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Abstract. In this paper, multi-story buildings with shear-wall structures and with narrow rectang
plane configuration are modeled as a multi-step flexural-shear plate with varying cross-sectio
buckling analysis. The governing differential equation of such a plate is established. Using appr
transformations, the equation is reduced to analytically solvable equations by selecting suitable exp
of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear
with variable stiffness are derived for several cases. A new exact approach that combines the 
matrix method and closed from solution of one-step flexural-shear plate with continuously va
stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A num
example shows that the present methods are easy to implement and efficient.

Key words: buckling; plates; tall buildings.

1. Introduction

Buckling is a primary consideration in the design of many structures, as it may reduce the
carrying capacity. Buckling of structures depends on many factors and parameters, including
defining the structural deformation characteristics, the structural geometry, the material prop
the support and restraint conditions and the external load action. Thus, the appropriate sele
buckling analysis model should be made based on these factors and parameters mentione
Experimental results obtained in the field measurements of buildings (e.g., Wang 1978, Li 
1994, Jeary 1997) have shown that for a multi-story frame building with narrow rectangular 
configuration (narrow building), e.g., B/L < 1/4, where B and L are the width and length o
rectangular plane, respectively, shear deformation is usually dominant in the total deformation
horizontal vibration. They reported that not only a relative motion among transverse fram
parallel, but also a parallel relative motion among floors is observed. The whole trans
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deformation of a narrow frame building is similar to that of a cantilever shear plate (Li et al. 1998,
Li 2000a). Thus, when analyzing free vibration and buckling of a narrow frame building, it is
possible to regard such a structure as a cantilever shear plate. However, a narrow building with
shear-wall structures may not be simplified as a shear plate for structural dynamic or bu
analysis. This is due to the fact that it has been recognized that the flexural deformation of 
walls is dominant in the total lateral deformation of such a narrow building with shear-walls. It
reported (e.g. Li et al. 1996, Li 2000b) that in general a relative motion among transverse s
walls is parallel, because the main deformation of each floor in-plane is shear deformation,
relative motion among floors is not parallel, but rotation. Thus, the whole transverse deformat
a narrow building with shear-walls is similar to that of a cantilever flexural-shear plate. Hence, it is
reasonable to treat a narrow building with shear-wall structures as a cantilever flexural-shear plate
for vibration and buckling analysis, that is, the shear deformation is dominant in the longitu
direction (the x-direction in Fig. 1) and the flexural deformation is dominant in the lateral direct
In general, the distribution of flexural stiffness of shear-walls is stepwise variation along the h
of the building, thus, it is reasonable to treat a narrow building with shear-wall structures as a mult
step cantilever flexural-shear plate with variably distributed stiffness for buckling analysis. 

The buckling of plates is a subject of considerable scientific and practical interest that has been
studied extensively (e.g., Timoshenko and Gere 1961, Reddy 1998). However, there are ve
equations for buckling of plates with variable cross-section where exact solutions can be ob
These exact buckling solutions for shear plates or flexural plates are available only for certain
shapes and boundary conditions. For example, Wittrick and Ellen (1962) studied the buckl
rectangular plates with two opposite edges simply supported and the other two simply suppo
clamped. Linear and exponential thickness variations in one direction were considered in their
Chehil and Dua (1973) investigated the buckling of simply supported rectangular plates with a linea
thickness variation in one direction. Kobayashi and Sonoda (1989) presented an exact me
solve the buckling problem of uniaxially compressed rectangular plates with linearly tapere
thickness analytically. Liew et al. (1996) derived analytical buckling solutions for Mindlin plate
involving free edges. Recently, Xiang and Reddy (2001) presented exact solutions for free vibr
and buckling of rectangular plates with intermediate line-supports using the Levy method. It s
be mentioned that the concept and analytical model of the flexural-shear plates, which were r

Fig. 1 A multi-step flexural-shear plate
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proposed by Li (1999, 2000b, 2000c), are different from those of flexural plates or shear plate
buckling of multi-step flexural-shear plate with varying cross-section has not previously 
investigated and thus, the solution of this problem has not been proposed yet in the literature.

Apart from the several analytical methods for analyzing limited classes of plates, 
approximate methods have been developed. For example, Liew and Wang (1992) condu
buckling analysis of plates with straight/curved internal supports under uniform compression 
the pb-2 Rayleigh-Ritz method. Wang et al. (1994) presented numerical buckling solutions f
isotropic inplane loaded Mindin plates of regular polygonal, elliptical, semicircular and an
plates. 

In this paper, multi-story buildings with shear-wall structures and with narrow rectangular plane
configuration are modeled as a multi-step flexural-shear plate with varying cross-sectio
buckling analysis. An attempt is made here to establish and solve the governing differential eq
for buckling of one-step and multi-step flexural-shear plates with varying stiffness. Exponentia
functions and power functions are adopted to describe the distribution of flexural stiffness and the
exact solutions of the governing differential equation are given by means of Bessel function
trigonometric functions. It is proved that a flexural-shear plate with free-free end conditions i
longitudinal direction, where the shear deformation is dominant, can be simplified by a flexura
in buckling analysis. Numerical example shows that it is possible to simplify a multi-step flex
shear plate with step varying distributions of stiffness as a one-step flexural-shear plate with
continuously varying stiffness for buckling analysis.

The main purpose of this work is to present exact solutions and to propose an efficient ana
method for the buckling analysis of multi-step flexural-shear plates with variable stiffness. In th
absence of the exact solutions, this problem may be solved using approximated methods (e
Ritz method) or numerical methods (e.g., the finite element method). However, the present
solutions could provide adequate insight into the physics of the problem and can be 
implemented. The availability of the exact solutions will help in examining the accuracy of the
approximate or numerical solutions. Therefore, it is always desirable to obtain the exact solut
such problems.

2. Theory

A multi-step flexural-shear plate is shown in Fig. 1. The axial force of the i-th step plate, Ni, is
given by

(1)

where akq is directly acted on the top of the k-th step plate.
In order to establish the governing differential equation for buckling of the i-th step plate, an

infinitesimal element of the i-th step plate is taken, as shown in Figs. 2 and 3. Fig. 2 shows
element that is rotated through an angle of 90o. A projection of the element shown in Fig. 2 on th
y-z plane is presented in Fig. 3. The size of the element is dx × dy. Considering the equilibrium
condition in the z-axis for all the forces acting on the element leads to

Ni akq
k i=

n

∑=
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(2)

where Qxi and Qyi are the shear forces acting on the element (see Fig. 2).
Using the equilibrium equation of moment of the forces acting on the element about the z-axis

gives

(3)

where Wi is the displacement of the plate in the z-direction at the point (x, y), Myi is the bending
moment about the x-axis.

As is well known, the bending-curvature relation is given by (see Fig. 3)

(4)

where Kyi is the transverse flexural stiffness in the y-direction.
As discussed previously, the deformation in the x-direction is shear deformation only, one yields

(5)

where Kxi is the transverse shear stiffness in the x-direction.
Substituting Eqs. (3), (4) and (5) into Eq. (2) gives

(6)

It is assumed that Kx is only a function of y as follows

(7)

Fz 0,
∂Qxi

∂x
----------

∂Qyi

∂y
----------+=∑ 0=

Mz∑ 0, Qyi
∂Myi

∂y
----------- Ni

∂Wi

∂y
---------–= =

Myi Kyi

∂2Wi

∂y2
-----------–=

Qxi Kxi
∂Wi

∂x
---------=

∂
∂x
----- Kxi

∂Wi

∂x
--------- 

  ∂2

∂y2
-------- Kyi

∂2Wi

∂y2
-----------

 
 
 

– Ni

∂2Wi

∂y2
-----------– 0=

Kxi Kiϕ i y( )=

Fig. 2 A element of the plate Fig. 3 A projection of the element on the y-z plane
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Because Kx is mainly dependent on the size and material properties of building floors, and
stiffness distribution of each floor is usually approximately uniform along the x-direction, thus, this
assumption is reasonable for most narrow buildings.

Using the method of separation of variables gives

(8)

Substituting Eq. (8) into Eq. (6) leads to

(9)

The left hand side of the above equation is a function of x and the right hand side is a function o
y. Thus, both sides should be equal to a constant. It is assumed that the constant is (−α i

2), then, two
ordinary differential equations are obtained from Eq. (9) as follows

(10)

(11)

In general, Eq. (10) should be solved first. It is easy to find the general solution of Eq. (1
follows

(12)

where

(13)

A narrow building treated as a flexural-shear plate has free-free end conditions in the x-direction,
i.e. the shear forces are zero at the free-free end conditions

at x = 0 and x = L (14)

where L is length in the longitudinal direction of the plate.
Using Eqs. (12) and (14) gives the eigenvalue equation as

sinaiL = 0 (15)

or

(16)

in which aij represent the value of ai corresponding to the j-th mode of buckling.

Wi x y,( ) Xi x( )Yi y( )=

Ki

d2Xi

dx2
----------

Xi

----------------

d2

dy2
-------- Kyi

d2Yi

dy2
----------

 
 
 

Ni

d2Yi

dy2
----------+

Yiϕ i y( )
-------------------------------------------------------=

Ki
d2X

dx2
--------- α i

2X+ 0=

d2

dy2
-------- Kyi

d2Yi

dy2
----------

 
 
 

Ni

d2Yi

dy2
---------- αi

2ϕ i y( )Y+ + 0=

Xi x( ) C1i aisin x C2i aicos x+=

ai
2 αi

2

Ki

-----=

dX
dx
------- 0=

aij
j 1–( )π

L
-------------------=
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at the

in
The minimum aij is equal to zero when j = 1, the corresponding mode of buckling is

X1i(x) = constant (17)

This constant can be taken as any value, usually taken as 1.
It is evident that a flexural-shear plate with free-free end conditions in the x-direction can be

simplified as a flexural bar in the y-direction for buckling analysis. In this case, α = 0, Eq. (11)
becomes

(18)

This equation can be rewritten in terms of Eq. (4) as follows

(19)

The general solution of this equation can be expressed as 

(20)

where S1i(y) and S2i(y) are linearly independent solutions of Eq. (19) and D1i , D2i are constants of
integration. It is obvious that S1i(y) and S2i(y) are dependent on the expression of Ky. Several cases
are considered and discussed as follows:

Case 1. Kyi = K1i = constant (21)

If the flexural stiffness of the i-th step plate is constant, then

(22)

Case 2. (23)

where αi and βi are parameters that can be determined by the values of the flexural stiffness 
critical sections of the i-th step plate; H is the height of the plate.

Substituting Eq. (22) into Eq. (19) and setting

(24)

one obtains a Bessel equation, the two linearly independent solutions are as

(25)

The exact solutions for other six types of distributions of Kyi are also derived and are presented 
the Appendix of this paper.

d2

dy2
-------- Kyi

d2Yi

dy2
----------

 
 
 

Ni

d2Yi

dy2
----------+ 0=

d2Myi

dy2
-------------

Ni

Kyi

-------Myi+ 0=

Myi D1iS1i y( ) D2iS2i y( )+=

S1i y( ) Ni

K1i

-------sin y, S2i y( ) Ni

K1i

-------cos y==

Kyi α ie
βi

y
H
----–

=

η e

βi y

2H
-------

=

S1i y( ) J0 λe
βy
2H
-------

 
  , S2i y( ) Y0 λe

βy
2H
-------

 
 = , λ2 4NiH

2

α iβi
2

---------------==
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After S1i(y) and S2i(y) are found, differentiating Eq. (20) obtains 

(26)

Eqs. (20) and (26) can be expressed as a matrix equation as follows

(27)

in which

(28)

The relationship between the parameters introduced above at the two ends of the i-th step can be
expressed as

(29)

in which

(30)

[Ti] is called the transfer matrix because it transfers the parameters at the end yi0 to those at the end
yi1 of the i-th step.

The relationships of the parameters between the i-th step and the (i + 1) step plate at the
connection section are as

(31)

Applying Eq. (31) to the end of the (i + 1)-th step and that of the i-th step leads to

(32)

Myi′ y( ) D1i S1i′ y( ) D2i S2i′ y( )+=

θyi y( ) D1i

S1i′ y( )
Ni

---------------- D2i

S2i′ y( )
Ni

----------------
Doi

Ni

-------+ +=






θyi y( )
Myi y( )
Myi′ y( )

Wi y( )[ ]
D1i

D2i

D0i

=

Wi y( )[ ]

S1i′ y( )
Ni

----------------  
S2i′ y( )

Ni

----------------  
1
Ni

-----

S1i y( )  S2i y( )  0

S1i′ y( )  S2i′ y( )  0

=

θyi yi1( )
Myi yi1( )
Myi′ yi1( )

Ti[ ]
θyi yi0( )
Myi yi0( )
Myi′ yi0( )

=

Ti[ ] Wi yi1( )[ ] Wi yi0( )[ ] 1–=

θyi yi0( ) θy i 1–( ) y i 1–( )1( )=

Myi yi 0( ) My i 1–( ) y i 1–( )1( )=

Myi′ yi0( ) M ′y i 1–( ) Ni Ni 1––( )θy i 1–( ) y i 1–( )1( )+= 





θyi yi 1( )
Myi yi 1( )
Myi′ yi 1( )

TiN[ ]
θy i 1–( ) y i 1–( )1( )
My i 1–( ) y i 1–( )1( )
M ′y i 1–( ) y i 1–( )1( )

=
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The relationship between the parameters of the n-th step and those of the first step can 
established by using Eqs. (32) and (29) repeatedly as follows

(34)

where

(35)

and [T] has the form as

(36)

The elements Tij (i, j = 1, 2, 3) can be found from Eq. (35)
The boundary conditions in the y-direction are as follows

(37)

Substituting Eqs. (37) into Eq. (34) gives

(38)

From the above equation, one yields

(39)

Because , we have,

(40)

This is the eigenvalue equation of a multi-step cantilever flexural-shear plate with free-free
conditions in the x-direction, setting n = 1 gives that of a one-step plate. Obviously, the eigenva
equation is a transcendental one. The minimum eigenvalue root of buckling can be found by u
trial method.

TiN[ ]
1  0  0

0  1  0

Ni Ni 1–   – 0  1

Ti[ ]=

θyn yn1( )
Myn yn1( )
Myn′ yn1( )

T[ ]
θy1 y10( )
My1 y10( )
My1′ y10( )

=

T[ ] TnN[ ] T n 1–( )N[ ]… T2N[ ] T1[ ]=

T[ ]
T11  T12  T13

T21  T22  T23

T31  T32  T33

=

θy1 y10( ) 0= , My1′ y10( ) 0= , Myn′ yn1( ) 0=

θyn yn1( )
0

Myn yn1( )

T[ ]
0

My1 y10( )
0

=

T22My1 y10( ) 0=

My1 y10( ) 0≠

T22 0=
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3. Numerical example

A residence building with narrow rectangular plane configuration located in Beijing has 24 st
Fig. 4 shows a sketch of this building. There are six shear-walls in each storey (Fig. 4b). Alt
this building looks like a one-step plate, the distribution of stiffness of which is stepwise var

[Note: The dotted line and the values in parentheses are the evaluated results by using Eq. (44)]

Fig. 4 A narrow building
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(Fig. 4c) due to the shear-walls with varying thickness along the building height. The procedu
determining the critical buckling force of the narrow building is as follows:

3.1 Calculation model

From the distribution of the stiffness (Fig. 4c), it is assumed that this building can be treated as a
four-step cantilever flexural-shear plate with free-free end conditions in the x-direction for buckling
analysis and four constant linear distributed axial forces are acted on the top of each ste
respectively. Ni is the equivalent axial force of the i-th step plate, and N4 = q, N3 = N4 + q, N2 =
N3 + q, N1 = N2 + q.

In order to apply the method proposed in this paper to the buckling analysis of this buildin
step varying distribution of flexural stiffness is approximated by a continuously varying one
Fig. 4c).      

3.2 Determination of the flexural stiffness Ky

The total flexural stiffness of the six shear-walls, EI1, of the first step (from the first storey to th
sixth storey) is found as

The total flexural stiffness of the second step (from the seventh storey to the twelfth stor
found as

The total flexural stiffness of the third step (from the thirteenth storey to the eighteenth s
and the fourth step (from the nineteenth to twenty-fourth storey) are found as

The stiffness of the first, second, third and fourth step, K11, K12, K13, K14 are the values of EI1, EI2,
EI3, EI4 divided by the length of the plate (i.e., the length of this building) as follows

3.3 Determination of the shear stiffness, Kxi , in the x-direction

The shear stiffness in the x-direction of the i-th step, Kxi , is the value of the shear stiffness of th
i-th floor, GF, divided by the storey height.

Because the stiffness, GF, for each floor of this building is a constant, i.e., ϕ (y) in Eq. (7) is
equal to 1, GF is found as 7.8 × 108 N, we have

EI1 4.64 1012 N·m2×=

EI2 3.84 1012 N·m2×=

EI3 3.07 1012 N·m2×=

EI4 2.32 1012 N·m2×=

K11

EI1

L
-------- 7.73 1010 N·m, K12 6.4 1010 N·m,×=×= =

K13 5.12 1010 N·m, K14 3.87 1010 N·m×=×=
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In fact, it is not necessary to determine K2i, because this building is treated as a four-st
cantilever flexural-shear plate with free-free end conditions in the x-direction, as discussed
previously, such a kind of plate can be replaced by a four-step cantilever bar in the y-direction for
buckling analysis.

3.4 Determination of the transfer matrix

The transfer matrix for this example is found as

(41)

where
[TiN] is given by Eq. (33), i.e.,

(42)

Because Kyi = K1i (i = 1, 2, 3, 4), the special solutions are given by Eq. (22), and the m
[Wi(y)] is as

(43)

3.5 Determination of the eigenvalue equation

Using Eqs. (41), (42) and (43) obtains [T], the eigenvalue equation is Eq. (40). It is evident th
the unknown variable is only q.

Solving the eigenvalue equation obtains the critical distributed axial force

Because qcr is a constant linear distributed axial force, the critical buckling force is

Kxi Ki
7.8 108×

3
--------------------- 2.8 108 N m⁄×= = =

T[ ] T4N[ ] T3N[ ] T2N[ ] T1[ ]=

TiN[ ]
1  0  0

0  1  0

Ni Ni 1––   0  1

Wi yi1( )[ ] Wi yi 0( )[ ] 1–=

y10 0 y11 y20 16.5= = y21 y30 33= = y31 y40 49.5= = y41 66=, , , ,=

Wi y( )[ ]

1
K1iNi

-------------
Ni

K1i

-------ycos   1
K1iNi

-------------
Ni

K1i

-------ysin   –
1
Ni

-----

Ni

K1i

-------ysin
Ni

K1i

-------y  cos 0

Ni

K1i

-------
Ni

K1i

-------ycos   
Ni

K1i

-------– cos
Ni

K1i

-------y 0

=

qcr 1.93 107 N·m×=

qcr L⋅ 1.158 109 N×=
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If the step varying distribution of flexural stiffness is approximated by a continuously varying
described by

(44)

and it is assumed that all distributed axial forces are acted on the top of this building.
Then, α, β, b can be determined by K11 and K14 as follows

The eigenvalue equation is also Eq. (40), but n = 1 in which. T22 for this case can be determine
from Eq. (20) and Eq. (A-5) in the appendix as well as the boundary conditions in the y-direction as
follows

(45)

where

Solving Eq. (45) obtains

The critical value of q, which is only acted on the top of the building (Fig. 4a), is found as

The critical buckling force is

If , i.e., only a linear distributed axial force, q, is acted on the top of the
building (Fig. 4a), then, using the calculation model of the four-step flexural-shear plate gives

It can be seen from the above results that the value of qcr'  is closed to that of qcr'' .  This implies
that a multi-step flexural-shear plate with step varying stiffness can be treated as a one-step f
shear plate with continuously varying stiffness for buckling analysis.

4. Conclusions

In this paper, narrow buildings with multi-step shear-walls are treated as a multi-step flexura

Ky α 1 βy+( )b
=

α K11 7.73 1010 N·m, β 3
4
--- , b

1
2
---= , v=× 2

3
---= = =

J 1
3
---–

4n
3
------ 

  J 2
3
---–

4n
3

------ 4
3
4
---–

⋅ 
  J2

3
---

4n
3

------ 4
3
4
---–

⋅ 
  J1

3
---

4n
3

------ 
 –=

n
q

αβ2
---------=

n 3.6366=

qcr′ 3.63 107 N m⁄×=

qcr′ L⋅ 2.178 109 N×=

N1 N2 N3 N4= = =

qcr′′ 3.62 107 N m⁄×=
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shear plate for buckling analysis. The governing differential equation of such a kind of pla
established and is reduced to a Bessel’s equation or an ordinary differential equation with constant
coefficients by selecting suitable expressions of the distribution of stiffness. The exact bu
solutions for a one-step flexural-shear plate with variable stiffness are derived for several importan
cases. A new exact approach that combines the transfer matrix method and the derived clos
solutions of one-step flexural-shear plate with continuously varying stiffness is presented. It
shown that a flexural-shear plate with free-free end conditions in the longitudinal direction, where
the shear deformation is dominant, can be simplified as a flexural bar for buckling analysi
boundary conditions of the bar are the same as those of the plate. The numerical example
that: (1) the present methods are easy to implement and efficient for analyzing the buckling of
multi-step flexural-shear plates, (2) it is possible to regard a multi-step flexural-shear plate wit
varying cross-section as a one-step flexural-shear plate with continuously varying cross-sect
buckling analysis.
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Appendix: The exact solutions of Eq. (19) for six cases

Obviously, the closed form solutions of Eq. (19) are dependent on the distributions of flexural stiffnes
the following six types of distributions of Kyi, the exact solutions are found as

Case 3. (A-1)

Using the same approach adopted in Case 2, one obtains

(A-2)

Case 4. (A-3)

in which αi, βi, bi are parameters that can be determined by the values of the flexural stiffness at y = 0, H/2 and
H, H is the total height of the plate. 

Substituting Eq. (A-3) into Eq. (19) and letting

(A-4)

one obtains a Bessel equation, the solutions are

(A-5)

where Jν(·) is the Bessel function of the first kind, of order v; Yν(·) is the Bessel function of the second kind
of order v.
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If bi = −2, then

for (A-6)

or

for (A-7)

or

for (A-8)

Case 5. (A-9)

This is an alteration of Case 4. The solutions are

(A-10)

where

(A-11)

If ci = −2, then

 for (A-12)

or

for (A-13)
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or

for (A-14)

Case 6. (A-15)

The solutions for this case are given by

(A-16)

where

(A-17)

Case 7. (A-18)

The solutions for this case are as

(A-19)

where

(A-20)

Case 8.

The solutions for this case are as

(A-21)

(A-22)

in which Φ(x, x; x) represents the Φ-function 
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