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Abstract.  Numerical solution to linear bending analysis of circular plates is obtained by the method of
harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space
derivatives of a function appearing in a differential equation are approximated by means of a polynomial
expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The
method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the
weighting coefficients required by differential quadrature approximation without restricting the choice of
mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of
linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and
vertical deflections are found for two different types of load. In the present study, the axisymmetric
bending behavior is considered. Both the clamped and the simply supported edges are considered as
boundary conditions. The obtained results are compared with existing solutions available from analytical
and other numerical results such as finite elements and finite differences methods. A comparison between
the HDQ results and the finite difference solutions for one example plate problem is also made. The
method presented gives accurate results and is computationally efficient.

Key words: harmonic differential quadrature; circular plates; deflection; bending moment; numerical
methods.

1. Introduction

Real physical systems or engineering problems are often described by partial differential
equations, either linear or nonlinear and in most cases, their closed form solutions are extremely
difficult to establish. As a result, approximate numerical methods have been widely used to solve
partial differential equations that arise in almost all engineering disciplines. With the modern
computer technology, various numerical methods were well developed and widely used to solve
various kinds of engineering and science problems, which are described by the differential
equations. The most commonly used numerical methods for such applications are the finite element,
finite difference and boundary element methods, and most engineering problems can be solved by
these methods to satisfactory accuracy if a proper and sufficient number of grid points are used
(Civalek 1998). Consequently, both CPU time and storage requirements are often considerable for
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the standard methods. In seeking a more efficient numerical method which requires fewer grid
points yet achieves acceptable accuracy, the method of DQ, which is based on the assumptions that
the partial derivatives of a function in one direction can be expressed as a linear combination of the
function values at all mesh points along that direction, was introduced by Beltrakar{1971). The

method of DQ circumvents the above difficulties by computing a moderately accurate solution from
only a few points. Since then, applications of DQ method to various engineering problems have
been investigated and their successes have demonstrated the potential of the method as an attractive
numerical analysis technique (Bettal 1993, Liewet al. 1997c, Liew and Teo 1999b, Liestal.

2002, Bert and Malik 1996b, Farsaal. 1993, Quan and Chang 1989).

Plates are initially flat structural elements, having thickness much smaller than the other
dimensions. Many practical engineering applications fall into categories plates in bending. Circular
plates have many applications in civil, aerospace, petroleum, nuclear and, mechanical engineering.
They are used in these fields as the aircraft fuselage, rockets and turbo jets, reactor walls, ship and
submarine parts, and holding tanks etc. There are many methods available in the literature to study
the static and dynamic behavior of thin plates with different boundary and loading conditions.
Recently, DQ and differential cubature (DC) methods are proposed for static and vibration analysis
of circular and other type plates (Han and Liew 1997a, Liew and Liu 1997a, Liew and Teo 1999b).
For details, one may refer to Timoshenko and Woinowsky-Krieger (1959) etc. Exact solutions for
plate problems are rather difficult to obtain, except for a few simple cases. In many cases, one may
have to resort to various approximate namely numerical methods. Each method has its own
advantages and disadvantages. Of the various methods proposed in recent times, one can cite the
Ritz, finite differences, finite and boundary element methods as the most efficient and universal
methods for solving variant type plate problems. In this study, the static analysis of circular plates
subjected to two different types of loads and support conditions are investigated by using harmonic
differential quadrature. The accuracy, efficiency and convenience of HDQ are demonstrated
throughout the numerical examples. Following, in section 2, the method of DQ approximation is
briefly summarized. Weighting coefficients and main principles of the HDQ method are given in
Section 3. The choice of sampling grid points is also given in this section. Numerical examples are
given in Section 4 to illustrate the efficiency of the HDQ.

2. Differential Quadrature Method (DQM)

As with other numerical analysis techniques, such as finite element or finite difference methods,
the DQ method also transforms the given differential equation into a set of analogous algebraic
equations in terms of the unknown function values at the preselected sampling points in the field
domain. In many practical applications the numerical solutions of the governing differential
equations are required at only a few points in the physical domain. Frequently, for reasonable
accuracy, conventional finite difference and finite element methods require the use of a large number
of grid points. Therefore, even though solutions at only a few specified points may be desired,
numerical solutions must be produced at all grid points. The problem areas in which the
applications of differential quadrature method may be found in the available literature include fluid
mechanics, static and dynamic structural mechanics (Bert and Malik 1996aetldevl997a, Striz
et al. 1994, Civalek 2001).

During recent years, the DQ method has been largely promoted by Bert and associates who were
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the first to introduce the method as a tool for structural analysis @Beat 1987). After this,

various problems in structural mechanics have been solved successfully by this methed 4Bert
1994, Duet al 1994). Liew and his co-workers also made most important study on DQ and
differential cubature (DC), (Lievet al. 1997a, Liu and Liew 1998, Liew and Han 1997b). In fact,
Liew and his associates had made most effective supplement to the theory and application on DQ
and DC methods. Recent works of Liew and associates have been mainly on the three dimensional
vibration, bending and stability analysis of plates (Liemal 1999a, Liew and Te&999b, Liew

et al. 2001). Han and Liew applied differential quadrature method to the solutions of thick circular
(Han and Liew 1997a) and annular Reissner/Mindlin plates (Han and Liew 1998). Han and Liew
proposed an eight-node differential quadrature formulation (Han and Liew 1997b). Recently, Liew
and his co-workers (Lievet al. 2002) also proposed a new kind DQ method. This new proposed
method has been called the moving least squares differential quadrature (MLSDQ). This new
approach (MLSDQ) exploits the merits of both the DQ and meshless method. Authors applied the
DQ method to the stability, vibration and bending analysis of elastic bars (Civalek 2001), vibration
and buckling of beams, columns and plates (Civalek 2002). &trid (1988) have investigated
nonlinear bending analysis of circular plates employing the simplified version of DQ.

It has been claimed that the DQ method has the capability of producing highly accurate solutions
with minimal computational effort. The method has seemingly a high potential as an alternative to
the above mentioned conventional numerical solution techniques such as the finite element and
finite difference methods (Jareg al 1989, Bert and Malik 1996c, Liew and Teo 1999b, Shu and
Chew 1998, Duet al 1995). Therefore research on extension and application of the method
becomes an important endeavor. In the differential quadrature method, a partial derivative of a
function with respect to a space variable at a discrete point is approximated as a weighted linear
sum of the function values at all discrete points in the region of that variable. For simplicity, we
consider a one-dimensional functi&#(x) in the F1, 1] domain, andN discrete points. Then the
first derivatives at point, atx = x; is given by

W) = 2F

N
= A|LIJ(X)| i = 11 2! ey N, (1)
OX X=X j:z1 : J

wherex; are the discrete points in the variable dom#i(x;) are the function values at these points
and A are the weighting coefficients for the first order derivative attached to these function values.
Bellmanet al. (1972) suggested two methods to determine the weighting coefficients. The first one
is to let Eqg. (1) be exact for the test functions

w(x)=x"  k=1,2..,N, )
which leads to a set of linear algebraic equations

N
k=1)x%= YAX™" fori=122..,N and k=1,2 .., N. 3)
17

=1

which representsl sets ofN linear algebraic equations. This equation system has a unique solution
because its matrix is of Vandermonde form. This equation may be solved for the weighting coefficients
analytically using the Hamming’s method (Hamming 1973) or numerical method using the certain
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special algorithms for Vandermonde equations, such as the method of Bjorck and Pereyra (1970).

In order to reduce the complexity of the derivative approximation formulae and thereby conserve
on computational effort, it is advantageous to use quadrature approximation formulae for also the
second, third and higher order derivatives. Thus, the weighting coefficients for each formula will be
different from those for the first-order derivative. As similar to the first order, the second order
derivative can be written as

= % B,W(x); i=12..,N, (4)

X=X =1

l'IJxx(Xi) = dz—q:
OX

where theB; are the weighting coefficients for the second order derivative. Eq. (4) can be written
also as

prx(xi) = dz_q;

N N
= A S AWP(x);, 1=1,2...,N, (5)
oX X=X JZl JkZl :

The function given by Eq. (2) is used again so that the second order derivative is
k-3 N k-1
(k=1)(k=2)x = = z Bijx (6)
=1

which can be solved in the same manner as indicated for Eqg. (3) above. Weighting coefficients of
the second, third and fourth order derivatigsC;, D;;, can be obtained by following formulations;

N N N
B = z AiAg G = z AiByj, Dy = z AiCyj- (7,8,9)
k=1 k=1 k=1

The second method proposed also by Bellmiaal. (1972) to obtain the weighting coefficients is
similar to the first one with the exception that a different set of trial or test functions are chosen for
satisfying Eq. (1) exactly;

Ln(X)
(x= %)L (%)

wherely (X) is theNth order Legendre polynomial arld,l)(x) the first order derivativiey6f). N

is the number of grid points as with the first one. However, it requirexdfiat 1, 2, ...,N) have

to be chosen to be roots of the shifted Legendre polynomial. This means that once the number of
grid points N is specified the roots of the shifted Legendre polynomial are given, thus the
distribution of the grid points are fixed regardless of the physical problems being considered. By
choosingx, to be the roots of the shifted Legendre polynomial and substituting Eqg. (10) into Eq. (1),
we obtain a direct simple algebraic expression for the weighting coeffigignts

_ L'n(X)
A= X))

W (x) = k=1,2 ...,N. (10)

for i#j; and i,j = 1,2 .., N, (11)
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1-2x,

for i=j; and i,j = 1,2 ...,N. (12)

In this second approach, the weighting coefficients that were defined at Egs. (11) and (12) are
easy to obtain without solving algebraic equations or having a singularity problem as with the first
one.

3. Harmonic Differential Quadrature (HDQ)

Despite the increasing application of the DQ method in structural analysis, a draw back regarding
its ill conditioning of the weighting coefficients with increasing number of grid points used as well
as the increasing order of derivatives was pointed out by Bellman (1971, 1972). A recent variation
of the original differential quadrature approximation called the harmonic differential quadrature
(HDQ) has been proposed by Stdt al. (1995) and Liewet al. (1999a). Unlike the DQ method
that uses the polynomial functions, such as Lagrange interpolates and Legendre polynomials as the
test functions, HDQ uses harmonic or trigonometric functions as the test functions. As the name of
the test function suggested, this method is called the HDQ method. The harmonic test fpxgtion
used in the HDQ method is defined as (Shu and Xue 1997);

sinw.. sin(x_ Xe-1) ﬂsin(X ~ %) i sin(—x-:—x-ﬁ)j—T

h(x) = 2 ' 2 2 ' 2
Sin(xk —Xo) 7'[_ ~ sin(xk —X_1) nsin(xk — X+ 1) 7'[_ - Sin(xk —Xn) 7T
2 2 2 2
fork =012 ...,N (13)

According to the HDQ, the weighting coefficients of the first-order derivatiyder i #j can be
obtained by using the following formula:

_ (17 2)P(x) —_—
A = Begsintex—x) i 1 TR E N 14)
where
P(x) = ﬁ singﬁ—;—)—(ir% for j=123..,N. (15)
j

=1,] #i
The weighting coefficients of the second-order derivatiBgdor i#j can be obtained using
following formula:

B = A 2AY -], i=12300N, (16)

i 02 O

The weighting coefficients of the first-order and second-order derivatjor i = j are given as
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N
AP = _ > AP, p=1 or 2; and fori=1,2,..N. (17)
j=T]#i

The weighting coefficients of the third and fourth order derivatives can be computed easily from
Aj and B; as with the Egs. (8) and (9). It should be mentioned that in the DQ solutions, the
sampling points in the various coordinate directions might be different in number as well as in their
type. A natural, and often convenient, choice for sampling points is that of equally spaced points.
This type of sampling point spacing (Type-l) is given as

X = I'\I—_ll; i=1,2..N, (18)

in the related directions. Some times, the differential quadrature solutions deliver more accurate
results with unequally spaced sampling points. A better choice for the positions of the grid points
between the first and the last points at the opposite edges is that corresponding to the zeros of
orthogonal polynomials such as; the zeros of Chebyshev polynomials. Furthermore, another choice
that is found to be even better than the Chebyshev and Legendre polynomials is the set of points
proposed by Shu and Richards (1992). These points are given as

X = %[1—co%gﬂ; i=12 .., N (19)

in the relateddirections. We called this kind of grid distribution as Type-ll in this study. In addition,

the use of zeros of shifted Legendre polynomials has been shown to produce very accurate results
(Chenet al 2000, Liew and Teo 1999b, St al 1994, Bert and Malik 1996¢). DQ and HDQ
methods use same algorithm except for computation of the weighting coefficients. The main
advantage of HDQ over the DQ is its ease of the computation of the weighting coefficients without
any restriction on the choice of grid points.

4. Numerical applications and results

To verify the analytical formulation presented in the previous section; circular plates with two
different types of boundary and load conditions are considered. The axisymmetric bending behavior
is considered. Following, the governing differential equation for deflection and bending of circular
plate is presented. The present formulation is based on classical small deflection theory. Then, the
HDQ and DQ methods have been applied to this differential equation.

4.1 Deflection and bending analysis of circular plates

Consider a thin circular plate of uniform thickness (Fig. 1). The governing differential equation
for small deflection is given as

d'u, 2rd’ug 1rdfug, 1rdun_ g(n) (20)
dr*  rgefd gt o D

whereD is the flexural rigidity,q is the normal pressure or uniformly distributed load on the plate,
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is the radial position and the normal deflection of the circular plate. By normalizing of Eq. (20)
for uniformly distributed load, we obtain

dU ZEQ__D 1El___D 1 dUg = 1. (21)
dR  ROgrD Reigre0" RPCORO -

whereR =r/a, U = u/é, andé = qa“/D anda is known as the outside radius of the plate. The
bending moments and stress resultants in the radial and tangential directions are given (Ugural
1999, Timoshenko and Woinowsky-Krieger 1959) as;

[gu vdun du d2UD
M. = D=+ g M#= —D%d v 20 (22a, 22b)
_ _pl2du  riduj _ _pl2[idu  du
o= _Dh3z[dr2+vﬂ er} % __Dh3z[rdr +Vdrz] (23, 23b)

wherev is the Poisson’s ratidy the thickness of the plate. In case of the simply supported outside,
the boundary conditions are

_ d’U , vdup_ _
U=0 and DDdRz RIRO™ 0 at R=1. (24,25)

In addition to above boundary conditions the regularity condition must be given for solid circular
plates. This condition is necessary to assure that the plate slope is zero at the origin to avoid a
singularity at this location. The regularity condition at the center of the plate is given by

du
drR

Applying the differential quadrature approximation to the normalized plate deflection equation,
boundary and regularity conditions given by Egs. (21), (24), (25), and (26) one obtains

=0 at R=0, (26)

N 2 N 1 N 1 N
1] 2
Z RJZl Rl]Z R Z
fori =2, 3, .., K-2)
N ) N
Uy = 0, j=zlEzNjuj+ ﬁj:zlANjuj =0, and lZlAl] =0. (28,29,30)

Notice that, we only keep the discretized equations fo2 to (N-2) in Eg. (27) because there is
one regularity condition & = 0 and there are two boundary conditionRat 1 point.
The boundary conditions for a clamped outside edge are

U=0 at R=1, (31)
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Fig. 1 Typical circular plate and grid points

and
dU/dR=1 at R=1, (32)

Applying the differential quadrature approximation to these boundary conditions at each discrete
point on the grid yields

N
Uy=0 and 3 AyU;=0. (33,34)

j=1

where the repeated indgxmeans summation from 1 . In the numerical applications, two
different types of loads and support conditions are considered. Results are obtained for each case
using various numbers of grid points. It is observed that the method has very good convergence.
Reasonably accurate results can be achieved by using 11 grid points. The numerical results for
various example circular plate problems are tabulated (Table 1, Table 2), and plotted (Figs. 2-5) and
the comparison of the present results with the exact or other numerical values available in the
literature, when possible, are made. Solving the set of combined algebraic Egs. (27), (28), (29), and
(30), the non-dimensional deflectiobsat various grid points can be found for circular plate in the
case of the simply supported boundary conditions. Central concentrated load is taken into
consideration in this example. For clamped edge Egs. (31) and (34) will be used as boundary
condition equations. Results are obtainedMor 11 grid points av = 0.3. Table 1 and Table 2 give

the results together with the exact analytical solutions and FEM solutions (Civalek 1998) for
comparisons. In Table 1 and Table 2, the percentage errors of HDQ solution for Type-Il grid points
from its exact value are given. Reasonably accurate results can be achieved by using 11 grid points
in HDQ for Type-ll grid sampling (cosine distributed grid) in the related directions. For the
deflections,N = 11 grid points provide acceptable results with a maximum discrepancy of 0.87% for
the clamped support condition and a maximum discrepancy of 1.01% for simple support condition. It
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is found that the HDQ method possesses both the advantages of DQ and the flexibility of the FEM.
Figs. 2-5 demonstrate the influence of non-dimensional radial coordiaaia the bending moment

in radial and tangential directiod( and My) for two different types of support conditions. In this
application, uniformly distributed load is taken into consideration. The method presented is to give
good results with a small number of discrete points. It can be observed from these figures that all the
HDQ results agree with the exact results to within 2.1%. The exact solution can be found in the
literature (Ugural 1999, Berktay 1992, Timoshenko and Woinowsky-Krieger 1959).

Table 1 Non-dimensionalized deflections for simply supported circular plate under camtcaintrated load

(N=11;v =0.3)
U U U U %
rla Exact - FEM HDQ _ HDQ |Errorf
(Ugural 1999) (Civalek 1998) Type-Il Grid Points Type-l Grid Points

0.0 0.1586 0.1792 0.1586 0.1557 0.00
1/10 0.1542 0.1706 0.1536 0.1495 0.39
2/10 0.1443 0.1663 0.1442 0.1484 0.07
3/10 0.1308 0.1443 0.1308 0.1366 0.00
4/10 0.1149 0.1374 0.1151 0.1100 0.17
5/10 0.0973 0.1196 0.0969 0.0967 0.41
6/10 0.0786 0.0967 0.0788 0.0781 0.25
7/10 0.0591 0.0681 0.0597 0.0594 1.01
8/10 0.0393 0.0405 0.0391 0.0388 0.50
9/10 0.0195 0.0228 0.0194 0.0190 0.51
1.0 0.0000 0.0000 0.0000 0.0000 0.00

"U = umrD/P, %% | Error | = | (Wact— Unpo for Type-II grid points) / el * 100

Table 2 Non-dimensionalized deflections for clamped circular plate under central concentratét4oat;

v =0.3)
U U U U %
rla Exact ~ FEM HDQ HDQ |Errorf
(Berktay 1992) (Civalek 1998)  Type-ll Grid Points Type-l Grid Points

0.0 0.0625 0.06011 0.0625 0.0629 0.00
1/10 0.0589 0.0596 0.0586 0.0581 0.52
2/10 0.0520 0.0574 0.0520 0.0527 0.00
3/10 0.0433 0.0456 0.0432 0.0428 0.23
4/10 0.0342 0.0357 0.0345 0.0345 0.87
5/10 0.0252 0.0283 0.0251 0.0250 0.40
6/10 0.0170 0.0184 0.0170 0.0169 0.00
7/10 0.0100 0.0115 0.0099 0.0106 1.00
8/10 0.0047 0.0054 0.0047 0.0051 0.00
9/10 0.0012 0.0016 0.0012 0.0009 0.00
1.0 0.0000 0.0000 0.0000 0.0000 0.00

"U = urrDIP, %% | Error | = | (lkaet— Unng for Type-Il grid points) / Wty | * 100
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Figs. 6, 7 demonstrate the influence of non-dimensional radial coordiaade the stresses;,

o, for two different type support conditions. In this application, uniformly distributed and central
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concentrated load are taken into consideration. The method presented is shown to give excellent
results with a small number of discrete points. It can be observed from these figures all the HDQ
results agree with the exact results. Results obtained from polar finite differences method are
indicated by FD. For the FD solution 15 x 15 grid size is used. As can be seen, the HDQ results
compare very well with the analytical solutions for only 11 x 11 grids point. Analytical solutions are
found in related literatures (Ugural 1999, Timoshenko and Woinowsky-Krieger 1959).

As can be seen from the obtained results, the deflection values are more accurate than the bending
moments and the stress values. This is an expected case just like in other numerical analysis
methods. Because, the statement of the bending moment involve the first-and the second-order
derivative of deflection. The variation of the error with number of grid points was shown in Fig. 8
for HDQ, DQ, finite elements (FE), and FD method. The percentage error had been reduced as
parallel to the increase the grid points. In this figure clamped support case is taken as boundary
condition for uniformly distributed load. The FE results were obtained for uniformly distributed load
and clamped edges by first author (Civalek 1998). The best solution is obtained for 13 x 13 grids
sizes by using HDQ method. But, a reasonably converged solution may be achieved for 19 x 19
grids by FD. In addition to this, a reasonably converged solution may be obtained for 17 x 17 grid
points using FEM (Civalek 1998). From the figure, the convergence of the HDQ and DQ method is
seen to be very good. It is shown that in this table, HDQ method produces better convergent
solutions than the FEM and FD when a similar number of grid points are used. It is also concluded
that the HDQ method displays an oscillatory convergence, however, the DQ method results in a
monotonic convergence. This consequence has also been stated ley &ie{2001).

|% Error |
O=_2NWPHAOO N O

3 6 9 12 15 18 21
Grid numbers

Fig. 8 Percentage error with grid numbers for uniformly loaded simply supported plat€s2)

It was found that the HDQ method requires less than three seconds of CPU time for almost all
cases on a standard personal computer (Pentium-Il processor having 64 MB RAM). To the
authors’ knowledge, it is the first time that the harmonic differential quadrature and differential
guadrature method has been successfully applied to thin, isotropic circular plate problems for the
analysis of deflection and especially for bending moments and stresses in radial and tangential
directions.
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5. Conclusions

A harmonic type of DQ method was introduced to study the static analysis of thin, isotropic plates
with various support and load conditions. The conventional small deflection theory is used in the
study with the governing differential equations transformed into a set of linear algebraic equations
by the harmonic differential quadrature formulation. The method of HDQ that was used in the paper
proposes a very simple algebraic formula to determine the weighting coefficients required by
differential quadrature approximation without restricting the choice of mesh grids. The known
boundary conditions are easily incorporated in the HDQ as well as the other type of DQ. A good
comparative accuracy of DQ and HDQ methods for static and vibration analysis of plates is
presented by Lievet al (1999a, 2001). More detailed information can be found in these references.
The discretizing and programming procedures are straightforward and easy. An attractive advantage
of the HDQ method is that it can produce the acceptable accuracy of numerical results with very
few grid points in the solution domain and therefore can be very useful for rapid evaluation in
engineering design. This has verified the accuracy and applicability of the HDQ method to the class
of problem considered in this study.

Acknowledgements

The authors are deeply grateful to the referees whose thorough reviews and precise comments
were very helpful in the revision of the original manuscript of the present paper. The first author
also would like to express his appreciation to Mr. Ali K. Baltdcidgr his assistance during the
computer programming. Furthermore, sincere thanks is given to the referees who have brought some
related references to the attention of the authors.

References

Bellman, R. and Casti, J. (1971), “Differential quadrature and long-term integrationdf Mathematical
Analysis and Applicatiqr34, 235-238.

Bellman, R., Kashef, B.G. and Casti, J. (1972), “Differential Quadrature: A technique for the rapid solution of
nonlinear partial differential equationd. of Computational Physic&(, 40-52.

Bert, C.W. and Malik, M. (1996a), “The differential quadrature method for irregular domains and application to
plate vibration; Int. J. Mech Sci, 38(6), 589-606.

Bert, C.W,, Jang, S.K. and Striz, A.G. (1987), “Two new approximate methods for analyzing free vibration of
structural componentsAIAA J, 26(5), 612-618.

Bert, C.W., Wang, X. and Striz, A.G. (1993), “Differential quadrature for static and free vibration analysis of
anisotropic plates’Int. J. Solids Struct 30(13), 1737-1744.

Bert, C.W. and Malik, M. (1996b), “Free vibration analysis of tapered rectangular plates by differential
guadrature method: a semi-analytical approaéhSound Vi 1901), 41-63.

Bert, C.W. and Malik, M. (1996c), “Differential quadrature method in computational mechanics: a review”
Applied Mechanics Review&)(1), 1-28.

Bert, C.W., Wang, X. and Striz, A.G. (1994), “Static and free vibrational analysis of beams and plates by
differential quadrature methadActa Mechanical02 11-24.

Berktay, I. (1992)Theory of Plates and Its Applicatigngildiz University Press, Istanbul.



Harmonic differential quadrature (HDQ) for axisymmetric bending analysis 13

Bjorck, A. and Pereyra, V. (1970), “Solution of Vandermonde system of equatMasiematical Computing
24, 893-903.

Chen, W.L., Striz, A.G. and Bert, C.W. (2000), “High-Accuracy plane stress and plate elements in the quadrature
element methodInt. J. Solids Struct37, 627-647.

Civalek, O. (1998)Finite Element Analysis of Plates and Shdfgat University, (in Turkish)Elazi’ g

Civalek, O. (2001), “Static, dynamic and buckling analysis of elastic bars using differential quadpétire”,
National Engineering Technical SymposjuETU, Ankara.

Civalek, O. (2002), “Static and dynamic analysis of structures by the method of differential quadFatate”,
University, Elazig

Du, H., Lim, M.K. and Lin, R.M. (1994), “Application of generalized differential quadrature method to structural
problems”,Int. J. Num. Meth. Eng37, 1881-1896.

Du, H., Lim, M.K. and Lin, R.M. (1995), “Application of generalized differential quadrature method to vibration
analysis”,J. Sound Vib.181(2), 279-293.

Farsa, J., Kukreti, A.R. and Bert, C.W. (1993), “Fundamental frequency analysis of laminated rectangular plates
by differential quadrature methodit. J. Num. Meth. Eng36, 2341-2356.

Hamming, R.W. (1973Numerical Methods for Scientists and EngingbtsGraw-Hill, New York.

Han, J.-B. and Liew, K.M. (1997a), “Analysis of moderately thick circular plates using differential quadrature
method”,J. Eng. Mech.12312), 1247-1252.

Han, J.-B. and Liew, K.M. (1998), “Analysis of annular Reissner/Mindlin plates using differential quadrature
method”,Int. J. Mech. Scj.40(7), 651-661.

Han, J.-B. and Liew, K.M. (1997b), “An eight-node curvilinear differential quadrature formulation for Reissner/
Mindlin plates”,Comput. Methods Appl. Mech. Engriy1, 265-280.

Jang, S.K., Bert, CW. and Striz, A.G. (1989), “Application of differential quadrature to static analysis of
structural componentsint. J. Numer. Meth. Eng28, 561-577.

Liew, K.M. and Teo, T.M. (1999b), “Three dimensional vibration analysis of rectangular plates based on
differential quadrature methodJ, Sound Vib.22Q(4), 577-599.

Liew, K.M., Teo, T.M. and Han, J.B. (1999a), “Comparative accuracy of DQ and HDQ methods for three-
dimensional vibration analysis of rectangular plated”,J. Num. Meth. Eng45, 1831-1848.

Liew, K.M., Teo, T.M. and Han, J.-B. (2001), “Three dimensional static solutions of rectangular plates by
variant differential quadrature methodtit. J. Mech. Sci.43, 1611-1628.

Liew, K.M. and Liu, F.-L. (1997a), “Differential cubature method: A solution technique for Kirchhoff plates of
arbitrary shape"Comput. Methods Appl. Mech. Engrig5 1-10.

Liew, K.M. and Han, J.-B. (1997b), “A four-node differential quadrature method for straight-sided quadrilateral
Reissner/Mindlin platesCommunications Numerical Methods in Erig(2), 73-81.

Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2002), “A hybrid moving least squares and differential quadrature
(MLSDQ) meshfree methodfnt. J. Comput. Eng. SeB(1), 1-12.

Liew, K.M. and Han, J.-B. (1997c), “Bending analysis of simply supported shear deformable skew Jlates”,
Eng. Mech.ASCE,1233), 214-221.

Liu, F-L. and Liew, K.M. (1998), “Differential cubature method for static solutions of arbitrarily shaped thick
plates”,Int. J. Solids Strugt53(28-29), 3655-3647.

Liu, F-L. and Liew, K.M. (1999c), “Differential quadrature method for static analysis of Reissner-Mindlin polar
plates”,Int. J. Solids Struct36, 5101-5123.

Shu, C. and Xue, H. (1997), “Explicit computations of weighting coefficients in the harmonic differential
quadrature”]J. Sound Vih.2043), 549-555.

Shu, C. and Richards, B.E. (1992), “Application of generalized differential quadrature to solve two-
dimensional incompressible Navier - Stokes equatidns”J). Numer. Meth. Fluidd5, 791-798.

Shu, C. and Chew, Y.T. (1998), “On the equivalence of generalized differential quadrature and highest order
finite difference schemeComput. Meth. Appl. Mech. Eng55 249-260.

Striz, A.G., Jang, S.K. and Bert, C.W. (1988), “Nonlinear bending analysis of thin circular plates by differential
guadrature”Thin-Walled Structures, 51-62.

Striz, A.G., Wang, X. and Bert, C.W. (1995), “Harmonic differential quadrature method and applications to
analysis of structural component&cta Mechanicalll, 85-94.



14 Omer Civalek and Mehmet Ulker

Striz, A.G., Chen, W. and Bert, C.W. (1994), “Static analysis of structures by the quadrature element method”,
Int. J. Solids Struct31(20), 2807-2818.

Timoshenko, S. and Woinowsky-Krieger, S. (195B)eory of Plates and Shellg® Ed. McGraw-Hill, New
York.

Ugural, A.C. (1999)Stresses in Plates and Shefi&cond Edition, McGraw Hill Companies.

Quan, J.R. and Chang, C.T. (1989), “New insights in solving distributed system equations by the quadrature
method-I analysis”Computers in Chemical EngineerirtlgX7), 779-788.





