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Abstract. This paper contains the results of the study on the development of fracture and 
propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element M
(DEM). A new discrete element numerical model is proposed as the basis for analyzing the in
evolution and growth of cracks up to the point of gross material failure. The model is expected to p
the fracture behavior for the quasi-brittle material structure using the elementary aggregate lev
interaction between aggregate materials, and bond cementation. The algorithms generate normal a
forces between two interfacing blocks and contains two kinds of contact logic, one for connected 
and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been u
the fracture limit. In this algorithm the particles are moving based on the connected block logic un
forces increase up to the fracture limit. After passing the limit, the particles are governed by the d
block logic. In setting up a discrete polygon element model, two dimensional polygons are us
investigate the response of an assembly of different shapes, sizes, and orientations with blocks s
to simple applied loads. Several examples involving assemblies of particles are presented to sh
behavior of the fracture and the failure process. 

Key words: quasi-brittle materials; discrete element method; polygon block elements; Voronoi; fail

1. Introduction

Quasi-brittle materials, such as concrete and rocks, are heterogeneous composite materials 
which nonlinear behavior is caused by factors such as crushing, aggregate interlock, shrinka
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creep. There have been many researchers studying the inelastic behavior of quasi-brittle m
especially for concrete and rocks, in the structural mechanics field. In their studies, materia
viewed as a homogeneous even though they are inhomogeneous. Most of them, howev
primarily based on phenomenological observations designed to give information suited for 
continuum mechanics theories. Such an approach is not sufficient if one wants to expla
inelastic behavior under load levels sufficient enough to initiate cracking and other forms of da
in the material. Their analysis can predict with high accuracy for small deformation and beh
However, the continuum mechanics formulation may have some limitations when it is us
investigate initiating cracks or other forms of material damages; elements may undergo
deformations and may detach from other elements. This is because those approaches seldo
the behavior of discrete, disjoint materials in detail.

Fracture mechanics was first studied for brittle materials such as glass by Griffith (1920). 
about forty years, the concepts of fracture mechanics were applied to cementitious materials. The
first applications to concrete appear to have been made by Neville (1959) and by Kaplan (19
historical review and an annotated bibliography of the application of fracture mechanics to cemen
and concrete was given by Mindess (1983). The application of fracture mechanics to co
structures has provided new ways of understanding and modeling phenomena which could o
treated empirically before. In recent published literature, some works covering the main parts 
development have been presented by Wittman (1983, 1986), Bazant (1985, 1986), Shah 
Carpinteri and Ingraffea (1984), Sih and Ditommaso (1985), Reinhardt (1986), Carpinteri (1
Bazant (1992), Mihashi et al. (1993), and by Bazant et al. (1994).

A new discrete element approach has been needed for models based on micromec
characterizations of inter-particle contact properties, which includes friction, normal stiffness
tangential stiffness. Discrete element methods (DEMs) are numerical techniques de
specifically for simulating the complete behavior of a discontinuous material, and to solve pro
in disconnected, partially connected, or fully connected structural assemblies. For examp
DEM can be applied to analyze interacting rigid or deformable bodies undergoing large dyna
pseudo static motion, governed by complex constitutive behavior.

The discrete element approach has been developed over the last three decades to repre
behavior of cohesionless granular materials (Cundall 1971, Cundall 1974, Cundall and Strack 
It has since been modified and improved by a number of researchers to include applications 
deformation of sand, snow, pack ice, ceramic powder, blasting, and fluid mechanics (Rothenburg
1980, Bathurst 1985, Nelson and Issa 1989, Bruno and Nelson 1991, Van Baars 1996, Tr
Nelson 1996). Zubelewicz and Mroz (1983) and Zubelewicz and Bazant (1987) used a m
mechanical approach to model concrete fractures. In the discrete element method, the 
consists of discrete, disjoint interacting particles that are free to move except during contac
neighboring objects. Particles can undergo large displacements and large rotations, and t
typically used to model failure of weakly connected discrete systems under high loads. The eq
of motion for each individual particle relates all contact and body forces to the particle m
acceleration, and the inertial damping coefficients. The particle movement and mech
interaction are tracked over time with an explicit central difference technique (Bathe and Wilson
1976). The contact forces in the microstructual level are then related to macroscopic bou
stresses through the principal of virtual work (Bathurst and Rothenburg 1990).

In the present study, the discrete element approach is used to simulate the response of m
up to the point of complete failure by modeling the intergranular deformation between aggre
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and bond cementation. Bond cementation, which is composed by a series of spring ele
attaches to the edges of the aggregate cores. Thus, the material response is simulated by a t
mortar aggregate composite (Rhie 1996, Rhie and Tran 1998, Tran et al. 1998). This can be
accomplished by representing the material as an assembly of two dimensional (2D) polygon 
where each block is made up by a rigid aggregate center and a deformable cement paste e
the rigid core. A realistic quasi-brittle material response is achieved by combining the dis
element method - to model arbitrary motion of a large assembly of objects - with a Mohr-Cou
fracture limit for the spring elements interconnecting the edges of neighboring aggregate parti
helps to develop an improved understanding of the process of fractures or crack propagatio
to develop a realistic and simplified non-continuum model to simulate failure in this quasi-b
material. 

2. Discrete element formulation and implementation 

2.1 General concept of modeling and algorithm

In setting up a discrete element model, the first major decision is whether or not to use 
dimensional (2D) or three dimensional (3D) models. If the decision is to use 3D models, the
computationally practical shape of the particles, which can be treated for large systems of v
sized particles, are spheres. These types of systems can be used to study a number of proce
assemblies of spheres are unstable unless subjected to external confinement. This is not the
real geologic assemblies (e.g. piles of stones). The shape of the individual components 
aggregate is an important effect which is not accounted for when using spheres. If 3D object
than spheres are considered, the computational burden becomes overwhelming even fo
models. If, for example, a 200 × 200 2D array of objects appears on the faces of a cubic
assembly, on that face 4 × 104 blocks may be seen. But actually more than (200)3 = 8 × 106 objects
will be needed to make up the 3D assembly, in fact, 1 × 107 3D objects. The object therefore mus
have an extremely simple shape and obey extremely simple physical contact rules if any hop
for analysis of the assembly. If a 2D model is used, the individual objects making up the di
element assembly (say our 200 × 200 model, with 4 × 104 blocks) can be assigned a variety o
shapes from round (disks) to arbitrary polygonal. The 2D disk model is simplest, but suffers
the same problems described for 3D sphere assemblies. The 2D polygons can be used to intigate
a large number of different shapes, sizes, and orientation effects of blocks. It is more co
perform this because the contact logic between large numbers of polygons has been prohibiti
recently. Now it is the preferred 2D type of block or basic element. Of course, a 2D mode
many limitations, the main one being that crack growth is 3D and the growth around blocks
not be as realistic as a 3D model could treat. Also, interstitial filling and void are not effectively
captured with 2D models. Thus, in this study, we are going to adopt a model based on ass
of 2D polygonal objects. Even then, very significant computer costs will occur, especially 
complete physical modeling is required.

The important aspects of any discrete element program are the representation of conta
representation of solid material, and the scheme used to detect and revise the set of c
between the discrete objects or blocks making up the assembly. Contact logic is surpr
complex even for 2D blocks (circular disks or polygons), especially under the general motio
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when blocks of significantly different sizes are being considered. This is often one of the mos
consuming parts of discrete element analysis. But a more difficult problem is defining a gener
reliable contact force logic, especially when it involves a combination of normal and shear force
effects. On top of this problem is the problem of effectively treating the initiation and evolution of
cracking between blocks.

Concrete is a heterogeneous material made up by a finite-sized randomly distributed aggregate
embedded in finer bond cementation and a number of voids. This multiphase material 
approximated by a two-phase cementation-aggregate composite, in which the aggregate
sections are modeled as random shaped polygons with different sizes. The shape of the in
aggregate components has an important effect on the mechanical behavior, and it need
accounted for.

Several algorithms are known to generate randomly shaped polygons in different sizes. Voro
polygons (Finney 1979) divide the plane into an assembly of regions whose boundaries a
perpendicular bisectors of the lines joining the point pair of the nearest neighboring data poin
generate somewhat simpler and more realistic shaped aggregate particles, a procedure base
Delaunay triangulation method is used (Delaunay 1934). This formulation is based upon a 
observation that three given points will form a Delaunay triangle if the circumcircle defined by 
nodes contains no other points. From the set of all possible triangles, the Delaunay method
the triangles with non-empty associated circumcicles. The algorithm was modified by W
(1981), Sloan (1987), Cline and Renka (1984) to get an improved and more efficient formu
Polygon shaped regions are then obtained from the given triangles by connecting the midpo
those triangles connected at the vertex, see Fig. 1.

The geometric layout of the mortar-aggregate composite is generated by shrinking the size
original polygons such that the rigid aggregate takes up to seventy five percent of the block a
remaining twenty five percent representing the cement paste matrix. In this idealization
opposite-facing edges of neighboring polygon aggregates always exist, and they are connect
deformable cement interface (Fig. 2). The stiffness and constitutive law of the interface bon
determine the overall strength and crack propagation characteristics of the block.

Fig. 1 (a) Delaunay triangulation (bold line) and Voronoi diagram (fine line) (b) Assembly of Voronoi poly
particles
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The cement properties are idealized and modeled as shown in Fig. 4. The physical mort
enclosed by edges of neighboring aggregate particles is approximated by a rectangular 
interface area; the interface area is modeled by equivalent non-linear spring elements. Depen
the force state, springs are either connected to the rigid polygons or separated from them
separation occurs when the springs exceed a given limit state. Thus, the analysis must be
distinguish and select between two possible states. First, the assembly behaves as a c
connected system, and it is considered a continuum media. By increasing the applied load, s
the links will fail and the assembly will start to generate microcracks accompanied by a reduc
the overall strength of the material. Second, as the cracks propagate, fewer links exist to tran
applied loads, aggregate particles will eventually be completely separated, and the analysis 
carried out following the discrete element logic. In this second state, the system consists of d
disjoint interacting particles, free to move except during contact with neighboring obj
Intergranular contact forces are determined by a discrete block logic where the magnitude depends
on a contact detection law and an associated stiffness formulation. The flowchart for the
discrete element algorithm is shown in Fig. 3.

2.2 Formulation of connected blocks (Continuum state)

The discrete block should be connected to other similar blocks to simulate the behavio
quasi-brittle material mass. Each polygon block is connected by four springs whose modu
selected by experimental results. Actually each spring shown is two separate springs: a shea
and a normal spring. Blocks (or polygon elements) start to move when forces are applied. Th
spring forces are produced.

The equivalent rectangular element interface is shown in Fig. 4(a). Consider the two rigid blocks
A and B that share a common edge. P and Q are the two ends of this common edge. Ag
core A is defined by vertices A1 − A2 − A3 − A4 − A5, and aggregate core B is defined by vertic
B1 − B2 − B3 − B4. The cement paste region C that is connecting the two blocks is defined b

Fig. 2 Discrete element representation of cement-aggregate interaction 
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polygon P− A1 − A2 − Q− B2 − B3. This irregular cement paste region C is then transformed t
rectangular shape A1 − A2 − B2 − B3. That area is the same as that of C and is illustrated in Fig. 4(b).
The new rectangular cement paste region is then subdivided into 4 equal rectangular shape
length L as the distance between the two parallel line segments A1A2 and B2B3, and width W as the
length of the equivalent cement. Each small rectangular shape is modeled as a spring, 
normal stiffness (kn) and shear stiffness (ks) respectively can be calculated as follows:

(1)

where E is the Young Modulus, G is the shear modulus, N is the number of springs (i.e., N = 4),
and L is the length of the rectangular shape. The shear direction for these four springs is def

kn
E
L
--- W

N
----- 

  and ks
G
L
---- W

N
----- 

 ==

Fig. 3 The flowchart for the main discrete element algorithm
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follows: The shear line of action is the line connecting the midpoint P of the line segment A1B3 and
midpoint Q of line segment A2B2. The normal direction for the springs is the direction that 
perpendicular to the shear line of action PQ. The normal and shear forces generated by the
paste springs can be computed as:

(2)

where  is the change in length in the normal direction of cement paste spring i, and  is the
change in length in the shear direction of the cement paste spring i.

The failure criterion, which has been found as the most widespread use for both rock
concrete, is the Mohr-Coulomb criterion. The Coulomb internal friction theory is usually expre
in the form τ = C + µσ, where C is the shear strength when σ = 0, and µ is the coefficient of
internal friction. The Coulomb theory, in its original form, is applied only to compressive state
stress, in which failure was considered to occur in a shearing mode. There are two different ty
failures in quasi-brittle materials such as concrete or sedimentary rocks: tensile or cleavage
and compressive or shear failure. Compressive or shear failure is governed by the linear Cou
equation, and the criterion for cleavage splitting is a limiting maximum tensile stress σt. The cement
paste springs are assumed to deform in an elastic manner within limits of a bilinear failure 
Mohr-Coulomb criterion, illustrated in Fig. 5. In the Fig. 5, normal stress is plotted along
horizontal axis, and the shear stress is plotted on the vertical axis. The cement paste sp
defined to yield when the combination of shear and normal stress acting across the bond d
point on or above the solid failure lines shown. In our discrete element model, the two discret
blocks are connected by four springs. If one or more springs yield, the fracture process starts
all four springs yield, a crack is formed between the two rigid aggregate blocks. The cement paste
springs are permanently disabled after the forming of the crack, and the bond between the b
no longer holding them together.

Fn knδn
i and Fs ksδs

i

i 1=

4

∑=
i 1=

4

∑=

δn
i δs

i

Fig. 4 DEM model of the cement paste between 2 rigid blocks
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The Mohr-Coulomb equation for each cement paste spring is defined as:

(3)

where Fs is the maximum resistant shear force between aggregates in the tangential direction Cs is
the cohesive constant, µ is the friction coefficient, and Fn is the normal force acting betwee
elements. Once a fracture occurs, then Cs and µ both tend towards zero. The cohesion and fricti
coefficients may decrease with each increasing slip displacement. As the number of spring
connected to aggregate blocks increase, the abrupt detachment effects of the blocks will be re

2.3 Formulation of disconnected blocks (Discrete state)

Being the preparing step for the disconnected block logic, the contact detection logic sho
executed first. This logic is a basic and complex procedure in the DEM. The contact logic proc
is the most costly and time consuming part of the analysis. The contact detection process
box-based logic where every 2D polygon is circumscribed by a rectangular box. The scheme 
contact detection consists of three level checks. In the first level, the check is perform
determine whether any two rectangular circumscribing boxes are in contact. In the second l
the two boxes are in contact, the check is performed to eliminate cases in which the two po
are not in contact, despite the contact of boxes. If the second level check shows that contac
occur, the third level check is performed to determine whether contact has in fact occurred
and Nelson 1996).

Even if complete information regarding the interference between two blocks - including the 
velocities in the region of the interference - is given, the contact shear and normal force dire
are far from obvious, and the interaction between these forces is not fully understood. Tran 
Nelson (1996) suggested “reasonable” definitions of the contact forces. They tested s
examples, which are triaxial compression tests, dynamic analysis of hopper granular flows, e
using discrete block models. The results were reasonable and not far from realistic. This logic
an important role in the present approach to modeling the behavior of quasi-brittle materials
several applied loadings.

To derive reasonable mathematical definitions of the contact forces, the velocity of the centr
each block in the contact region is needed. The relative velocity, i.e. the difference in velocity 

Fs

W
----- Cs> µ

Fn

W
-----+

Fig. 5 Modified Mohr-Coulomb failure model for interface bonding
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centroid of the contact area in block A and the velocity in block B, gives some sense of relativ
motion of the blocks.

The normal contact force is assumed to be independent on the contact area while the she
is assumed to depend on both the contact area and the relative velocity of the centroids
bodies in the contact zone, as well as the frictional properties between the two bodies.

Let the two intersection points be intersection point P1(x1, y1) and intersection point P2(x2, y2). The
line connecting these two points is the line of action of the shear force. This line is represented b
the vector S

(4)

During the sliding, the magnitude of the shear force is to be proportional to the area o
contact. However, the contact area alone is inadequate in defining the shear force. To illustra
consider two blocks approaching each other with the same speed but in opposite directions
they are in contact, only normal contact force exists. In this case, the contact area is not ze
the shear force equals zero. Thus, the shear force must depend on not only the contact area
the differential motion of the two blocks. In the current formation, a relative velocity between
centroids of the overlapping regions of the blocks in contact is defined to formulate the c
shear force. This velocity is the velocity of the centroid of the contact region of one block as
from a reference frame fixed at the same point in the other block. The relative velocity o
contact centroid is defined below. The velocity in polygon A is 

(5)

and polygon B is

(6)

where,  and  are the angular velocities of blocks A and B, and r A and r B are the distances
between the contact centroid and the centroids of blocks A and B. 
The velocity of A relative to B at the centroid of the contact area may then be compute
subtracting the velocity of block B from the velocity of block A

(7)

A unit vector in the direction of the relative velocity is determined.

(8)

Once this unit vector is found, its projection on the unit vector defining the direction of shear 
(the cosine of the angle formed by these two vectors) will determine the fraction of the re
velocity that will be used in the shear force calculation.

S x1 x2–( ) i y1 y2–( ) j+=

Vcgcontact

A VA ϖA rA⊗+=

Vcgcontact

B VB ϖB rB⊗+=

ϖA ϖB

Vcgcontact

rel Vcgcontact

A Vcgcontact

B
–=

U
Vcg

rel

Vcg
rel

Vcg
rel

-----------=
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Then, the shear force Fs is defined as

(9)

where Us = unit vector in the direction of the shear, µk = dynamic coefficient of friction between the
polygons, A = overlapping contact area, and kn = constant proportional factor to be used in definin
the normal force between the two polygons in contact.

The normal force is perpendicular to the shear force and can be easily found. It should be
that the normal force is always compressive; therefore, the compressive normal force actin
given polygon always points towards the body of the polygon such that, i.e., the force an
vector from the centroid of the interface area to the centroid of the polygon form an acute 
Let the normal force vector unit be n. The simplest normal contact force law may be written as

(10)

It is noted that this normal contact force logic has a linear relationship between the contac
and the contact area for both the unloading and loading stages.

The contact forces are constructed differently in the loading and unloading stages by chang
relationship between the normal contact force and the contact area. During the loading, the no
contact force is taken to be a quadratic function of the overlapping contact area. Upon unlo
the contact force is taken to be a linear function of the contact area where the slope depend
past history of loading. The contact normal forces between the discrete rigid blocks in the loadi
stage are related to the contact area as follows.

(11)

When the blocks are in the unloading stage, the contact normal force is computed as shown b

(12)

where Amax = maximum overlapping contact area,  = maximum normal contact force, a1 and a2

= input parameters describing the nonlinear force relationship, K = parameter controlling the
unloading rate of the linear force relationship,  = derivative of the loading curve 
respect to A evaluated at Amax,  is the normal force of cement paste spring i, and Fres is the sum
of the spring yielded forces carried over to the contact force to avoid a jump in the contact for

The contact shear force between two polygons in the loading and unloading stages is take
proportional to the contact normal force

 (13)

where µk is the dynamic coefficient of the friction between the polygons. The dynamic coefficie
needed to get contact forces which depend on the relative velocity of the centroid of each b
the contact region. The difference in velocity of the centroid of the contact area of the two b
gives some sense of relative motion of the blocks.

F s A* kn* µk* U
Vcg

rel Us⋅( )Us=

F n Aknn=

Fn
l Fres a1A a2A

2 with Fres Fn
i

i 1=

4

∑=+ +=

Fn
u Fn

max K Amax A–( )dFn
l

dA
---------

Amax

–=

Fn
max

dFn
l

dA⁄ Amax

Fn
i

Fs µkFn=
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n for
3. Equation of motion

Each rigid block element, having mass M and moment inertia I, is assigned three independen
degrees of freedom at its centroid: namely Ux, Uy, the displacements in the x and y directions, and
Θ, the rotation about the z axis. The equations of motion of each block can be written as

(14)MU
··

α CU
·

α+ Fα α x y,=( )=

Fig. 6 (a) Direction of relative block velocities (b) Shear force line of action and normal force directio
disconnected blocks
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where Fα is the sum of all forces acting on the element in α direction, and T is the sum of all
moments acting on it about its centroid. C and D are (inertial) damping coefficients. Uα is the
displacement, and Θ is the angular displacement. Eqs. (14) and (15) can be solved using a 
time marching algorithm, such as the explicit central difference method (Bathe and Wilson 1
Assuming that the displacement, velocity, and acceleration vectors at time ∆t - denoted by ,
and  respectively - are known, then in this time integration scheme, the solution is advanced to
times k∆t, k = 2, 3, … to solve for all times from 0 to T. In other words, the method establishes 
approximate solution at times 0, ∆t, 2∆t, 3∆t, ... , T.

The critical stability limit, which is known as Courant’s stability limit on ∆t, is ∆tcr = Tcr /π.
Actually this critical time step is only an estimate for two reasons. First, the stiffness K depends on
the number of blocks in contact, which may be very hard to predict for an entire solution ov
extended time. Second, the contact forces which make up F and T are higher nonlinear functions o
block motion. If the blocks are permitted to move too far in any one time step (even if ∆t < ∆tcr),
the new positions of the block may generate extremely large forces and cause the assem
blocks to appear to blow up. In practical numerical computations, control of the time step size
complicated, yet it is an important aspect of the numerical analysis.

4. Applications

4.1 Numerical input parameters

To simulate the sample concrete models shown in this study, numerical input parameters 
cement paste are used as follows; Young’s modulus is 20,700 MPa (3 × 106 psi), Poisson ratio is
0.25, the bond tension limit is 6.9 MPa (1 × 103 psi), and the bond shear limit is 13.8 MPa (2 × 13

psi) (Newman et al. 1969). The parameters for the discrete contact force relationships fo
aggregates are applied to simple primitive models in soil mechanics. The values of a1, a2, K and µk

used in these tests are 20,700 MPa (3 × 106 psi), 20,700 GPa (3 × 109 psi), 2.5, and 0.3 respectively
(Tran 1993).

4.2 Compressive failure simulation

Compression strength is the major criterion when assessing the quality of concrete-like quasi-
brittle materials. Knowledge of the compression strength means that we have fairly accurate
about its strength when subjected to other loads, as well as its other mechanical propertie
methods applied throughout the world to assess the compression strength of concrete are 
The differences consist only in shapes and sizes of the test specimen used, which can be
cylinders, or prisms of various sizes. The testing technique in a laboratory is very important b
friction between the specimen, the loading machine plates, and the quality of the contact b
the two active surfaces - as well as the loading rate - greatly affect the test results. The nu
tests performed must recognize the effect of friction and the loading rates.

A rectangular shaped specimen model shown in Fig. 8(a) represents the prismatic or cyli
specimen. The model shown in Fig. 8(b) is made of an assembly of 626 aggregate particles, 

IΘ·· DΘ
·

+ T=

Uα
t∆ U

·
α

t∆,
U
··

α
t∆
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geometric dimensions are a height of 30 cm and a width equal to 15 cm. The shapes of t
particle elements vary between 3 to 9 nodes for the rectangular specimen. The specimen is
between two moving end platens to apply a constant strain rate loading. Friction between con
surfaces generate shear stress components and induce a lateral confinement to the test spec
the non-lubricated specimen, cracks propagate parallel to the loading direction in the central z
the specimen and slanting at the ends as the results of the shear force which is induced b
friction. This state of stress generates a failure mode which is different from the ones
lubricated end platen as shown in Fig. 7 (Avram et al. 1981). Regardless of the specimen size, t
ultimate compressive strength value of the lubricated specimen is slightly lower than the case
non-lubricated specimen.

The top block is moves down gradually over time to apply the compressive strain. In 
numerical tests, three different end conditions are considered. The first assumes lubricated en
with zero friction. In the second model, friction exists between contacting surfaces. And final
the last model, the end faces are not allowed to expand in the lateral direction. Fig. 8(b) sho
compressive failure mode of the specimen without friction. Cracks develop parallel to the a
load. In Fig. 9(a), friction exists between end faces and loading platens. Crack propagation oc
form typical failure cones. The failure process, with fully constraint end faces, is shown in Fig.
The failure mode is again influenced by the boundary conditions at the top and bottom faces
specimen.

Numerical tests have been performed with three different heights specimens. The heights
compressive specimens are 50 mm, 100 mm, and 200 mm. All specimens’ widths are the sa
mm. Specimens with different heights have almost identical stress-strain behavior up to the
stress. However, longer specimens exhibit less strain after the peak stress compared to
specimens (Fig. 10a), i.e., the softening part of the compressive stress-strain curves depend
length of the specimens. The numerical results indicate that post-peak compressive stres
curves depend on the height of prismatic specimens. In Fig. 10(b), the stress-displacement
show similar values for the post-peak behavior. The numerical results match well with Van M
(1986) experimental results for the plain concrete.

Fig. 7 Fracture patterns for rectangular and square specimens under compression of concrete-like m
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4.3 Tensile failure simulation

Concrete material strength and limit strains under tensile stresses are essential paramete
considered by the structural engineer confronted with practical or theoretical problems such a
initiation and development, behavior to major stresses, torsion, etc. Although the strength 
tension is of high practical interests, there are some difficulties in the test of specimens 

Fig. 8 (a) Compression specimen with rigid end
platens (b) Fracture propagation of com-
pressive specimen with lubricated end platens

Fig. 9 (a) Fracture propagation of compressiv
specimen with non-lubricated end platen
(b) Fracture propagation of compressiv
specimen with fully lateral constraint top
and bottom face 

Fig. 10 Compressive response of prism models: (a) stress-strain relation (b) postpeak stress-displ
curves (Where, L = Length of Specimen, Width of Specimen = 100 mm)
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tension, namely the manner in which the samples have to be fastened between the jaws
testing machine. Also it is not easy to obtain an even stress distribution over the cross s
because the stress field is disturbed by the specimen holding devices which introduce sec
stresses. By those reasons, direct tension tests of quasi-brittle materials are seldom carried
avoid all secondary effects and to obtain reliable results, the tests should be well instrument
carefully executed.

Fig. 11 illustrates the overall response of the specimen subjected to direct tension. The fa
process is a complex interaction and redistribution of the load carrying aggregate-cemen
components. Experimental evidence shows that the elastic limit is around 60 to 75% of the u
tensile strength. For higher stress levels, microcracking starts in the aggregate-cement interfac
the interval of stable crack propagation is usually very short. Upon further loading, active cra
zones develop suddenly and an unstable propagation is occurred normally to the loading di
Thus, the behavior of concrete material in tension can be described as brittle in nature. Ultimately,
the specimen separates from the loading near the top and bottom face. The stress-strain res
the tension specimen, as a function of different cohesive constants, is shown in Fig. 12.

5. Conclusions

The basic concepts of using the discrete polygon element models to investigate quasttle
materials have been explored. The contact logic between contacting, or nearly contacting, blo
been checked and is believed to be sound. It is essentially Tran’s logic, and a new connecte
logic is added and improved.

The force logic has only just begun. In that, the force definition has been exercised to
through some basic examples with tracking the blocks by integrating their equations of m
Results for compression and tension tests appear to be realistic, and they demonstrate man

Fig. 11 (a) Direct tension specimen (b) Crack
propagation in direct tension

Fig. 12 Tensile stress-strain curves, corresponding
the function of cohesions
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characteristics of quasi-brittle material fracture and failure that have been observed in the laborato
A host of modeling options still exist which should be explored. In particular,
1) The logic of post crack behavior has many possible options which should be considered

as the rate of loss of cohesion and friction coefficient, shear induced volume expansion, e
2) The size or type of the process zone, now believed to be of the order of the aggregate, n

be investigated. It appears to be rather large in the current numerical results. A 
numerical model may be required.

The size and scope of the block model has, in the past, presented computational pro
especially when many comparative studies are being done. The nature of explicit, conditi
stable direct time integration means that quasi-static loading is an expensive numerical exer
the models, which are needed, become too large to be handled in general, special techn
minimize the computational burden will have to be developed. For example, it may be neces
limit the needs for updating contacts between aggregate and cement paste to only certain
where cracks are actively forming, or for control of the model which has a huge amou
elements. Parallel processing techniques will be useful. Also, to use this scheme in practical areas,
parameters of the equations that are defined in this paper should be studied and adjusted more 
future. Parameter studies will require a lot of time consuming procedures.

The DEM is a very interesting technique for exploring the nonlinear, inelastic behavior of ra
multiphase engineering materials. It is believed to hold real promise for integrating the 
mechanical behavior without relying heavily or phenomenological (experimental) test results.
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Notation

kn : normal stiffness
ks : shear stiffness
E : Young’s modulus
G : shear modulus
L : length of the rectangular shape
Fs : resistant shear force between aggregates in the tangential direction
Fn : resistant normal force between elements

: change in length in the normal direction of cement paste spring i
: change in length in the shear direction of the cement paste spring i

Cs : cohesive constant
N : number of springs attached for each faced element
S : the line of action of shears

: velocity in polygon A
: velocity in polygon B
: angular velocity of block A
: angular velocity of block B

rA : distance between the contact centroid and the centroid of block A
rB : distance between the contact centroid and the centroid of block B

: velocity of A relative to B at the centroid of the contact area
: unit vector in the direction of the relative velocity

Amax : maximum overlapping contact area
: maximum normal contact force 

a1, a2 : input parameters describing the nonlinear force relationship
K : parameter controlling the unloading rate of the linear force relationship

: derivative of the loading curve with respect to A evaluated at Amax, 
: normal force of cement paste spring i

Fres : sum of spring yielded forces carried over to the contact force
M : mass of rigid block element 
I : moment inertia of rigid block element 
Ux, Uy : displacements in the x and y directions of block elements
Θ : angular displacement of block elements about the z axis.
Fα : sum of all the forces acting on the element in the α direction
T : sum of all the moments acting on the block element about its centroid 
C, D : (inertial) damping coefficients 
Uα : displacement in α  direction (α = x, y)

: the displacement, velocity and acceleration vectors at time ∆t
∆tcr : critical time step

δn
i

δs
i

Vcgcontact

A

Vcgcontact

B

ϖA

ϖB

Vcgcontact

rel

UVcg
rel

Fn
max

dFn
l dA⁄ Amax

Fn
i

Uα
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U
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