Structural Engineering and Mechanics, Vol. 16, No. 6 (2003) 655-674 655
DOI: http://dx.doi.org/10.12989/sem.2003.16.6.655

Natural vibration analysis of coaxial shells
coupled with fluid
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Abstract. Investigated in this study are the natural vibration characteristics of the coaxial cylindrical
shells coupled with a fluid. Theoretical method is developed to find the natural frequencies of the shell
using the finite Fourier series expansion, and their results are compared with those of finite element
method to verify the validation of the method developed. The effect of the fluid-filed annulus and the
boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite
element modeling.
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1. Introduction

Coaxial shells or cylinders containing fluid have been widely used as structural components in
various applications. One example is reactor internal structures such as core support barrel anc
upper structure barrel coupled with each other by fluid-filled annulus (Song and Jhung 1999). To
assure the reliability of those components and to obtain information that will enable a designer to
predict plant vibration amplitude during normal operations of a nuclear power plant (Jhung 1996b),
it is necessary to investigate extensively flow-induced vibration, necessitating the investigation of the
modal characteristics. Several previous investigations have been performed to analyze the free
vibration of fluid-filled, coaxial cylindrical shells (Chen and Rosenberg 1975, Yoshilkdwal
1994). However, previous theories were limited to the approximated methods and could provide
only the in-phase and out-of-phase modes of coaxial shells with small annular fluid gap compared
to the shell diameters. Therefore, they can only be applicable to the low axial and circumferential
modes of coaxial shells with small annular fluid gap. Practically, there exist many ambiguous
vibrational modes in addition to the in-phase and out-of-phase modes.

This study develops an advanced general theory to calculate the natural frequencies for all
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vibrational modes of two coaxial circular cylindrical shells coupled with fluid. To support the
validity of the proposed theory, finite element analyses are carried out for various boundary
conditions. Also it has been shown analytically and experimentally thamtnersion of a body in

a dense fluid medium lowers its natufie@quency and significantly alters vibratory response as
compared to that in air (Fritz 1972, Jhung 1996b). Therefore the effect of the inclusion of the fluid-
filled annulus on the natural frequencies of the coaxial shells is investigated by comparing
frequencies between shells with and without fluid-filled annulus. The effect is also addressed with
respect to the boundary conditions at both ends of coaxial shells.

2. Theory

2.1 Equation of motion

Consider fluid-filled coaxial cylindrical shells with clamped boundary conditions at both ends. The
cylindrical shells have mean rad#®, andR;, heightL, and wall thicknes#$, as shown in Fig. 1.

The Sanders’ shell equations (Jeong and Lee 1996) as the governing equations for both shells wher
the hydrodynamic effects are considered, can liewras:
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Fig. 1 Coaxial cylindrical shells with fluid-filled annulus
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where k is h%¥12R? u Poisson’s ratiot time, p dynamic liquid pressure and, v, w;, axial,
tangential, radial dynamic displacements of shells, respectively. Also, subscripts 1 and 2 represent
the inner and outer shells, and comma (,) in the equations denotes a partial derivative with respec
to the corresponding variable. For a complete description of the shell motions, it is necessary to add
boundary conditions to the equations of motion. Consider the simplest end arrangements of the shel
on the top and bottom supports. At both ends of concentrically arranged shells, the boundary
conditions will obviously hold:
for the bottom support of the inner shell,
My1(0) = Ny (0)

v1(0) = wy(0) =0 (2a)

for the top support of the inner shell,

Mya(L) = Nyo(L) = vy(L) = wy(L) =0 (2b)
for the bottom support of the outer shell,

My2(0) = Ny»(0) = v,(0) = w,(0) =0 (2¢)
for the top support of the outer shell,

Mya(L) = Nyo(L) = V(L) = wy(L) =0 (2d)

where M,; and N,; denote the bending moment and the membrane tensile force, respectively. All
geometric boundary conditions applicable to the ends of the shells can be reduced to the following
equations (Chung 1981):

for the clamped-clamped condition,

w,(0) = 0, (3a)

vi(0) = wy(0) = v,(0)

Vi(L) = wy(L) = vp(L) = wy(L) =0, (3b)
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for the clamped-free condition,
v,(0) = w;(0) = v,(0) = w,(0) = O, (3¢)
Na(L) = My(L) = No(L) = Mg(L) =0, (3d)
for the simply supported-simply supported condition,
v;(0) = wy(0) = v,(0) = w,(0) =0, (3e)
Myi(L) = Mg(L) = 0. (3f)

The relationships between the boundary forces and displacements are

Ny = 1_u2[uj’X+RVJ9+RWJ (4a)
Nyg = 2(1+ /J)[ %L E]]UJ ot %L += kj%/J « 3kjo,X9} , (4b)
ER [ (1-g), ,(G-p), _(2-p)
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Ny; andQ,; denote the membrane shear force and transverse shear force per unit length, respectively
2.2 Modal functions

A general relation for the dynamic displacements in any vibration mode of the shell can be
written in the following form for the cylindrical coordinatge®.

ui(x, 6,1t) uj(x, 6)
vi(x 6,t)| = |vi(x 6)| expliat), j = 1,2 ®)
w;(X, 6, t) w;(X, 6)

where y(x, 8), vi(x, 8) andw(x, 8) are modal functions corresponding to the axial, tangential and

radial displacements, respectively. These modal functions along the axial direction can be describec
by a sum of linear combinations of the Fourier series that are orthogonal (Chung 1981).
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The derivatives of the above modal functions for the shell can be obtained using the finite Fourier
transformation (Sneddon 1951). The modal functions and their derivatives of the cylindrical shell
were described in reference (Jeong and Lee 1996).

2.3 Equation of fluid motion

The inviscid, irrotational and compressible fluid movement due to shell vibration is described by
the Helmholz equation:

1 1 1
(D,rr+F(D,r+r_2(D,99+(D,xx = C_zcb,tt! (7)

wherec is the speed of sound in the fluid medium equal/®/p, B is the bulk modulus of
elasticity of fluid andp, stands for the fluid density. It is possible to separate the fun®tiovith
respect tox by observing that, in the axial direction, the rigid surfaces support the edges of the
shells; thus

d(x, r,60,1) = iw@r, 6, x)exp(iwt) = iwn(r, B)f(x)exp(iwt), (8)

where w is the fluid-coupled frequency of the shells are /1. Substitution of Eq. (8) into the
partial differential Eq. (7) gives

1 1 o
ner, 6)  + rn(r, 0), + r2I7(f, 6), 60+ OO n(r. ) _ ) _ mmmf 9
r](r, 6) - f(X) - oL O ( )

It is possible to solve the partial differential Eqg. (9) by the separation of the variables. The solution
can be obtained with respect to the cylindrical coordinate®,andx.

T W
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whereJ, andY, are Bessel functions of the first and second kinds of avdeheread,, andK, are
modified Bessel functions of the first and second kinds of ondep means the spatial velocity
potential of the contained compressible fluid ang is related to the speed of sound in the fluid
medium as;

Own = IO O~ OcO

rmf E@]z‘ form=1,2 3, ..... (11)

The boundary conditions of the velocity potentiedppear as follows:
(a) impermeable rigid surfaces on the bottom is

0@X, Q,I'! =0: (12)
0X x=0
(b) as there exists no free surface, the axial fluid velocity at the rigid top is also zero, so
0@X, Q,I'! =0: (13)
ox x=L

(c) the radial fluid velocity along the outer wetted surface of the inner shell must be identical to
the radial velocity of the flexible shell, so

adp(x, 6, 1)
or r=R,

(d) the radial fluid velocity along the inner wetted surface of the outer shell must be identical to
the radial velocity of the shell, so

= w,(x 6); (24)

¢, 6,1) = —w,(x, 6). (15)
or r=R,
Substitution of Egs. (6), (10a) and (10b) into Egs. (14) and (15) gives the relationships:
mrm_ w
for L > '
, rwR , R0
] 2D ds B0 DY, Ef*’f%%
comnb
n=1 ad ' ' TIX
+ rrzlamn{ Dmnln (AmaR1) + DKy (0mnR1)} CO%nTE (16a)

= n21|:conl + élcmmco%ﬂ—fx% cosné
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Whenmr/L < w/c, 15 () andK, () in Egs. (16a), (16b) and (17b) should be replaced;ky and

Y, (), respectively. When the hydrostatic pressures on the shells are neglected, the hydrodynamic
pressures along the inner and outer wetted shell surfaces can be given by (Han and Liu 1994, Gupt
1995)

pi(% 6,1) = P, Px, 6, R)exp(ict) (18)

whered = 1 forj = 1 andg = -1 forj = 2. Finally the hydrodynamic forces on the inner and outer
shells can be written as

R’pi(x, 6, t) _ P RS &

D D z { C:onll_onj + C:onZGonj
n=1
o XU .
* 5 [Conal i * CrreGn]CO T i PoMOexp(ic) (19)
m=1

whereGopj, [Nonjy Gmny @andl my; are defined in Appendix.
2.4 General formulation

The dynamic displacements and their derivatives can be represented by a Fourier sine and cosin
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series in an open range okOx < L and with the end values using the finite Fourier transformation
(Jeong and Lee 1996). Substitution of the displacements and their derivatives into the governing
Sanders’ shell Egs. (1a), (1b) and (1c), leads to an explicit relatioB.fprCo,, and a set of
equations foAmq, Bmnj, Cmnj as follows:

_u;)+ u}__
~0 ~L
|:Bonj} _ {qu g g qj:| VitV (20)
C:onj C|5j Q % Qj N;)+ NJ!'
00+ 0

dyy dp dig 0 0 QA
dip dyp dyg 0 0 (UBmm
dig dp3 dg; 0  0dg |Chun
0 O 0 dy dygs dsg| [Amnz
0 0 0 dss dss gl B
0 0 dg dg ds d6§ | Crnz|

—ay;m[ u; + (-1)"u;]
a,[ug + (=1)"ug] + ag[ Vg + (=1)"0;] + @y [ W + (-1)"W;]
as[u; + (=1)"up] + ay [] + (=1)™7] + ayg[ WY + (-1)"Wy]
—a,,m[ U + (~1)"uj]

Azl Us + (—1)"Uz] + 8l T3 + (—1)"V5] + @[ W5 + (—1)"Wh]

B[ Us + (1) "Uz] + ap, V5 + (—1)"V5] + ape[ W + (—1)"Wh]

+0
+0
+ g W + (—1) "Ry — m*W; —m?(-1) W]
+0
+0

+ o[ W + (=1) "W, — MW — m*(—1)"W] |

(21)

where the end values’, u;, V7, V, W', W}, &’ andW%;  in Egs. (20) and (21) are defined as:
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The equivalent hydrodynamic mass effect on the inner and outer shell is included in the coefficient
dsz anddge, respectively. The coefficienks indicates the equivalent hydraulic pressure on the inner
shell induced by the outer shell motion, and similadly stands for the equivalent hydraulic
pressure on the outer shell induced by the inner shell motion. Generally speaking, the cagfficient

is not equal todss. Therefore the matrix Eq. (21) is asymmeric and is coupled by two coefficient
termsdsg anddgs.

The forcesN,g andQ,; at the ends of the shells can be written as a combination of some boundary
values of displacement and their derivatives using Eq. (3). The boundary values of displacement anc
their derivatives;, Vi, %’ and®% can be transformed in a combination of the boundary values of
U, W;, Nyg andQ,; by Eq. (4), as written in the form

9y
@ [w % % o o o oll%
Ul_u W N 0 0 0 o0 gj 23)
Wy 00 0 Jud KRy Q 95;
W, 0 0 0 juW Ny Q|g,

197 |
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where ; and §; in Eq. (25) are the derived coefficients, ad [s a 8 x 6 derived coefficients
matrix. Eventually, all Fourier coefficien®,,, Bn, andC,, are rearranged with a combination of
the end point values as shown in Eg. (26).

The geometric boundary conditions that must be satisfied are associated with displageamehts
w;. Hence, it follows that

vi(0) o d 10 -
ww)| - 5 o{%%i (-1)" {Bmﬂ%z[m, i=12. (7
W,(O) =100 1 Coni m=1 0 1 C:mni a
wi(L) o 1 0 (9" .
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On the other hand, the natural boundary conditions that must be satisfied are assaitialiég w
andNy;.
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Substitution of Eqgs. (25) and (26) for the coefficierBg,, Con, Bmny and Cpny; into the eight
constraint conditions which came from the geometric and natural boundary conditions, written as
Egs. (27) and (28), leads to the homogeneous matrix equation;

[EI[H] = {0}, (29)

where E] is the 16 x 16 matrix derived from Egs. (27) and (28), and
~ ~ ~ ~ T
[H] = [uf up up up W) W W5 W5 Nio Nyoy Nige N Qi Qa QU Qul - (30)

When the cylindrical shells are clamped at both ends, the associated boundargnad written

by Egs. (3a) and (3b). Hence the geometric boundary conditions expressed by Eq. (27) must be
satisfied. Howevery; = 0, u, = 0, W, = 0 andW, = 0 atx = 0 andx = L are automatically
satisfied by Eq. (5), the modal functions set. Therefore from the first, to the eighth rows of the
matrix in Eq. (29) are enforced and the terms associa'mjuﬁ/, u,—L, W;’ andwjL are released. The

8 x 8 frequency determinant is obtained from Eqg. (29) by retaining the rows and columns associated
with N‘X’gj, N';gj, Q‘X’j and Q';J-. For the clamped boundary condition, the coupled natural frequencies
are numerically obtained from the frequency determinant.
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For the clamped-free boundary conditions, the associated boundary conditions are written by
Egs. (3c), (3d). Hence the geometric and natural boundary conditions of Egs. (27) and (28) must be
satisfied. Howevery; = 0,v, = 0, W, = 0 andW, = 0 atx = 0 andNys = Ny, = 0 ,Qy = Qp,
= 0 atx = L areautomatically satisfied. Therefore the 1st, 3rd, 5th, 7th, 11th, 12th, 15th and 16th
rows of the matrix in Eq. (29) are enforced and the terms associatedjfv\vm,?] N';gj, andQ';J- are
released. The 8 x 8 frequency determinant is obtained from Eqg. (29) by retaining the rows and
columns associated with,—L,\ijL,N‘x’gj, andQy; . For the clamped-free boundary condition, the coupled
natural frequencies are numerically obtained from the frequency determinant. For the simply
supported case, the frequency determinant can dly eatained by similar method.

3. Analysis
3.1 Theoretical analysis

On the basis of the preceding analysis, the frequency determinant is numerically solved for the
clamped boundary condition in order to find the natural frequencies of the coaxial circular
cylindrical shells with a bounded compressible fluid. The inner and outer shells are coupled with a
fluid-filled annular gap. The inner cylindrical shell hasnaan radius of 100 mm, a length of 300
mm, and a wall thickness of 2 mm. The outer cylindrical shell has a mean radius of 150 mm with
the same length and wall thickness. The physical properties of the shell material are as follows:
Young’'s modulus = 69.0 GPa, Poisson’s ratio = 0.3, and mass density = 2760 \Ngter is used
as the contained fluid with a density of 1000 ky/mihe sound speed in water, 1483 m/s, is
equivalent to the bulk modulus of elasticity, 2.2 GPa. Dimensions and material properties used for
the analysis are shown in Table 1.

The frequency equation derived in the preceding section involves the double infinite series of
algebraic terms. Before exploring the analytical method for obtaining the natural frequencies of the
fluid-coupled shells, it is ecessary to conduct convergence studies and establish the number of
terms required in the series expansions involved. In the numerical calculation, the Fourier expansion
term m is set at 100, which gives an exact enough solution by convergence. The coupled natural
frequencies of the fluid-filled coaxial shells for the clamped boundary condition at both ends of two
shells are shown in Table 2.

Table 1 Dimensions and material properties

) Shell )
Unit Fluid
Inner Outer
Length m 0.300 0.300
Mean radius m 0.100 0.150
Thickness m 0.002 0.002
Young’s modulus Pa 69E9 69E9
Poisson’s ratio 0.3 0.3
Density kg/ni 2700 2700 1000

Sound speed m/sec 1483
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Table 2 Coupled natural frequencies of the fluid-filled coaxial shells (out-of-phase mode/in-phase mode)

Circumferential Axial mode Frequency (Hz) Discrepancy
moden m’ Theory FEM % RMS Crest Factor

1 391/1737 405/1794 3.5/3.2
2 848/ 916/ 7.4/

1 3 13098/ 1308/ 0.0/ 5.3/3.2 1.4/1.0
4 1909/ 2044/ 6.6/
1 436/997 436/1002 0.0/0.5
2 907/ 938/ 3.3/

2 3 1401/ 1480/ 5.3/ 3.6/0.5 1.5/1.0
4 - - -
1 403/671 400/669 -0.8+0.3
2 858/1345 865/1339 0.80.4

3 3 1359/ 1306/ 2.2 2.7/0.4 1.5/1.0
4 1811/ 1888/ 4.1/
1 383/562 382/551 -0.3~2.0
2 791/1076 791/1054 02.1

4 3 1268/1677 1289/1649 14617 1.771.9 1711
4 1729/ 1781/ 2.9/
1 386/658 388/635 0.58.6
2 749/1009 752/973 0.43.7

5 3 1192/1516 1205/1469 143.2 1.2/3.3 1711
4 1648/2087 1682/2038 2414

3.2 Finite element analysis

Finite element analyses using a commercial computer code ANSYS 5.5 (ANSYS 1998) are
performed to verify the analytical rd®ifor the theoretical study. The finiteeetent method results
are used as the baseline data. Three-dimensional model is constructed for the finite element analysis
The fluid region is divided into a number of identical 3-dimensional contained fluid elements
(FLUID80) with eight nodes having three degrees of freedom at each node. The fluid element
FLUID8O is particularly well suited for calculating hydrostatic pressures and fluid/satichations.

The circular cylindrical shell is modeled as elastic shell elements (SHELL63) with four nodes. The
model has 3840 (radially 4 x axially 20 x circumferentially 48) fluid elements and 1920 shell
elements as shown in Fig. 2.

The fluid boundary conditions at the top and bottom of the tank are zero displacement and
rotations. The nodes connected entirely by the fluid elements are free to move arbitrarily in three-
dimensional space, with the exception of those, which are restricted to motion in the bottom and top
surfaces of the fluid cavity. The radial velocities of the fluid nodes along the wetted shell surfaces
coincide with the corresponding velocities of the shells. For the shell, three boundary conditions are
considered such as clamped-clamped, clamped-free and simply supported-simply supported
conditions at both ends.
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Fig. 2 Finite element model of coaxial cylindrical shells with fluid

Sufficient number of master degree of freedoms is selected to calculate 200 frequencies and the
reduced method is used for the eigenvalue and eigenvector extractions, which employ the
Householder-Bisection-Inverse iteration extraction technique.

4. Results and discussion

Mode shapes of the fluid-coupled coaxial shells are obtained by the finite element method and
typical mode is plotted in Fig. 3, which shows the deformed mode shape of the fluid and shell
elements for the circumfemgal wavenumbemn = 3. The dotted lines in the figures represent the
undeformed shapes of the cylindrical shells.

The frequency comparisons between analytical solution developed here and dmigmtemethod
are shown in Table 2 for the clamped boundary conditions at both ends. The discrepancy is defined as

frequency by FEM- theoretical frequency
X100
frequency by FEM

Discrepancy % = (31)

The largest discrepancies between the theoretical and FEM results are 7.4% for the circumferential
wave numbern = 1 and 5.3% fon = 2. Discrepancies defined by Eq. (31) are always less than 8%
with RMS value of 5.3% and crest factor of 1.7, therefore the theoretical results agree well with
FEM results, verifying the validity of the analytical method developed.

All of the mode shapes can be classified into three mode categories according to the relative
moving drections between the inner and outer shells during the vibration : in-phase mode (Fig. 4),
out-of-phase mode (Fig. 3) and mixed mode (Fig. 5). The vibrational mode shapes show some
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Fig. 3 Typical mode shape of out-of-phase matde=1, n = 3)

ambiguous vibrational modes, neither apparent in-phase modes nor apparent out-of-phase modes
which are called mixed vibrational modes. Reviewing the vibrational mode shapes revealed that as
the axial mode number increases, the mixed vibrational modes appear frequently. As the
circumferential mode number increases, the out-of-phase and in-phase modes in the serial
vibrational modes appear alternatively.

The frequencies between coaxial shells with and without fluid-filled annulus are compared as
shown in Figs. 6 through 8 for different boundary abods at both ends of the shell. In the case of
shells without fluid-filled annulus, the inner and outer shells give almost the same frequencies for
lower circumferential mode numbers, but as the circumferential mode number increases the
frequencies of the inner shell were found to be larger than those of outer shell frequencies. Contrary
to this, for the case of shells with fluid-filled annulus, the frequencies of the inner shell are always
higher than those of outer shell as the frequency deviates its lowest point. All three cases of
different boundary conditions have the same trend.

The effect of fluid-filled annulus on the frequencies can be assessed using the normalized
frequency defined as:

Frequency with fluid- filled annulus
Frequency without fluig- filled annulus

Normalized frequency= (33)

Figs. 9 through 11 show the normalized natural frequencies for three different boundary conditions.
The normalized values are derived from in-phase and out-of-phase modes with respect to the inne
shell and outer shell in air conditions, respectively. This is based dadhthat generally in-phase
modes have more deflections of inner shell and out-of-phase modes have more deflections of oute
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shell. The reduction of the frequencies due to the inclusion of fluid-filled annulus is almost the same
for the different boundary conditions. The frequencies of the outer shell decreases more than those
of inner shell and the reduction rate ranges from 0.4 to 0.6 for the inner shell and from 0.1 to 0.6
for the outer shell. Also the lower circumferential modes are more affected by the inclusion of the
fluid-filled annulus for the outer shell, but the inner shell has almostahe seduction rate all
through the circumferential modes.

5. Conclusions

An analytical method to estimate the couplestjuencies of the coaxial cylindrical shells coupled
with fluid in the annular gap is developed using the series expansion method based on the Fouriel
transformation. To verify the validity of the analytical method developed, finite element method is
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used and the frequency comparisons between them are found to be in good agreement. The effect
fluid-filled annulus on the frequencies is investigated using a fingeneht method generating
following conclusions:
1) The reduction rate of the frequencies due to the inclusions of the fluid-filled annulus is almost
the same for all boundary conditions.
2) The inclusion of fluid-filled annulus affects the outer shell more than the inner shell.
3) The frequencies of the shells with fluid-filled annulus decrease to 0.4~0.6 and 0.1~0.6 of those
of shells in air for the inner and the outer shells, respectively.
4) For the case of outer shell, fluid-filled annulus effect is more significant for the lower
circumferential modes.

References

ANSYS (1998) ANSYS Structural Analysis GujdeNSYS, Inc., Houston.

Chen, S.S. and Rosenberg, G.S. (1975), “Dynamics of a coupled shell-fluid systeie’ar Engineering and
Design 32, 302-310.

Chung, H. (1981), “Free vibration of circular cylindrical shels”"Sound Vih.74, 331-350.

Fritz, R.J. (1972), “The effects of liquids on the dynamic motions of immersed sdlid€hgineering for
Industry 94, 167-173.

Gupta, R.K. (1995), “Sloshing in shallow cylindrical tanks”Sound Vih.18Q(3), 397-415.

Han, R.P.S. and Liu, J.D. (1994), “Free vibration analysis of a fluid-loaded variable thickness cylindrical tank”,
J. Sound Vih.1762), 235-253.

Jeong, K.H. and Lee, S.C. (1996), “Fourier series expansion method for free vibration analysis of either a
partially liquid-filled or a partially liquid-surrounded circular cylindrical shegmput. Struct58, 937-946.

Jhung, M.J. (1996a), “Hydrodynamic effects on dynamic response of reactor intdmald’,Pressure Vessels
and Piping 6X1), 65-74.

Jhung, M.J. (1996b), “Shell response of core barrel for tributary pipe btetk], Pressure Vessels and Piging
69(2), 175-183.

Sneddon, I.N. (1951} ourier TransformsMcGraw-Hill Book, New York.

Song, S.H. and Jhung, M.J. (1999), “Experimental modal analysis on the core support barrel of reactor internals
using a scale modelKSME International Journall3(8), 585-594.

Yoshikawa, S., Williams, E.G. and Washburn, K.B. (1994), “Vibration of two concentric submerged cylindrical
shells coupled by the entrained fluid”, Acoustic Society of Amerjc@b, 3273-3286.

Appendix
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