponding to twenty-four degrees of freedom. They consist of twelve constant strain modes (six
rigid body motion modes and six constant strain modes), three linear shear (warping) modes, six
constant bending modes, and three linear bending modes. Deformed configurations for a cubic
shape of hexahedral element of the linear shear modes, constant bending modes, and linear bending
modes are depicted in Chen and Stolarski 1998. By virtue of the mode decomposition technique in
conjunction with the identification of deformation modes mentioned above, the vector of the
element nodal displacements can be decomposed and expressed in terms of those modes of
deformation for the associated parallelepiped and the original hexahedral element, respectively, as
follows

(30)

(31)

where superscripts “C”, “ LS”, “ CB”, and “LB” indicate that quantities are related to constant strain
modes  (or PC), linear shear modes  (or PLS), constant bending modes  (or PCB), and
linear bending modes  (or PLB), respectively. The twenty-four deformation modes participating
in the deformation process will be briefly described and be specified quantitatively for both the
associated parallelepiped and the original hexahedral element in the subsequent formulation.

5.2.1.1 Constant strain modes
The rigid body and constant strain modes of the associated parallelepiped are represented by the

following set of parameters
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, (32)

where  is translational displacement of node  in global ei-direction,  is the rigid body rotation
of the element about global ei-direction at node , and  represent a constant part of the strain
field.

The above definition of constant strain modes leads to the following equations representing the
matrix  of Eq. (30). Matrix  is a 24 × 12 matrix containing constants dependent on the nodal
coordinates and is partitioned into eight 3 × 12 matrices corresponding to eight nodal points of the
associated parallelepiped as follows

(33a)

, (33b)

(33c,d)

where I3×3 is a 3 × 3 unit matrix, and the symbol eakn stands for the component of the permutation
tensor. Based on the same postulation, vector PC and matrix C of Eq. (31) can be established for the
original hexahedral element. They are constructed in exactly the same way as for the associated
parallelepiped.

5.2.1.2 Linear shear modes
The linear shear modes for the associated parallelepiped are represented by the following

parameters

(34)

In the above equation, the subscripts indicate that the deformation mode they are related to will
cause no shear deformation on the pair of faces which will be intersected by the vector G with the
same subscript. For instance, the linear shear (warping) mode  is designed in such a way that
faces  and  (see Fig. 1), which will be intersected by vector , deform with no change
in length along the edges and diagonals of those two faces. Thus, the nodal displacement vectors
have to be perpendicular to those faces. However, the remaining four faces will undergo shear
deformation, their diagonals will change in length while the length of the edges will remain
unchanged. The modes  and  are defined similarly.

According to the deformed configuration described above, the relationship between vectors  and
 can then be constructed. Matrix  in Eq. (30) is composed of eight 3 × 3 matrices. Those

3 × 3 matrices for node  of the associated parallelepiped are given by the following expressions

(35a,b)

where  stands for the Kronecker delta. To preserve those linear shear properties for the original
hexahedral element, the part of matrix HLS of Eq. (31) related to node I of the original hexahedral
element is extrapolated from the matrix  of Eq. (35a) by using the trilinear shape functions. The
result is
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,…,Ĉ7̂

T
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(36)

where  is identified in Eq. (28b). As a result of that extrapolation, the length along all edges of
the original hexahedral element is no longer necessarily remaining unchanged.

5.2.1.3 Constant bending modes
For the deformation modes related to the constant bending strain field of the associated

parallelepiped, the following set of parameters is used

(37)

where subscripts  and  denote, respectively, the axes of rotation with the positive direction
defined by vectors , and . It is noted that the parameters listed above and named using
the same letter ( , or ) are considered to be a pair which will participate in the deformation
process simultaneously. The constant bending mode , for instance, represents the rigid body
rotation of the pyramid  about the vector  while keeping pyramid  fixed. It
describes the mode of deformation in which stretching of the parametric lines (in  direction)
varies linearly in the direction of . This is reminiscent of the strain distribution in beam under
pure bending, even though no curvature of the parametric lines is present. And if Poisson’s ratio is
not equal to zero, bending mode  will also generate stretching of the parametric lines in 
direction varies linearly in the direction of . This is a deformed situation similar to that generated
by bending mode  (in negative direction). It provides justification of introducing Poisson’s ratio
in the matrix , 7th and 3th columns, of Eq. (22b) for constant bending modes  and ,
respectively. Similar explanation can be given for the other two pairs of constant bending modes.
Presence of the constant bending modes is crucial for an element to be applicable in most structural
situations. Based on the deformed pattern specified above, matrix  in Eq. (30) can be obtained.
It is composed of eight 3 × 6 matrices, and its eight parts corresponding to nodes  are given as
follows

(38)

where variables O, P, Q, R, S, and T, which are, respectively, used corresponding to constant bending
modes  are given in Table 1. The Kronecker delta in Eq. (38) provides that
if  is not equal to those variables given in Table 1, the part it belongs to in will be zero. For
instance, at the first column on the right hand side of Eq. (38), variable O in Table 1 in turn is 3, 4,
7, and 8. It leads to that  corresponding to nodes  will be zero. Matrix HCB of Eq. (31)
is constructed in exactly the same way as for matrix , and it is specified by the following
values at each node I

(39a)

where Ci is the point located on line  (shown in Fig. 2) such that the following conditions are
satisfied

H I
LS NI

ĴĤ Ĵ
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Ĥ Î
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(39b)

(39c,d)

(39e)

(see Fig. 2), (39f)

variables I, J, K, L, O, P, Q, and R, which are used to indicate nodal points of the original
hexahedral element, being given in Table 2 for each constant bending mode.

5.2.1.4 Linear bending modes
The remaining three higher order deformation modes of the associated parallelepiped are used to

describe the linear bending configurations and are represented by the following three parameters

(40)
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Table 1 Variables O, P, Q, R, S, and T for constant bending modes

Constant Bending Modes and Variables

3 2 5 3 2 5
4 3 6 4 3 6
7 6 7 7 6 7
8 7 8 8 7 8

α̂ξ O, α̂η P, β̂η Q, β̂ζ R, γ̂ ζ S, γ̂ξ T,

Fig. 2 Reference point Ci
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The linear bending mode described by  with a specified subscript ( , or ) will produce
deformation causing no shear deformation on those two faces which will be intersected by the
vector G with the same subscript; however, the remaining four faces will undergo in-plane bending.
With the deformed configuration described above, matrix  in Eq. (30) can be constructed. It is
composed of eight 3 × 3 matrices which, for each node  of the associated parallelepiped, are in
turn given as follows

(41)

In other to establish the relationship between vectors dLB and PLB of Eq. (31), unit vectors tIM ,
with M = 1, 2, 3, are constructed at every node I of the original hexahedral element and designated
as shown on Fig. 3. The part of matrix HLB of Eq. (31) related to node I of the original hexahedral
element is then given by the following expression
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Table 2 Variables I, J, K, L, O, P, Q, and R for constant bending modes 

Node Constant Bending Mode

Number

I 1 4 3 2 1 4
J 4 3 7 3 2 8
K 8 7 8 4 3 5
L 5 8 4 1 4 1
O 2 1 2 6 5 3
P 3 2 6 7 6 7
Q 7 6 5 8 7 6
R 6 5 1 5 8 2

α̂ξ α̂η β̂η β̂ζ γ̂ζ γ̂ξ

Fig. 3 Designation of unit vectors tIM
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(42a,b,c)

The coefficient  is used to obtain a condition such that the projection of vectors  on the
direction of vector t1# is equal to the length of vector t1#. In this sense, the magnitude of the
parameters describing three linear bending modes of the associated parallelepiped are the same as
that of the original hexahedral element.

5.2.2 Displacement extrapolation matrix
With the use of Eqs. (30, 31) and assuming that the deformation modes of the original hexahedral

element are identical as those for the associated parallelepiped, displacement extrapolation matrix of
Eq. (29) can be established. The result is given as follows

(43)

Note that the matrix needs to be inverted on element level is of dimension 24 × 24. From saving
computational efforts point of view, this is perhaps the disadvantage of the proposed approach.
However, in the analysis of a system modeled by a large number of elements, the time spent on the
formulation of each element level is typically a small portion of the total computational time.
Therefore, the increased effort in the formulation of the element stiffness matrix is not necessarily a
drawback of this approach, particularly that a payoff in the form of consistently increased accuracy
is achieved. Many attempts have also been investigated to see if other forms of the displacement
extrapolation technique could be used to further improve its behaviour and to avoid the inversion of
24 by 24 matrix. For example, if the concept employed in Eq. (28a) is adopted to construct the
displacement extrapolation matrix, only one 8 by 8 matrix has to be inverted on each element level.
Comparisons based on the solutions obtained from different approaches have demonstrated that the
results obtained by means of the displacement extrapolation techniques proposed in Chen and
Stolarski 1998 is very accurate.

5.3 Element stiffness matrix

Substitution of Eq. (29) into Eq. (28a) leads to the assumed strain field for the original hexahedral
element expressed in terms of its own nodal displacements

(44)

where  is the assumed strain operator at node I of the original hexahedral element. Finally, the
assumed strain field of the original hexahedral element is given by

(45a,b)

In the above equations,  is the assumed strain operator expressed in terms of the 
frame whereas B* is that expressed with respect to the global fixed frame. With the strain-
displacement operator  or B* of the original hexahedral element determined and by means of
tensor algebra, the element stiffness matrix can be expressed as
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(46)

where Ωe is the element domain and D is the matrix of material elastic constants.
The procedure of formulating the strain-displacement operator  for the associated parallelogram

in the natural coordinate system is straightforward. And as shown in Eq. (46), =D is used
for both regular and skewed elements. However, it is noted that =D is valid for any regular
element, and is an approximation for skewed elements. It implies that basis  for a
skewed element is assumed to be orthogonal. Although this assumption is somewhat less nature,
numerical simulation has demonstrated that performance of the proposed element is excellent in
both bending and membrane problems even when severely skewed elements are used.

Note that the assumed strain-displacement operator  in Eq. (46) is expressed in the 
frame, and is a matrix of polynomials with respect to the isoparametric coordinates. In addition, the
Jacobian of isoparametric mapping is also a polynomial; as a result, the expression defining the
element stiffness matrix can be integrated analytically. Although it is true, numerical integration is
still used to evaluate the element stiffness matrix to avoid lengthy derivative of the explicit
expression of the element stiffness matrix.

6. Numerical simulations and discussions

Performance of the present mixed eight-node hexahedral elements is evaluated based on the
analysis of benchmark problems frequently used in the literature. The elements used in this
comparison are labeled as follows:

H8: the standard eight-node isoparametric hexahedral element.
HM9 : the non-conforming eight-node hexahedral element (Taylor et al. 1976).
PT18β: the assumed stress hexahedral element (Pian and Tong 1986).
HEX8RX : the eight-node hexahedral element with rotational DOFs (Yunus et al. 1991).
HBR2: the eight-node hexahedral element with rotational DOFs (Sze et al. 1996).
SS18β: the assumed stress hexahedral element (Sze and Ghali 1993).
MIXED : the mixed bi-linear shell element (Simo et al. 1989).
B8-24/15/9P: the mixed eight-node hexahedral element (Weissman 1996).
HMOD1  and HMOD2 : the assumed strain eight-node hexahedral elements (Chen and Stolarski
1998).
M18β: the assumed stress hexahedral element (Yeo and Lee 1997).
ANSγε and ANSγε-HS: the solid-shell elements (Sze and Yao 2000).
HMIX1 : the proposed mixed eight-node hexahedral element.

6.1 Cantilever beam under pure bending load

The performance of the present three-dimensional models under pure bending conditions and the
effect of mesh distortion on the accuracy is studied by using the two-element cantilever beam as

Ke
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shown in Fig. 4. This is perhaps the most critical problem used in testing element’s bending
properties under the effect of mesh distortion. The cantilever beam of dimension 10 × 2 × 1 is
subjected to an end moment. The interelement boundary is then gradually rotated with respect to the
direction of bending (a distance e on the top and bottom surfaces) to skew the mesh. For the mesh
layouts stated above, Poisson’s ratio ν = 0.25 and ν = 0.4999 are considered for plane stress state. In
addition, analysis of this problem under the condition of plane strain is also performed by
suppressing all the nodal displacements in the direction of applied bending moment. The
displacements at points A and B are normalized with respect to the theoretical solution based on the
beam theory. These normalized displacements are listed in Table 3 for the proposed HMIX1
element. It is interesting to note that the predictions (including all displacement components and
stress components) of HMIX1  element are identical to the theoretical solutions even when e= 4. It
provides a good indication that the mixed formulation proposed in this work can lead to an
excellent bending behavior for the low-order eight-node hexahedral element. The B8-15P and B8-
24P elements were tested for this problem under the state of plane strain with Poisson’s ratio ν = 0
and ν = 0.4999. The lower edge vertical displacements were reported, and numerical results show
that, compare with the theoretical solution, more that 30% of deviation is observed for both ν = 0
and ν = 0.4999 when parameter .

In order to verify if the proposed HMIX1  element is invariant, the cantilever beam is analyzed by
rotating the beam an arbitrary angle in the direction of the applied end moment. All results
produced for all cases are identical to the theoretical solution demonstrating that the proposed
element is invariant. Nodal ordering are also rearranged to change the direction of the natural
coordinate of the element, and the test confirms that the proposed mixed element is invariant to
node numbering.

e 1≥

Fig. 4 Cantilever beam under pure bending load

Table 3 Normalized displacements for the cantilever beam under pure bending load

Parameter ν = 0.25 ( plane stress and plane strain ) ν = 0.4999 ( plane stress and plane strain )

e uA vA wA uB vB wB uA vA wA uB vB wB

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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6.2 MacNeal’s elongated beam

This elongated cantilever beam of dimension 6 × 0.2 × 0.1 is presented by MacNeal and Harder
1985. The beam is modelled using three 1 × 6 meshes consisting of rectangular prism, trapezoidal
prism, and parallelepiped elements, as shown in Fig. 5. This beam is subjected to either an in-plane
or an out-of-plane end shear load. This problem is used to test the locking problem, which is due to
the use of high aspect ratio and irregular meshes. The normalized results are listed in Table 4. For
this problem, HMOD1 , NMOD2, and the proposed HMIX1  elements exhibit excellent performance
for all loading cases and mesh layouts. They are slightly outperform HEX8RX  and HBR2
elements. For a trapezoidal shape of the elements, severe locking phenomenon plagues H8, HM9 ,
PT18β, and SS18β elements. Furthermore, unsatisfactory performance is noted for a parallelepiped
shape of the elements. For the case when the beam is modeled by parallelepiped elements and is

Fig. 5 MacNeal’s elongated beam

Table 4 Normalized displacements at the free end of MacNeal’s elongated beam

Element In-Plane Load Out-of-Plane Load

Model Rectangular Trapezoidal Parallelepiped Rectangular Trapezoidal Parallelepiped

H8 0.093 0.026 0.032 0.025 0.010 0.014
HM9 0.978 0.047 0.624 0.973 0.030 0.528
PT18ββ 0.981 0.047 0.625 0.981 0.031 0.587
HEX8RX 0.988 0.863 0.921 0.983 0.943 0.969
SS18ββ 0.981 0.047 0.625 0.981 0.031 0.587
HBR2 0.978 0.915 0.938 0.980 0.927 0.960
HMOD1 0.981 0.981 0.981 0.981 0.972 0.739
HMOD2 0.981 0.981 0.980 0.981 0.979 0.731
M18ββ 0.992 0.338 0.943 n.a. n.a. n.a.
ANSγγεε 0.904 0.912 n.a. n.a. n.a. n.a.
ANSγγεε-HS 0.993 1.001 n.a. n.a. n.a. n.a.
HMIX1 0.981 0.982 0.984 0.981 0.980 0.983
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loaded by an out-of-plane end shear force, the proposed HMIX1  element can still provide excellent
accuracy. Prediction of the M18β element reveals that trapezoidal locking phenomenon is
noticeable. Both ANSγε and ANSγε-HS elements are able to overcome this problem.

6.3 Curved cantilever beam

This clamped curved cantilever beam loaded with either an unit in-plane or an unit out-of-plane
load at the free end, as shown in Fig. 6, is also presented by MacNeal and Harder 1985. The beam
is modelled using 1 × 6 equispaced mesh. The out-of-plane load is used to test the element’s
performance under a combination of bending and torsion. The geometric parameters are inner radius
RI = 4.12, outer radius RO= 4.32, and thickness t = 0.1. The reference tip displacements in the
direction of loading for the plane stress curved cantilever beam are 0.08734 and 0.5022 for the unit

Fig. 6 Curved cantilever beam

Table 5 Normalized displacements in the direction of loading for curved and twisted cantilever beams

Element Curved Cantilever Beam Twisted Cantilever Beam

Model in-plane load out-of-plane load in-plane load out-of-plane load

H8 0.073 0.231 0.208 0.108
HM9 0.876 0.819 0.995 0.989
PT18ββ 0.877 0.846 1.001 0.992
HEX8RX 0.997 0.890 1.001 0.999
SS18ββ 0.877 0.846 1.001 0.992
HBR2 0.992 0.863 0.997 0.997
HMOD1 1.013 0.943 0.999 1.001
HMOD2 1.012 0.943 0.999 1.001
ANSγγεε n.a. n.a. 0.945 0.887
ANSγγεε-HS n.a. n.a. 1.001 0.990
HMIX1 1.013 0.942 0.999 1.001
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in-plane load and the unit out-of-plane load, respectively. The results, normalized with respect to the
analytical solutions, are summarized in Table 5. It is shown that prediction of the proposed HMIX1
element is almost identical to HMOD1  and HMOD2  elements. Their predictions are superior to
other elements cited here for comparison. For the case of out-of-plane load when torsion is
involved, HMOD1 , HMOD2 , and the proposed HMIX1  elements can still yield very satisfactory
accuracy.

6.4 Twisted cantilever beam

The beam twisted by the angle of 90o from the fixed end to the free end is also suggested by
MacNeal and Harder 1985. It is used to test the element performance due to the use of warped
configuration. The twisted beam is modelled by using 2 × 12 mesh and loaded with either an unit
in-plane or an unit out-of-plane load as shown in Fig. 7. The geometric parameters are length
L = 12, depth D = 1.1, and thickness t = 0.32. The analytical tip displacements in the direction of
loading are 0.005424 and 0.001754 for the unit in-plane and the unit out-of-plane loads,
respectively. The normalized results are reported in Table 5. The results show that predictions of all
elements except the H8 element exhibit excellent accuracy.

6.5 Pinched circular ring

A circular ring with rectangular cross section t × t and radius R= 1, as shown in Fig. 8, is

Fig. 7 Twisted cantilever beam

Fig. 8 Pinched circular ring
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compressed by two unit loads acting along a diameter. This problem is analyzed under the condition
of plane stress situation. Owing to symmetry, only one-quarter of the circular ring is modelled by
using 1 × 4, 1 × 8, and 1 × 16 equispaced meshes. For this problem, t = 1/60, 1/100, and 1/500 are
used to test the locking problem due to the use of high aspect ratio and coarse meshes. The
displacements in the direction of loading are normalized with respect to the theoretical solutions,
and listed in Table 6. The HMOD1 , HMOD2 , and the proposed HMIX1  elements exhibit excellent
performance for all three thicknesses. It also shows that they are insensitive to the change of R/t
ratio. Their predictions are slightly superior to the SS18β element. HM9  and PT18β elements show
severe locking problem for large R/t ratio and coarse meshes. The H8 element locks severely for all
cases.

6.6 Simply supported square plate

A simply supported square plate of length L = 10 and thickness t = 0.1 is loaded by an uniform
distributed loading of intensity 1. Owing to symmetry, only one-quarter of the plate is modelled by
using 2 × 2, 3 × 3, and 4 × 4 evenly divided meshes as shown in Fig. 9. The vertical displacements
at the centre of the plate are normalized with respect to the theoretical deflection, and listed in Table 7.

Table 6 Normalized displacements in the direction of loading of the pinched circular ring

R/t = 60 R/t = 100 R/t = 500

Element Mesh layout Mesh layout Mesh layout

Model 1 × 4 1 × 8 1 × 16 1 × 4 1 × 8 1 × 16 1 × 4 1 × 8 1 × 16

H8 0.004 0.018 0.068 0.002 0.073 0.073 0.000 0.000 0.000
HM9 0.177 0.908 0.991 0.007 0.822 0.822 0.003 0.187 0.925
PT18ββ 0.178 0.909 0.992 0.026 0.989 0.989 0.003 0.187 0.925
SS18ββ 0.853 0.909 0.992 0.852 0.967 0.992 0.852 0.967 0.992
HMOD1 0.952 0.988 0.997 0.952 0.988 0.997 0.952 0.988 0.997
HMOD2 0.952 0.988 0.997 0.952 0.988 0.997 0.952 0.988 0.997
HMIX1 0.952 0.988 0.997 0.952 0.988 0.997 0.952 0.988 0.997

Fig. 9 Simply supported square plate
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Results obtained by PT18β, HMOD1 , HMOD2 , and the proposed HMIX1  elements are almost
identical, and they are slightly superior to the results due to the SS18β element. The HBR2 element
produced unsatisfactory prediction for the mesh of 2 × 2. Although, eventually, the prediction of the
HM9  element tends to converge to solution with the refinement of the mesh, unsatisfactory
performance still exists for the mesh of 4 × 4.

6.7 Clamped circular plate loaded by central point load

Displacement field due to concentrated force applied to a plate allowing for shear deformation is
singular. Thus, numerical calculations concerning such cases should be viewed with proper caution.
The results reported here serve only the purpose of comparison with other results obtained under
identical conditions.

A clamped circular plate with radius R= 5 and thickness t = 0.1 is loaded by an unit central point
load. Owing to symmetry, only one-quarter of the circular plate is analyzed by using three meshes
of 3, 12, and 48 elements as shown in Fig. 10. The central displacements in the direction of the unit
point load are normalized with respect to the theoretical solution 5.4312, and are listed in Table 7.
Due to the use of shear scaling factors, the SS18β element exhibits very good behavior for irregular

Table 7 Normalized displacements at the center of simply supported square plate and clamped circular plate

Simply Supported Square Plate Clamped Circular Plate

Element Mesh layout Number of element

Model 2 × 2 3 × 3 4 × 4 3 12 48

H8 0.009 0.020 0.035 0.006 0.020 0.072
HM9 0.101 0.466 0.737 0.116 0.579 0.926
PT18ββ 0.990 0.997 0.999 0.517 0.869 0.983
HEX8RX 0.981 n.a. 1.005 0.252 0.850 0.967
SS18ββ 1.038 1.017 1.011 0.807 0.899 0.983
HBR2 0.793 n.a. 0.999 0.210 0.832 0.962
HMOD1 0.990 0.997 0.999 0.667 0.907 0.974
HMOD2 0.990 0.997 0.999 0.670 0.917 0.972
HMIX1 0.990 0.997 0.999 0.596 0.838 0.909

Fig. 10 Clamped circular plate under central point load
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and coarse meshes. It is mainly related to the fact that undesirable shear strain caused by the use of
distorted meshes is scaled down by using the shear scaling factors. Numerical performance of
PT18β, HMOD1 , and HMOD2  elements are similar for this problem. Their predictions are
superior to that of the proposed HMIX1  element. Although, eventually, predictions of HEX8RX
and HBR2 elements converge to satisfactory solution with the refinement of the mesh, their
performance for coarse mesh using 3 elements is unsatisfactory. However, it is noted that for small
number of element (3,12) the boundary condition will be fixed along piecewise straight edges and
that is different from the clamped continue circle edge. As a result, a stiffened response should be
expected.

6.8 Hemispherical shell under alternating point load

A hemispherical shell with a 18o hole at the top of the shell is subjected to two pairs of
orthogonal and opposite forces (one pair in inward diameter direction, the other pair in outward
diameter direction). Owing to symmetry, only one-quarter of the shell is modelled by using 2 × 2,
4 × 4, 8 × 8, and 12 × 12 meshes as illustrated in Fig. 11. The geometric parameters are radius
R= 10 and thickness t = 0.04. The displacements in the direction of loading at point A are
normalized with respect to 0.094 (MacNeal and Harder 1985). These normalized results are listed in
Table 8. Although, the proposed HMIX1  element’s performance is inferior to that due to SS18β,
MIXED , HMOD1 , HMOD2 , ANSγε , and ANSγε-HS elements for coarse meshes of 2 × 2 and
4 × 4, it is capable of yielding satisfactory solutions with the use of 8 × 8 mesh. Although the
predictions of the PT18β element are inferior to that of SS18β, HMOD1 , HMOD2 , ANSγε ,
ANSγε-HS, and the proposed HMIX1  elements, it eventually converges to the reference solution for
12 × 12 mesh. It seem fair to note here that the meshes used here consist of flat elements and that
for small number of elements (2 × 2, 4 × 4) the model is geometrically significantly different from
the sphere. As a result, a significantly different behavior should be expected even if the problem of
piecewise flat surface is solved exactly.

Fig. 11 Hemispherical shell under alternating point load
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6.9 Scordelis-Lo roof

The Scordelis-Lo problem is loaded by gravity loading of intensity 90 unit per midsurface area.
This is a membrane dominated problem to test the ability of the element to model complex states of
membrane response. Owing to symmetry, only one-quarter of the shell is modelled by using 2 × 2,
4 × 4, and 8 × 8 meshes as indicated in Fig. 12. The geometric parameters are Length of the shell
L = 50, thickness t = 0.25, radius R= 25, and angle φ = 40o. For the displacement in the direction of
gravity loading at point A on the midsurface, two different reference solutions 0.3024 and 0.3086
(MacNeal and Harder 1985) are commonly used in the comparison. In this work, the computed
displacements at the point A are normalized with respect to the value of 0.3086 to make it
comparable with the results of others. These normalized results are listed in Table 8. For this
problem, PT18β, SS18β, MIXED , HMOD1 , HMOD2 , ANSγε-HS, and the proposed HMIX1
elements yield similar performance. For the mesh 2 × 2, all the above mentioned elements exhibit
excessively soft behavior. This is probably because of inadequate representative of geometry by so

Fig. 12 Scordelis-Lo roof

Table 8 Normalized displacements at point A in the direction of loading for hemispherical shell and Scordelis-
Lo roof

Hemispherical Shell Scordelis-Lo Roof

Element Mesh layout Mesh layout

Model 2 × 2 4 × 4 8 × 8 12 × 12 2 × 2 4 × 4 8 × 8

H8 0.000 0.001 0.003 0.006 0.025 0.062 0.121
HM9 0.000 0.010 0.163 0.493 0.139 0.542 0.947
PT18ββ 0.000 0.041 0.742 0.957 1.331 1.028 1.002
SS18ββ 0.721 1.050 1.007 0.998 1.459 1.061 1.007
MIXED 0.919 1.004 0.998 n.a. 1.450 1.083 1.015
HMOD1 1.106 0.986 1.008 0.998 1.421 1.037 0.987
HMOD2 1.232 1.073 1.008 0.998 1.421 1.037 0.987
ANSγγεε 1.100 1.042 0.997 n.a. 1.214 0.938 0.962
ANSγγεε-HS 1.184 1.062 1.006 n.a. 1.428 1.044 0.995
HMIX1 0.039 0.543 0.981 0.991 1.351 1.042 0.995
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few flat elements. The HM9  element yields improved performance with the refinement of the mesh
while it locks for the coarse meshes.

6.10 Pinched cylinder with end diaphragms

A hollow cylinder with rigid diaphragms at both ends is loaded by a pair of pinched vertical
forces at the middle section of the cylinder. Owing to symmetry, only one octant of the cylinder is
modeled by using 2 × 2, 4 × 4, 8 × 8, and 16 × 16 meshes as illustrated in Fig. 13. The geometric
parameters are length L = 600, radius R= 300, and thickness t = 3. The displacements at the loaded
point in the direction of loading are normalized with respect to the analytical solution of
1.82488 × 10−5 and listed in Table 9. The results show that predictions of MIXED , HMOD1 ,
ANSγε-HS, and the proposed HMIX1  elements are almost the same for this problem. They are
superior to the performance of B8-24/15/9p elements. It is noted that results due to B8-24/15/9P
elements are quoted from the Fig. 15 given in Weissman 1996.

6.11 Thick-walled cylinder

A thick-walled cylinder has been chosen to provide an additional test whether the element locks

Fig. 13 Pinched cylinder with end diaphragms

Table 9 Normalized displacements at the loaded point in the direction of loading for the 
pinched cylinder with end diaphragms

Element Mesh layout

Model 2 × 2 4 × 4 8 × 8 16 × 16

MIXED ---- 0.399 0.763 0.935
B8-24/15/9P ---- 0.100 0.400 0.740
HMOD1 0.044 0.400 0.765 0.937
ANSγγεε n.a. 0.357 0.675 n.a.
ANSγγεε-HS n.a. 0.401 0.766 n.a.
HMIX1 0.043 0.398 0.764 0.937
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for nearly incompressible material. This thick walled cylinder is subjected to unit internal pressure
and is considered to be at the plane strain state. The geometric parameters are inner radius RI = 3
and outer radius RO = 9. Owing to axial symmetry, only a wedge of the thick-wall cylinder with unit
thickness is analyzed for the mesh layout shown in Fig. 14. In addition to the symmetric boundary
conditions along the radial directions of the wedge, displacements along the axial direction are fixed
on the top and bottom surfaces of the wedge to model the plane strain state. The normalized radial
displacements at the inner wall are computed and given in Table 10. All elements except the H8 and
ANSγε elements are insensitive to the value of Poisson’s ratio even very close to incompressibility
for this standard plane strain problem. Performance of HMOD1 , HMOD2 , and the proposed
HMIX1  elements are almost identical. Prediction of the ANSγε-HS element is superior to the
HMIX1  element.

7. Conclusions

A mixed formulation capable of providing highly accurate bending properties for the low-order
eight-node hexahedral element is introduced. The so-called shear locking and membrane locking
problems have been successfully overcome. In particular, in the case of three-dimensional straight
cantilever beam under pure bending load, the theoretical solution for displacements and stresses is
obtained even when severely distorted meshes are used for nearly incompressible materials.
Numerical evaluation has supported that the mixed eight-node hexahedral element is suitable for

Fig. 14 Thick-walled cylinder under internal pressure

Table 10 Normalized displacements in the radial direction at the inner surface of the thick cylinder

Element Poisson’s Ratio

Model ν = 0.25 ν = 0.49 ν = 0.499 ν = 0.4999

H8 0.986 0.845 0.359 0.053
HM9 0.991 0.986 0.986 0.986
PT18ββ 0.991 0.986 0.986 0.986
SS18ββ 0.991 0.986 0.986 0.986
HMOD1 0.969 0.966 0.966 0.966
HMOD2 0.969 0.966 0.966 0.966
ANSγγεε n.a. 0.845 0.053 n.a. 
ANSγγεε-HS n.a. 0.986 0.990 n.a.
HMIX1 0.969 0.966 0.966 0.966
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structural analysis problems such as spacial beams, plates, and shells as well as general three-
dimensional elasticity problems.

From the implementation point of view, the formulation of the element is quite simple. With three
independent fields selected and use of Hu-Washizu variational principle, the assumed strain field at
the nodal points of the associated parallelepiped can be obtained analytically and explicitly. The
strain and displacement extrapolations are then performed to evaluate the assumed strain field at the
nodal points of the original hexahedral. Finally, by simply using standard trilinear functions, the
assumed strain field over the entire domain of the original hexahedral element is established. The
expression defining the element stiffness matrix can be integrated analytically without any use of
numerical integration. However, inversion of one 24 by 24 matrix is needed to construct the
displacement extrapolation matrix. As mentioned in Chen and Stolarski 1998, element stiffness
matrices of HMOD1  and HMOD2  can also be obtained analytically. Although numerical results
produced by HMOD1  and HMOD2  elements are almost identical to that given by the present
HMIX1  element, eight 6 by 6 matrices and two 24 by 24 matrices have to be inverted during the
course of formulating HMOD1  and HMOD2  elements. By using the proposed formulation,
computational effort on element level is reduced substantially without scarifying the element’s
performance.

In this paper, comparison has been made with some other well-known formulations including the
same hexahedral elements with drilling degrees of freedom, other mixed formulations, solid-shell
elements, as well as four-node shell elements. In all cases, it reveals a very competitive behavior of
the proposed element in terms of element’s accuracy. The proposed mixed eight-node hexahedral
element passes the patch test only when the element with a shape of regular or parallelepiped.
Practically, in the finite element analysis, irregular or distorted elements are inevitable generated in
mesh layout, and the mesh refinement process usually leads to that the initially irregular or skewed
shapes of the hexahedral elements will gradually approach parallelepiped shapes. From this point of
view, a hexahedral element that is able to pass the patch test for the parallelepiped shape is
important and useful for practical applications. Tests from solving benchmark problems have
demonstrated that the proposed element is capable of producing convergent and reliable solutions,
and its convergence characteristics are very satisfactory.
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