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Abstract. A method is presented to integrate explicitly certain equilibrium problems for no-tension
bodies, in absence of body forces and under the assumption that two of the principal stresses are
everywhere null. The method is exemplified in the case of rectangular panels, clamped at their bottoms
and loaded at their tops.
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1. Introduction

The constitutive description of the no-tension materials we consider can be summarized as follows
(Di Pasquale 1984, Del Piero 1989): the infinitesimal strain is additively decomposed into an
inelastic (or fracture), positive-semidefinite part and an elastic part depending on stress in a linear
and isotropic manner; the stress, in turn, must be negative-semidefinite, and orthogonal to the
inelastic part of the strain. These materials are often referred to as masonry-like, although the
isotropy assumption e.g. is never exactly verified for masonry.

It is known (Giaquinta and Giusti 1985) that, whenever the general equilibrium problem for these
materials has a solution, uniqueness in stress is as a rule accompanied by nonuniqueness in strain
and displacement; moreover, such solutions, when they exist, are generally difficult to determine
explicitly. However, the plane problems we here consider are fairly more tractable.

In plane-stress problems, at least one of the principal stresses must be null; as to the two
remaining principal stresses, we expect the body to be divided into regions, in each of which one of
the following three situations takes place: both stresses are negative, and the material behaves as if it
were linearly elastic; one stress is negative, the other being null, and fracturing is in order; both
stresses are null, and the material degenerates. It is the second situation which is both typical and
interesting, and we here concentrate on cases when it prevails everywhere in the body (cf. Di
Pasquale 1984).

The class of problems we later solve explicitly have a special feature: the stress state is
determined independently of the states of strain and displacement. In fact, in the spirit of the semi-
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inverse method, we take two of the principal stresses to be everywhere null, and hence the unknown
fields allowing for a representation of the stress state at each point of the body are two, just as many
as the scalar equilibrium equations; moreover, the stress boundary conditions completely determine
those two fields. Interestingly, the system of equilibrium equations we study, where the body forces
are null, is formally identical to the nonlinear system of conservation laws ruling the dynamics of
the one-dimensional, isentropic flow of a “pressureless” compressible gas (Courant and Friedrichs
1948, Brenier and Grenier 1998).

Given the stress field, the elastic part of the strain is immediately determined by the use of the
relative constitutive equation. The orthogonality condition determines the inelastic part only to
within an arbitrary, nonnegative scalar field. To proceed further, the compatibility condition for the
total strain must be used; this condition yields a parabolic linear PDE for the scalar field, whose
solution, for which we derive an explicit representation formula, can be fully determined by means
of the displacement boundary conditions. At this point, it remains for us to check whether the scalar
field we have obtained is indeed everywhere nonnegative; whenever this is the case, we are sure we
have constructed a solution to the problem we posed; otherwise, we must conclude that, for the
given loads, there is no solution of the form we have selected (in any event, to have an admissible
equilibrium stress might be important for certain applications, e.g., to apply the theorems of Limit
Analysis, as indicated by Del Piero, 1998).

As anticipated, we illustrate our method by applying it to a rectangular panel, clamped at the
bottom and loaded at the top. The vertical load is taken uniform and constant, whereas the
horizontal load is given either a bilinear distribution (Fig. 2) or a parabolic distribution (Fig. 4),
graded by a scalar multiplier. In both cases we determine the equilibrium stress field explicitly, as
well as the maximum value of the multiplier. Then, for the first load distribution only, we apply the
representation formula for the components of the inelastic strain to compute the admissible total
strain and the accompanying displacement field which complies with the given boundary conditions.

2. The equilibrium equations

We denote the stress tensor by T and assume T to be negative-semidefinite ; and we
denote by E the infinitesimal strain tensor. We also assume that E is the sum of an elastic part Ee,
on which T depends linearly and isotropically, and an inelastic part Ea, positive-semidefinite

 and orthogonal to T. The constitutive law is therefore expressed by the relations

, (1)

, (2)

, (3a)

, (3b)

, (3c)

where E denotes Young’s modulus, ν Poisson’s ratio and  is the scalar product of
T and Ea. A well-known consequence of isotropy (Del Piero 1989) is that T, E and Ea are coaxial
and, moreover, that
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. (4)

As mentioned, we assume that the stress state is plane and that at every point in the body two of
the principal stresses are null. Therefore, in an orthogonal Cartesian reference system ,
denoting the cotangent of the angle between the active isostatic line and the x axis by κ, we have 

. (5)

where we denote σy by σ. It can be seen that the principal non-zero stress equals σ(1 + κ2), and
therefore in light of Eq. (3b), the admissibility condition for the stress is

. (6)

In the absence of body forces the equilibrium equations,

(7a)

(7b)

make up a system of conservation laws. These coincide formally with the one-dimension Euler
equations for the flow of an isentropic gas when the pressure gradient vanishes. More specifically, if
−σ and κ are interpreted as the density and velocity of the gas, respectively, and x, y as the spatial
coordinate and time, Eq. (7a) expresses the conservation of linear momentum and Eq. (7b) is the
continuity equation. 

From Eq. (7) we obtain

Multiplying the second equation by k, assumed to be non-zero, and substituting it into the first, we
get

therefore, for , system (7) becomes

(8a)

(8b)

The former equation coincides with the inviscid Burger equation and has already been derived in
(Di Pasquale 1984); the second is a linear equation for σ. 

In the applications we denote the vertical and horizontal loads distributed on the top of the panel
by p and q, respectively (Fig. 1).

TEa 0=

O; x y,( )

T
σx τxy

τxy σy
 
  σ κ2 κ

κ 1 
 = =

σ 0≤

σκ2( ), x σκ( ), y+ 0,=

σκ( ), x σ, y+ 0,=

κ2σ, x 2σκκ, x κσ, y σκ, y+ + + 0,=

κσ, x σκ, x σ, y+ + 0.=

σ κκ, x κ, y+( ) 0;=

σ 0≠

κκ, x κ, y+ 0,=

κσ, x σκ, x σ, y+ + 0.=
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Thus, for , in view of Eq. (5) we have 

, (9a)

(9b)

Then, the solution to system (8) is implicitly defined by the relations

, (10a)

, (10b)

where  denotes the derivative of f (cf. Zauderer 1989).
If functions f and p are sufficiently smooth, then relations Eq. (10) define a regular solution to

Eq. (8) for , where x0 is the value of x for which  reaches its smallest
non-negative value.

In general, for y > yc, systems (7) and (8) are not equivalent. It has recently been proved (Brenier
and Grenier 1998), under very general conditions, that system (7) is equivalent to a single scalar
conservation law that, in general, is not the inviscid Burger equation. However, we have not utilised

f x( ) q x( )
p x( )
----------=

σ x 0,( ) p x( )–=

κ x 0,( ) f x( ).=

κ x y,( ) f x κy–( )=

σ x y,( ) p x κy–( )
1 yf ′ x κy–( )+
------------------------------------–=

f ′

y yc≤ 1 f ′ x0( )⁄–= 1 f ′ x( )⁄–

Fig. 1 Rectangular panel loaded at its top
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this result in the applications presented herein, because we confine ourselves to consider the solution
to system (8) in the interval .

As already shown in (Di Pasquale 1984), the active isostatic lines of our equilibrium problem are
straight (Fig. 1); in effect, they coincide with the characteristics of system (8). Their equation is

, (11)

where λ is the abscissa of the intersection point with the x axis. If f is not a constant function, the
characteristics are not parallel and, in general, envelop a curve Γ, whose implicit equation is
obtained by resolving the system

, (12a)

. (12b)

In particular, if f is linear, , the characteristics meet at point . By comparing

Eq. (10b) and Eq. (12b), we can deduce that, moving along any active isostatic, as we approach its
point of tangency with the curve Γ, the principal non-zero stress  tends to infinity.

When f is continuous but  has a first-kind discontinuity at a point λ0, κ is continuous, while σ
is discontinuous along the isostatic of equation . The fact that a discontinuity
curve for σ, across which κ is continuous, must coincide with an active isostatic line can be easily
deduced from the Rankine-Hugoniot jump conditions (Serre 1999) which for our system of
conservation laws, (7), are

, (13a)

, (13b)

where s = dx/dy is the slope of the discontinuity curve, and the square brackets denote the jump of
the enclosed quantities across the discontinuity.

3. Examples of stress field determination

Let us now consider a rectangular panel of width b and height h, clamped at its bottom and
subjected to horizontal and vertical loads, both distributed on the panel’s top. We shall first consider
the case in which the vertical load p is uniform, whereas the horizontal load q has a bilinear
distribution (Fig. 2).

For , let

(14a)

(14b)
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



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The solution to system (8) is regular in the two regions, Ω1 and Ω2, divided by the isostatic line,
which, in view of Eq. (11) and Eq. (14), has the equation

(15)

(cf. the discussion at the end of Section 2). From Eq. (10) we get

(16a)

(16b)

and

(17a)

(17b)

y
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α
--------------=

κ x y,( )
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2αy b 2λ0+ +
------------------------------------ , for x y,( ) Ω1,∈
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----------------------------------- , for x y,( ) Ω2∈
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----------------------------------- ,    for x y,( ) Ω2∈







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=

Fig. 2. Load-distribution laws on the top of the rectangular panel (example 1)
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and from Eq. (5)

(18a)

(18b)

(19a)

(19b)

This solution is well defined for , with

(20)

The horizontal distributed load  has resultant . Then, when p and λ0

are fixed, the maximum value of T that can be reached is

. (21)

For this load value, all the active isostatic lines of Eq. (11), with , meet the panel’s bottom

at the corner ; thus the region Ω2 is free to rotate around this point (Fig. 3). If we interpret p

as the permanent part of the load and q1 as the part graded by the multiplier α, in the framework of
Limit Analysis (Del Piero 1998),  represents the collapse multiplier.

As λ0 varies,  reaches a maximum value of , for ; Tm is precisely the load 

at which the whole panel overturns around the point with coordinates . 

Finally, note that, in light of Eq. (14), the value of the slope of the horizontal load q1 for ,

reached in correspondence to , equals  and is therefore independent of λ0.

Let us now consider the case in which the vertical load p is still uniform, whereas the horizontal
load q2 has a parabolic distribution (Fig. 4),
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Fig. 3 Active isostatic lines for an arbitrary value of λ0 and α α1
c=

Fig. 4 Load-distribution laws on the top of the rectangular panel (example 2)
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(22)

The solution to system (8)

(23)

and

(24)

are regular throughout the panel for

(25)

Moreover, in view of Eq. (5), we deduce

(26)

and

(27)

Now, in light of Eq. (11), the active isostatic lines have equation

and, by Eq. (12), for , envelop the curve

, with b and

whose asymptote is the isostatic  (Fig. 5).

For , the isostatic of equation  intersects the envelope at the panel’s corner with

coordinates , at which point the value of the principal non-zero stress is unbounded. 
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The horizontal distributed load  has resultant ; thus, the value of T
corresponding to  is 

(28)

Figs. 6 and 7 show the behaviour of  and  for , fixed parameter values
(b = 5 m, h = 10 m, p = 1 MPa) and different values of y.

In the analogous gas-dynamic problem, where y, −σ and −τxy play the role of the time, density and
linear momentum per unit volume, respectively, we have the progressive formation of a shock wave
taking place at “time” h, as shown in Figs. 6 and 7.

q2 x( ) pf2 x( )= T
2
3
---αpb=

α2
c

T2
c pb

2

6h
--------.=

σ x y,( ) τxy x y,( ) α α2
c=

Fig. 5 Envelope of the active isostatic lines, for α α2
c=

Fig. 6 σ vs x for different values of y and α α2
c=
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These examples show that, with fixed vertical load, the maximum value of the resultant of the
horizontal loads that can be assigned to the panel depends strictly on the law according to which
these loads are distributed.

4. A representation formula for the strain

In this section, given the stress field, a method for deducing the strain is presented. From Eq. (2)
and Eq. (5), we obtain

. (29)

Moreover, from Eq. (4) and Eq. (5) we deduce

(30)

where, in light of Eq. (3a), a must be a scalar non-negative field,

(31)

Requiring that  satisfy the compatibility equation, with the help of (30) and Eq. (29),
we obtain

(32)

from which, accounting for the fact that by system (7) we have

(33)

Ee σ
E
--- κ2 ν–   κ 1 ν+( )

κ 1 ν+( )  1 νκ2– 
 
 

=

Ea a
1 κ–

κ– κ2 
  ,=

a x y,( ) 0.≥

E Ee Ea+=

σκ2 νσ– Ea+( ), yy σ νσκ2– Eaκ2
+( ), xx+ +

2 1 ν+( )σκ Eaκ–( ), xy– 0,=

σκ2( ), xx 2 σκ( ), xy σ, yy+ + 0,=

Fig. 7 τxy vs x for different values of y and α α2
c=
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we obtain for a the equation 

(34)

where

(35)

is the Laplacian of the trace of the stress.
Therefore, for no-tension materials, stress compatibility does not require that the stress trace be

harmonic, as in the linear elastic case, but calls for the existence of a non-negative function a that
satisfies Eq. (34). Moreover, note that a is independent of the value of ν.

Eq. (34) is parabolic and its characteristic has the equation

(36)

In view of Eq. (8a), this suggests the change of variables

(37a)

(37b)

Since  and , we have the relations 

(38a)

(38b)

(38c)

(38d)

(38e)

and from Eq. (34) we can, through a number of steps, deduce

(39)

From Eq. (8a) it is a simple matter to show that

(40)

and thereby from Eq. (39) obtain

(41)

aκ2( ), xx 2 aκ( ), xy a, yy+ + θ,=

Eθ σ 1 κ2+( )[ ], xx σ 1 κ2+( )[ ], yy+=

dx
dy
------ κ.=

ξ κ x y,( ),=

η y= .

η, x η, xx η, xy η, yy 0= = = = η, y 1=

a, x a, ξκ, x=

a, y a, ξκ, y a, η+=

a, xx a, ξξκ, x
2 a, ξκ, xx+=

a, xy a, ξξκ,xκ, y a, ξηκ, x a, ξκ, xy+ +=

a, yy a, ξξκ, y
2 2a, ξηκ, y a, ηη a, ξκ, yy+ + +=

κκ, x κ, y+( )2a, ξξ 2 κκ, x κ, y+( )a, ξη a, ηη  + + +

κ2κ, xx 2κκ, xy κ, yy+ +( )a, ξ 2κ, xa, η+ θ.=

κ2κ, xx 2κκ, xy κ, yy+ + 0=

a, ηη 2κ, xaη+ θ.=
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Now, setting

(42)

we can write

, (43) 

which, once κ, x and θ are expressed as functions of ξ and η, can be treated as an ordinary linear
first-order differential equation. To this aim, under the assumption that relations (37) can be
inverted, we consider the inverse transformation

(44a)

(44b)

and obtain

(45a)

(45b)

Moreover, in view of Eq. (37a), Eq. (45a) and Eq. (45b), Eq. (8a) implies 

(46)

from which we arrive at

(47)

where, in light of Eq. (10a) and Eq. (37a), . In effect, as f is generally a non-injective
function, this relation is valid only locally. Moreover, ψ is not differentiable along any isostatic
originating in a point of x axis where  vanishes. From Eq. (46) and Eq. (47) we obtain

(48a)

(48b)

(48c)

(48d)

Eqs. (45a), (46) and (48) allow us to express κ, xx and κ, yy as a function of ξ and η. In fact,
recalling that η, x = 0 and η, y = 1, we have 

 (49)

a′ a, η,=

a, η′ 2κ, xa′+ θ=

x x ξ η,( ),=

y η,=

κ, x
1

x, ξ
------=

κ, y

x, η

x, ξ
-------.–=

x, η ξ=

x ξη ψ ξ( ),+=

ψ f
1–

=

f ′

x, ξ η ψ′ ξ( )+= ,

x, ξη 1= ,

x, ξξ ψ″ ξ( )= ,

x, ηη 0.=

κ, xx κ, x( ), x κ, x( ), ξξ, x

x, ξξ

x, ξ( )3
-------------–

ψ″ ξ( )
η ψ′ ξ( )+( )3

-------------------------------– ;= = = =
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(50)

Moreover, from the relations

(51a)

(51b)

as a consequence of Eq. (10), Eq. (44), Eq. (47) and the relation , we can calculate all
derivatives of σ and σκ2 with respect to variables ξ and η, and therefore, with the help of Eq. (35),
Eq. (38) and Eq. (45), determine θ = θ (ξ, η). Proceeding in this way we obtain

(52)

where, for the sake of brevity, we have set

(53a)

(53b)

(53c)

Hence, by accounting for Eq. (45a) and Eq. (48a), from Eq. (43) and Eq. (53c), we obtain

(54)

whose solution can be expressed in the well-known form

(55)

where c is an arbitrary function. The integral at the right side of Eq. (55) can be calculated
explicitly. In fact, with the help of Eq. (52) and Eq. (53), we obtain

(56)
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----------------------------------------------= = = =

2ξ η ψ′ ξ( )+( ) ξ2ψ″ ξ( )–
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--------------------------------------------------------------.
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----------------------------------,–=
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Eϕ5
--------------------------------------------------------------------------------------------------------------= +
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--------------------------------------------------------------------------------- ,–
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c ξ( ) ϕ ξ η,( )2θ ξ η,( )dη∫+
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--------------------------------------------------------------------------------------- 3ψ″ ζ2µ′ 4ξζµ+( ) ζ2µψ ″′+

Eϕ3
-----------------------------------------------------------------------– +=

3ζ2µ ψ″( )2

2Eϕ4
-------------------------- c

ϕ2
----- ,+
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from which, integrating with respect to η, we get 

(57)

where d is an arbitrary function of ξ. Once a is known as a function of ξ and η, with the help of
Eq. (37), a can be determined as a function of x and y. 

In particular, for θ = 0, from Eqs. (55), (53c), (47), (45) and (37a), we obtain

(58)

5. Examples of strain field determination

We now propose to verify whether the stress state determined by the Eqs. (16)-(19) solves the
boundary-value problem for the case shown in Fig. 2. In other words, we wish to see whether there
exists a displacement field satisfying the boundary conditions whose corresponding strain satisfies
the constitutive equation for some . For the sake of simplicity, we shall limit ourselves to
considering the case in which λ0 = 0 and ν = 0.

We begin by looking at the region Ω1. From Eq. (47), Eq. (16) and Eq. (17) it is a simple matter
to obtain

(59)

and therefore from Eq. (53a) we deduce 

(60)

Thus, from Eq. (57) we obtain

(61)

In order to determine the displacement in region Ω1 it is convenient to make reference to a polar

a
lnϕ ζ2µ″ 4 2ξζµ′ 3µξ2 µ+ +( )+( )

Eϕ
-------------------------------------------------------------------------------------- ζ2µ ψ″( )2

2Eϕ3
-----------------------– +=

ζ2µψ ″′ 3ζ2µ′ψ″ 12ξζµψ″+ +
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----------------------------------------------------------------------------- +

ζ2µ″ 8ξζµ′ 4µ 1 3ξ2
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Eϕ
----------------------------------------------------------------------- c

ϕ
---– d,+

a c k( )k, x– d k( ).+=

a 0≥

ψ ξ( ) b ξ α–( )
2α

--------------------=

µ pb
2α
-------.–=

a ξ η,( )
2pb 1 3ξ2

+( ) 1 ln η b
2α
-------+ 

 + 
 –

Eα η b
2α
-------+ 

 
--------------------------------------------------------------------------------- c ξ( )

η b
2α
-------+
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coordinate system r, ϑ, with origins at point , the intersection of the straight line x = 

with the isostatic of equation x = αy (Fig. 8).
By virtue of Eq. (5), Eq. (30) and Eq. (29), for ν = 0, we have

(62a)

(62b)

(63a)

(63b)

(64a)

(64b)

1
2
---b–

b
2α
-------–, 

  1
2
---b–

σr σ 1 κ2
+( ),=

τr ϑ σϑ 0;= =

εϑ
a a 1 κ2

+( ),=

εr
a εr ϑ

a 0;= =

εr
e σ 1 κ2

+( )
E

------------------------ ,=

εϑ
e εr ϑ

e 0.= =

Fig. 8 Polar coordinates used for displacement determination
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As it holds that

(65)

and that, in light of Eq. (16), Eq. (17) and Eq. (37a), we have

, (66a)

(66b)

from Eq. (63) and Eq. (64), we get

, (67a)

(67b)

where, by virtue of Eq. (61), Eq. (65) and Eq. (66b),

(68)

with C and D are arbitrary functions of ϑ.
Denoting the radial displacement by ur, from the relation 

(69)

with the help of Eq. (67a) we obtain

(70)

where F is an arbitrary function. As the panel’s bottom is clamped, we have , for

(71)

and can therefore write

(72)

Analogously, denoting the circumferential displacement by uϑ, from the relation

(73)

with the help of Eq. (67b), Eq. (68) and Eq. (72), we obtain 

η rsinϑ b
2α
-------–=

σ pb
2αrsinϑ
---------------------–=

ξ κ ctgϑ,= =

εr
e pb

2αErsin3ϑ
---------------------------–=

εϑ
a a

sin2ϑ
------------- ,=

a r ϑ,( ) 2bp
Eαrsinϑ
---------------------- 1 3ctg2ϑ+( ) 1 ln rsinϑ( )+( )–

C ϑ( )
rsinϑ
-------------– D ϑ( ),+=

εr
∂u
∂r
------= ,

ur
bplnr

2Eαsin3ϑ
------------------------– F ϑ( ),+=

ur
H

sinϑ
----------- ϑ, 

  0=

H h
b

2α
-------+=

ur
bp

2Eαsin3ϑ
------------------------ln

H
rsinϑ
------------- 

  .=

εϑ
ur

r
---- 1

r
---

∂uϑ

∂ϑ
--------,+=
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, (74)

where G is an arbitrary function,  is a primitive of C(ϑ)/sin3ϑ and  is a primitive of
D(ϑ)/sin2ϑ. Functions C, D and G can be determined by requiring that the displacement vanish at
the panel’s bottom and using the well-known relation

(75)

From this, in light of Eq. (72) and Eq. (74), we obtain

(76)

which, by substituting into Eq. (74), furnishes a new expression for uϑ, with the help of which we
can, from Eq. (75), obtain

which in turn implies that

(77)

where  is an arbitrary constant. Recalculating uϑ with the help of Eq. (76) and Eq. (77) and
imposing the boundary condition

we obtain

(78)

and

(79)

uϑ
bp ln( 1 cosϑ–( ) 1 8lnH–( )( ) 3ln 1 cosϑ+( ) )+

32Eα
-------------------------------------------------------------------------------------------------------------------- +=

bpln sinϑ( )
2Eα

--------------------------- lnH
2

--------- 3cosϑ
sin4ϑ
--------------- 1

4
---–+ 

  +

bpcosϑ
2Eαsin2ϑ
------------------------ 5

4
--- lnH

2
--------- 3lnr

sin2ϑ
------------- 9

8
---ctg2ϑ 21

8sin2ϑ
----------------+ + + + 

  +

rD̂ ϑ( ) Ĉ ϑ( )– G r( )+

Ĉ ϑ( ) D̂ ϑ( )

2εr ϑ
1
r
---

∂ur

∂ϑ
--------

∂uϑ

∂r
--------

uϑ

r
-----.–+=

C ϑ( ) bp

8Eαsin4ϑ
------------------------ 16lnH 2cos4ϑ cos2ϑ– 1–( ) cos3ϑ sin4ϑ sin2ϑ 1+ +( )+ +[=

cos2ϑ 8 20sin2ϑ–( ) cosϑ sin6ϑ 1–( ) 8–+ ]

G′ r( ) G r( )
r

-----------– 0=

G r( ) ĉr ,=

ĉ

uϑ
H

sinϑ
----------- ϑ, 

  0,=

D ϑ( ) bp
EαH
------------ 1 3ctg2ϑ+( )=

ĉ 0,=
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which finally allows us to write

(80)

(81)

In order that the strain and displacement fields obtained solve our boundary-value problem for Ω1,
at this point it is sufficient to check that  in Ω1, that is to say for

(82a)

and . (82b)

To this end, we observe that, in light of Eq. (82b), we have 

(83)

and therefore, for every fixed ϑ, a assumes its minimum value for r = H/sinϑ, so that

. (84)

Regarding region Ω2, from Eq. (47), Eq. (16) and Eq. (17), we deduce, in place of Eq. (59) and
Eq. (60), that

(85a)

(85b)

and then, in light of Eq. (57) we can write 

(86)

a r ϑ,( ) bp
Eα
------- 2

1 2cos2ϑ+

rsin3ϑ
--------------------------- 

  ln
rsinϑ

H
------------- 

 – +=

3ctg2ϑ 1
H
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-----------------– 

  1

rsin3ϑ
---------------–

1
H
----+ ,

uϑ
bpcosϑ
Eαsin3ϑ
--------------------- 3

2sinϑ
--------------ln
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H

------------- 
  1

sinϑ
----------- r

H
----–+ .=

a r ϑ,( ) 0≥

arcctg α( ) ϑ 1
2
---π≤ ≤

b
2αsinϑ
------------------ r

H
sinϑ
-----------≤ ≤

∂a
∂r
------ bp

Eαr2sin3ϑ
-------------------------- 2 2cos2ϑ 1+( )ln rsinϑ

H
------------- 

  5cos2ϑ
2

-----------------– 1– 0<=

a r ϑ,( ) a
H

sinϑ
----------- ϑ, 

  bp
2EαH
--------------- 1

sin2ϑ
------------- 1– 

  0≥=≥

ψ ξ( ) b α ξ–( )
2α

--------------------,=

µ pb
2α
------- ,=

a ξ η,( )
2pb 1 3ξ2

+( ) 1 ln
b

2α
------- η– 

 + 
 –
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 
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b
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 
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For calculation of the displacement it is now convenient to make reference to a polar coordinate
system with origin at point (b/2, b/2α), as shown in Fig. 8. Therefore, in Ω2 it holds that

, (87a)

(87b)

In this case, in place of Eq. (65), we have η =  − rsinϑ and, in light of Eq. (16), Eq. (17) and

Eq. (37a), Eqs. (62), (63), (64), (66) and (67) maintain their validity, with

(88)

which differs from Eq. (68) in the sign of the term .

Proceeding in a manner analogous to the foregoing case, we arrive at expressions for a, ur and uϑ
that are formally identical to those obtained for Ω1, provided that in Eqs. (80), (72) and (81) we
replace Eq. (71) with

(89)

In this case, however, a is not non-negative throughout. To verify this fact, it is enough to consider
the restriction  of a to the segment 

(90a)

(90b)

Then, from Eq. (87) we in fact obtain

(91)

and therefore have = 0 and, moreover,  in a right-sided neighborhood of H.

Therefore, the stress state defined by Eqs. (16)-(19) does not allow determining a solution to our
boundary-value problem.

Nevertheless, if we consider a body whose shape is that of the region Ω1, constrained and loaded
as shown in Fig. 9, the Eqs. (16a)-(19a), (80), (72) and (81) are the solution of the boundary-value
problem. An interesting outcome is that the solution is unique with respect to both the strain and the
displacement.
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2
---π≤ ≤

b 2αh–
2αsinϑ
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b
2αsinϑ
------------------.≤ ≤

b
2α
-------

a r ϑ,( ) 2bp
Eαrsinϑ
---------------------- 1 3ctg2ϑ+( ) 1 ln rsinϑ( )+( )–

C ϑ( )
rsinϑ
------------- D ϑ( ),+ +=

C ϑ( )
rsinϑ
-------------

H
b

2α
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â

ϑ 1
2
---π,=

H r
b

2α
------- .≤ ≤

â r( ) a r
1
2
---π, 

  bp
Eα
------- 2

r
--- ln

r
H
---- 

 –
1
r
---–

1
H
----+= =

â H( ) dâ r( )
dr

------------- 0<
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5. Conclusions

For a broad class of boundary value problems for plane bodies made of no-tension materials, the
method here proposed provides a way to determine a stress state that is both admissible and
equilibrated with the assigned loads. In some cases, once the stress state is known, it is also possible
to determine an admissible strain state and the associated displacement field satisfying the assigned
boundary conditions, thereby providing a complete solution to the given boundary value problem.

As highlighted in the examples, by examining load processes depending on a specific multiplier,
the method can also be used to determine the corresponding collapse load.
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