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Lateral buckling of beams with top bracing
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Abstract. This paper presents the lateral-torsional buckling (LTB) of beams or girders with continuous
lateral support at top flange. Traditional moment gradient fact@g ¢iven by AISC in LRFD
Specification for Structural Steel Buildingsd by AASHTO inLRFD Bridge Design Specifications were
reviewed. Finite-element method buckling analyses of doubly symmetric I-shaped beams with continuous
top bracing were conducted to develop new moment gradient factors. A uniformly distributed load was
applied at midheight and either or both end moments were applied at the ends of beams. The proposet
solutions are simple and accurate for use by engineers to determine the LTB resistance of beams.
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1. Introduction

Continuous span multigirder steel bridges are widely used in the highway bridge systems. The
steel girders spans in the direction of traffic flow from bent to bent and serve asntlaeypioad
carrying members. The structural system is tied together by a reinforced concrete deck slab and
transverse steel members, or diaphragms, which are connected to the girders. The top flange of th
continuous girders is continuously braced against lateral or torsional movement by metal formwork
during construction and in the completed bridge by the slab attached to the top flange. In this type
of bridge, lateral-torsional buckling of the girders can only result from negative bending moments
near the interior supports of the continuous spans.

American Association of State Highway and Transportation Officials (AASHS@cifications
(Standard 1996) have required transverse diaphragms to be placed in multigirder steel bridges at
spacing not exceeding of 7.6-m (25-ft) between lines of diaphragms since 1949. A theoretical
explanation for the required maximum spacing is not available. Between 1931 and 1949,
diaphragms were required at a maximum spacing of 6.1-m (20-ft). With regard to recent research
results of diaphragm behavior (Walker 1987, Moate al 1990, Keating and Crozier 1992,
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Azizinamini et al 1994, Stallingset al 1996, 1999), AASHTQ.RFD Bridge Design Specifications
(LRFD Specifications1994) do not have a strict requirement for diaphragms but allow the designer
to use diaphragms as needed. The new AASHRRBD Specificationg1998) also do not have the
mandatory 7.6-m diaphragm spacing limit.

For girders with non-composite section that do not meet the criteria set forth for width to
thickness ratios and lateral bracing requiredréaching the plastic moment capacity by AASHTO
LRFD Specifications(1998), AASHTO Equation defines the lateral-torsional buckling moment
resistance of I-shaped girder as

= 3.1EcbdﬂDJo 7728—D+ 9. 87&—%2 M, )
where G, is the moment gradient modifielg,; is the moment of inertia of the compression flange
about an axis in the plane of the wéb;is the laterally unbraced length;is the torsional constant
of the beamd is the depth of the beank is the modulus of elasticity of sted¥l, is the yield
moment resistance ofeam. Eq. (1) withC, = 1 is the elastic latal-torsional buding resistance
(Moc) for an I-shaped section under the action of constant moment in the plane of the web over the
laterally unbraced length.

The Gy, factor in Eqg. (1) is applied to account for the effects of variable moment along an

unbraced beam length. The equation for @efactor that has been used in many past design
specifications is

C, = 1.75+ 1.05—=U+ 0.3%5@ 2.3 @)

S
n
where My and M, are the smaller and larger moments at the ends of the unbraced length,
respectively. The ratio oM/M_ is taken as positive for moment causing reverse-curvature bending
and negative for moment causing single-curvature bending. Eq. (2) was developed for beams with
no applied loading between points of bracing. Due to this restriction, the equation is not
theoretically applicable for many practical problems.

The AASHTO LRFD specifications(1998) and the AISCOLRFD specifications(1998) have
incorporated the following expression f@, which is applicable for linear and nonlinear moment
diagrams

12.5M .,
2.5M 0 + 3M4 + 4Mjg + 3M,

where M. is the maximum moment along; Ma, Mg, andMc are the respective momentsLai4,
Lw/2, and 84/4; andL, is the spacing between braced points. There is no sign convention associated
with Eq. (3); the absolute value is used for all moments.

Most commonly in bridge design, the unbraced lengthn Eq. (1) is interpreted to be the
distance between diaphragm lines. For this interpretation, the lateral-torsional buckling moment
resistance does not account for any additional capacity provided by bracing between the ends of the
segment. In multigirder steel bridges, continuous lateral or torsional bracing at top flange is
provided by deck slab. Eg. (2) and Eq. (3) @&rcannot account for continuous top flange bracing
and produce very conservative estimates of lateral-torsional buckling moment resistances if top
flange bracing is present.

Cb:
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Trahair (1979) categorized the types of continuous restraint that may act, and studied their effects
on the elastic buckling of simply supported mono-symmetric beam-columns under uniform bending
and axial load. Trahair (1993) also provided a summary of the various theoretical studies that have
been conducted on beams with continuous braces. The general solutions provided are in many
instances too complicated for design purposes, or are in graphical forms that are difficult to
incorporate into design codes. SSRKZLiide (1998) presented new moment gradient factors for
beams braced at the ends and with continuous lateral bracing of the top flange. The loading is
applied at the top flange that is the most detrimental case because of the increase in the torque arr
as the beam buckles laterally. The proposed equation in the S8RIE (1998) includes only the
effect of lateral restraint and its accuracy is not well documented.

It is, therefore, the impetus of this study to investigate numerically the lateral-torsional buckling
behavior of beams with ctinuous top flange bracing and to develop methods for general load
cases that are analogous to current lateral-torsional buckling solu@gnsgthod) used in the
design of beams. The numerical tools used in this study are a commercially available finite-element
program MSC/NASTRAN (1998), and a graphical package MSC/PATRAN (2000). Finite-element
models with uniformly distributed loading at midheight and moments at ends include only the effect
of lateral restraint and conservatively neglect torsional restraowtided by coorete deck slab.

First, comparisons between solution from Trahair study (1979) and FEM resultsamwfs bwith
continuously lateral top flange bracing under uniform moment are considered to evaluate the finite
element model appropriateness. Second, FEM results for the LTB morsestarrees of dams
subjected to uniformly distributed load at midheight and moments at either or both enedased

to develop new moment gradient factors using the ratio of the length of bottom flange in
compression to the unbraced length of the bdagil..

2. Finite element modeling

Kirby and Nethercot (1979) were able to show in their bdsign for Structural Stabilitythat
the ratio of the LTB capacity of an I-shaped beam to that of a box section beam changes as the ratic
of the length to the depth of the beam changes. Therefore, the effect of the ratio of the length to the
depth of the beam was considered. Although a number of cross sections and load cases wer
considered in the finite element model verification study, the results described here focus on three
load cases and one cross section (W33 x 169). Fig. 1 shows three basic simple span cases: bear
subjected to uniform bending, beams subjected to only one concentrated load at the center of bearnr
and beams subjected to uniformly distributed load along entire span. The loading was applied at
midheight of the cross section. Table 1 and Table 2 show the analytical results of these load case:
and comparisons of FEM results to values from the SSR@le (1998) or AASHTOLRFD
Specificationg1998), Eq. (3). These tables present a good agreement between th&8iEREnd
FEM results in the range &f/d from 20 to 40.

The critical moment resistance aédms with continuous lateral top flange bracing under uniform
bending can be obtained by using Trahair's solution (1979). A comparison between Trahair solution
and FEM results under uniform bending was also conducted to verify the finite element models
used in this study. Five rolled I-shaped beams with different ratios of unbraced length td_gdpth,
were considered. The FEM models consist of 6 four-node plate elements through the depth of the
web and 2 elements across each flange. At the ends of the unbraced length, the beam was free
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Table 1 Analytical results of three basic load cases

Fig. 1 Three load cases on simple span beams

Ly (M) Ly/d Co
(1) 2) Case 1 Case 2 Case 3
3 4) ®)
12.2 14.19 1.00 1.304 1.137
15.2 17.74 1.00 1.330 1.138
25.9 30.16 1.00 1.350 1.135
36.6 42.58 1.00 1.350 1.131
1f=0.3048 m
Table 2 Comparisons of moment gradient modifigr
SSRCGuide Sﬁé;';;%;ﬁ';gg) FEM Results
1) (1998) (Lyd = 30.16)
(@) (Ba.9) ()
(3)
Case 1 1.00 1.00 1.00
Case 2 1.35 1.32 1.35
Case 3 1.12 1.14 1.13
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warp. The critical moments of these beams under uniform bending are presented in Table 3. Table
shows that the LTB moments from FEM analyses are in very good agreement with the values from
the Trahair's solution.

Although there are a variety of finite elements available in MSC/NASTRAN (1998), only QUAD4
is used throughout the FEM analyses because of its simple wetrioally stable performance. So,
the full thiee-dimensional configuration of the crosst&ecusing QUAD4 elements was coresidd.
Three load types shown in Fig. 2 were considered to investigate the lateral-torsional buckling of
beams with continuous lateral top flange bracing. Fig. 2 also shows the moment diagrams of these
three load types. The typical buckling mode shapes of beams with continuous lateral top flange
bracing are shown in Fig. 3. The models of Fig. 3 are subjected to uniformly distributed load and
two negative end moments. Since the second eigenvalue of each model is meaningless, only firs
eigenvalue needs to obtain critical moment.

Table 3 Comparisons between Trahair's Solution (1979) and FEM Results
Critical Moment (kKN-m)

Cross Section ht, Lyd

(1) ) (3)  Trahair Solution ~ FEM Results  Diff. (%)

4) ®) (6)
W30x477 19.2 42 12593 12176 3.3
W30x391 226 20 8947 8550 4.4
W36x230 456 40 1210 1218 0.7
W36x135 57.9 20 480 479 0.3
W40x149 593 38 309 320 3.5

1 ft = 0.3048 m, 1 kip = 4.45 kN, 1 kip-ft = 1.356 kKN-m
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Fig. 2 Three load types and moment diagrams



618 Jong Sup Park and Young Jong Kang

P

La) Furss mode shag:

P

-

=

(b Sepomd mode shape

Fig. 3 Typical buckling mode shapes of beams with top bracing

3. Finite-element method results and design recommendations

FEM results for five beams subjected to 54 load cases are considered here. From the results of th
finite element investigation, it was found that LTB resistance of a beam with continuous top flange
bracing can be characterized by the ratio of length of bottom flange in compression to the unbraced
length, L/Lp. This ratio of lengths is also used to plot the results because it is a convenient way to
summarize results for various applied loading cases. Two types of design equations were developec
for beams with midheight loading. One of them is as below:

Mcr = C:blMocr (4)
In which
_ 5 apket] Lep
Cp1 = Z'SGDLb E]+ 7.86 0.3< L, <1.0
_ ooockert _ 11 qckeem Lep
Cp = ZOODL,,D _110E]LbD+ 22 0.15< n <0.3 (5)

where Ly, is the length of bottom flange in compressibpjs the unbraced lengtiM,, is the LTB
moment of beams in uniform bending as presented in Eq. (1)Gyith 1; M, is the LTB moment
of beams with continuously lateral bracing at the top flange subjected to a uniformly distributed
load and end moments.

FEM results for load type I, load type Il, and load type Ill are shown in F{g}. &), and (c),
respectively. The graphs show plots of the critical moment fsljdM,.,, versus the ratio dfcy/Ly.
Figs. 4(a) and (b) for load type | and type Il show that the ratdd. oM, increases as the ratio of
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Fig. 4 FEM results and proposed solution @

h/t, increases in the range of less thagl, = 0.5. Fig. 4(c) for load type Il also shows that the
ratio of M, /Mo, increases as the ratio bft, increases in the range of less thapl, = 0.25.
Moreover, the ratio oM../M, increases as the warping resista@g#) of the beams increases.

Fig. 4(d) shows comparison between the FEM results and the proposed equations for all load
types. As shown in Fig. 4(d), although the predictions from Eg. (4) are very conservative for smaller
values ofL/Ly, EQ. (4) produces reasonable estimate ofGhevalues with respect to the finite
element method results for all rangesLgflL,. The use of Eq. (5) should be limited for beams with
0.15< Le/Lp < 1.0. For beams with./Ly, less than 0.15C,; must be taken as very high values,
and as a results, the LTB moment in this range should not control the flexural strength of these
beams.

The other new design equation for LTB behavior of beams subjectedsttdbouded load at
midheight and end moments was developed as:

I\/Icr = Cbzcbl\/locr (6)
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Fig. 5 FEM results and proposed solution @

in which

Cp, = 1.6

_ g ke
Cuz = 35251 - 35.

b1} 10.4

L
0.15< - <05
Lo

(7)

where the definition ol L, Mo, and M, are the same as in Eq. (4) and Eqg. &);is the

traditional moment gradient factor as presented Eq. (3). Therefore, a lateral-torsional buckling
moment resistance of a steel beam with continuous lateral top flange bracing can be obtained
multiplying proposed Eqg. (7) fo€,, by LTB moment resistance),, from Eq. (1).

FEM results for load type |, type Il, and type Il are shown in Fig. 5(a), (b), and (c), respectively.

Fig. 5(d) is a graph for all these load types. Fig. 5(d) shows that LTB capacities of these beams
would be calculated by 1.6 times than the values from Eq. (1) in the range ©fL@,&, < 1.0,

and that the proposed solution produces somewhat conservative values for some cases (relativel
stocky beam) in range of 0.X5L,/Ly, < 0.5. Fig. 5(d) indicates that the equations @gs can be

used conservatively for beam design to calculate the LTB capacity of a beam.
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3. Applicatons

Existing continuous multispan bridges shown in Fig. 6 were considered to investigaly the
equations. Fig. 6 shows beam details and applied loading. Model | and model Il of Fig. 6 are
interior spans of continuous beams so that these models have a negative end moment at each er
and a uniformly distributed load. Model 1l of Fig. 6 is a end span of a continuous beam so that
these model has a negative end moment at one end and a uniformly distributed load. Table 4 show
each cross-section property of all models.

Table 5 presents comparisons between the LTB moment resistances from the design equations an
the FEM results for the continuous multispan bridges of Fig. 6. The beam models are free to warp at

43, BkMim (ZkiTE)
= Moded | Y Modelm
||
18.29m (BOf) | 25, 30m (B3 18.29m |B0F)
WlEx150 Witai52 " W3Gx150
(a) Three-span eontinuous bridge
4.3 BEMim [ 3k
, | ! l | .
0 modetn & ) U L
- —r v
WiBx182 WIEx 1680 Wisx1i82

5 (R 20.34m |66, T4ft)

i) Five=span comtinmuous bridse

Fig. 6 Beam details for applications

Table 4 Cross-section properties in the existing multispan bridge

Web Flange
Section Depth @) Thicknesst,) Width (o)  Thicknesstf)
@) (cm) (cm) (cm) (cm)
2) (3) (4) 5)
W36 x 150 91.06 1.59 30.42 2.39
W36 x 160 91.47 1.65 30.48 2.59
W36 x 182 92.28 1.84 30.67 3.00

1in. =254 cm
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Table 5 Comparisons between FEM results and design equation

M Moment Mer (KN-m) Diff
Model oo Gradient Bracing Design o
(1) (k'(\‘z')m) Modifier @) Eq. FEM ((g’))
@3) ©) (7)
CrF@=10 Ends 541 1088 50.3
| 541 CF® =195 Ends 1055 1088 3.0
Cy = 6.78 Continuous 3668 5226 29.8
CLC@Cy, = 4.17 Continuous 2256 5226 56.8
C,Fa@=1.13 Ends 788 2792 71.8
' 697 C,FaCE 3.03 Ends 2111 2792 24.4
Cp, = 6.48 Continuous 4517 5462 17.3
CFe®C,, = 4.88 Continuous 3401 5462 37.7
CF@=175 Ends 942 1604 41.3
" 538 C,E® =231 Ends 1243 1604 225
Cpy = 6.94 Continuous 3734 4023 7.1
C®c, = 7.18 Continuous 3863 4023 3.9

1 ft = 0.3048 m, 1 kip = 4.45 kN, 1 kip-ft = 1.356 kN-m

the ends of the unbraced length. The last column of Table 5 is the difference percentage between th
results from several equations fGf presented in previous section, and the results of finite element
models having each loading and constraint condition of design equations. As shown in this table, the
Cut% @ equation for simply supported beams produces very conservative values for all these cases
and theC,5%® equation in the current AISC and AASHTIORFD Specificationgjives reasonably
conservative values. Th€, and Cy, equations proposed in this study for beams with continuous
lateral top bracing subjected to midheight loading provide conservative values; in particlaCthe
equation gives more conservative value thanGheequation. These two new equations can be used

to obtain the LTB moment resistance of beams with continuous lateral top bracing.

4. Conclusions

Lateral-torsional buckling resistance okdams was found to be dramatically increased by
providing continuous bracing along the length. It was shown that the LTB resistaneants kvith
continuous bracing depended upon the ratio of the length of bottom flange in compression to the
unbraced lengthl /L, Two types of design equations for beams with midheight loading were
proposed using the ratio af.,/L, The proposed equations indicated that the LTB capacity of a
beam is improved significantly by continuous lateral bracing, especially, in the rangglefless
than 0.3. The critical moment can be estimated as approximately 1.6 times the nominal moment
based on LTB capacityl,, from current AASHTOLRFD specificationg1998) in the range of
0.5 £ Lg/Lp < 1.0. The proposed solutions are simple and accurate for use by designers to
determine the LTB resistance of beams.
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Appendix |. Example problems

Determine the critical moment resistances of the continuous beam spans shown in Fig. 7. All beams are of
A36 steel [, = 36 ksi).

(1) Center Span
M, = 2156 k-ft for W36 x 182 My = 1579 k-ft
Mmax = 1579 k-ft,Ms = 359 k-ft, Mg = 1005 k-ft,Mc = 359 k-ft,
L, = 83 ft,Lyh = 30, L./, = 2(15.62)/83 = 0.376

_ ye Jo drf_ _ ; —
M,,, = 3.14EE|_b 0-77%;5” 9.875'_—bD = 399 k-ft for W3&182 withL,, = 83 ft

Cyy = —2.86%'L—°:E+ 7.86 = 6.78
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Fig. 7 Three-span continuous bridge for example

_ ap okl oo _
Cro = 35252 ~35.25%3+ 10.4 = 2.14

12.5M e
2.5M, 0+ 3M, + 4M + 3M,

Mg = CosMogr = (6.78) (399) = 2705 k-ft My = 1579 k-ft
Or My = Cp,CoMoer = (2.14) (1.95) (399) = 1664 k-ft Mymay = 1579 k-ft OOK.

G = = 1.95

(2) End Span
Mp = 1744 Kk-ft for W36 x 150 My = 1579 k-ft
Mmax = 1579 k-ft,M, = 172 k-ft,Mg = 561 k-ft, M= 618 k-ft,
L, = 60 ft, Lyh = 20.63,Ly/L, = 17.56/60 = 0.293

_ ELLCD Jn d EF_ _ : _
Moo, = 3.14E 0'77%;5’“ 9.87%_:)D = 397 k-ft for W36x 150 withL, = 60 ft

b

_ eo] _
Cyy = —2. 86DLbD+786 6.94
C,, = 35. ke _gg obeD, 104 = 319

0L, 0 0L, 0
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12.5M,,,

Cy

T 2.5M .+ 3M, + 4M, + 3M,

=231

Mg = CoiMogr = (6.94) (397) = 2755 k-ft My = 1579 k-ft
Or Mg = Cp,CoMoer = (3.11) (2.31) (397) = 2852 K-ft Myax = 1579 k-t 0OK.

Appendix Il. Notation

The following symbols are used in this paper:

va Cblv and CbZ

: modifier for moment gradient;

: depth of a beam;

: modulus of elasticity of steel;

: moment of inertia of the compression flange about an axis in the plane of the web;
: torsional constant for a section;

: laterally unbraced length;

: length of bottom flange in compression;

: absolute value of moment at quarter point of the unbraced beam segment;

: absolute value of moment at centerline of the unbraced beam segment;

: absolute value of moment at three-quarter point of the unbraced beam segment;
: lateral torsional buckling strength of beam with general loading condition;

: larger moments at the ends of the unbraced length;

: absolute value of maximum moment in the unbraced beam segment;

: nominal moment based on lateral-torsional buckling resistance;

. lateral torsional buckling strength of beam under constant moment;

: smaller moments at the ends of the unbraced length;

: yield moment resistance of beam.
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