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Abstract. A method is presented to integrate explicitly certain equilibrium problems for no-tension
bodies, in absence of body forces and under the assumption that two of the principal stresses are
everywhere null. The method is exemplified in the case of rectangular panels, clamped at their bottoms
and loaded at their tops.
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1. Introduction

The constitutive description of the no-tension materials we consider can be summarized as follows
(Di Pasquale 1984, Del Piero 1989). the infinitesimal strain is additively decomposed into an
inelastic (or fracture), positive-semidefinite part and an elastic part depending on stress in a linear
and isotropic manner; the stress, in turn, must be negative-semidefinite, and orthogonal to the
inelastic part of the strain. These materials are often referred to as masonry-like, although the
isotropy assumption e.g. is never exactly verified for masonry.

It is known (Giaquinta and Giusti 1985) that, whenever the general equilibrium problem for these
materials has a solution, uniqueness in stress is as a rule accompanied by nonunigueness in strain
and displacement; moreover, such solutions, when they exist, are generally difficult to determine
explicitly. However, the plane problems we here consider are fairly more tractable.

In plane-stress problems, at least one of the principal stresses must be null; as to the two
remaining principal stresses, we expect the body to be divided into regions, in each of which one of
the following three situations takes place: both stresses are negative, and the material behaves as if it
were linearly elastic; one stress is negative, the other being null, and fracturing is in order; both
stresses are null, and the material degenerates. It is the second situation which is both typical and
interesting, and we here concentrate on cases when it prevails everywhere in the body (cf. Di
Pasquale 1984).

The class of problems we later solve explicitty have a special feature: the stress state is
determined independently of the states of strain and displacement. In fact, in the spirit of the semi-
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inverse method, we take two of the principal stresses to be everywhere null, and hence the unknown
fields allowing for a representation of the stress state at each point of the body are two, just as many
as the scalar equilibrium equations; moreover, the stress boundary conditions completely determine
those two fields. Interestingly, the system of equilibrium equations we study, where the body forces
are null, is formally identical to the nonlinear system of conservation laws ruling the dynamics of
the one-dimensional, isentropic flow of a “pressureless” compressible gas (Courant and Friedrichs
1948, Brenier and Grenier 1998).

Given the stress field, the elastic part of the strain is immediately determined by the use of the
relative constitutive equation. The orthogonality condition determines the inelastic part only to
within an arbitrary, nonnegative scalar field. To proceed further, the compatibility condition for the
total strain must be used; this condition yields a parabolic linear PDE for the scalar field, whose
solution, for which we derive an explicit representation formula, can be fully determined by means
of the displacement boundary conditions. At this point, it remains for us to check whether the scalar
field we have obtained is indeed everywhere nonnegative; whenever this is the case, we are sure we
have constructed a solution to the problem we posed; otherwise, we must conclude that, for the
given loads, there is no solution of the form we have selected (in any event, to have an admissible
equilibrium stress might be important for certain applications, e.g., to apply the theorems of Limit
Analysis, as indicated by Del Piero, 1998).

As anticipated, we illustrate our method by applying it to a rectangular panel, clamped at the
bottom and loaded at the top. The vertical load is taken uniform and constant, whereas the
horizontal load is given either a bilinear distribution (Fig. 2) or a parabolic distribution (Fig. 4),
graded by a scalar multiplier. In both cases we determine the equilibrium stress field explicitly, as
well as the maximum value of the multiplier. Then, for the first load distribution only, we apply the
representation formula for the components of the inelastic strain to compute the admissible total
strain and the accompanying displacement field which complies with the given boundary conditions.

2. The equilibrium equations

We denote the stress tensor Byand assumd to be negative-semidefinitéT <0) ; and we
denote byE the infinitesimal strain tensor. We also assume Ehat the sum of an elastic pdEf,
on which T depends linearly and isotropically, and an inelastic [rt positive-semidefinite
(E®*>0) and orthogonal td. The constitutive law is therefore expressed by the relations

E = E°+E®, (1)

E°= é[(l+v)T—vtr(T)I], @)
E®>0, (3a)

T<O, (3b)
TE*=0, (3¢)

whereE denotes Young’s modulus, Poisson’s ratio and [E® = tr(TE®) s the scalar product of
T andE® A well-known consequence of isotropy (Del Piero 1989) is Th& andE*® are coaxial
and, moreover, that
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TE* = 0. “4)

As mentioned, we assume that the stress state is plane and that at every point in the body two of
the principal stresses are null. Therefore, in an orthogonal Cartesian reference (§ystery) ,
denoting the cotangent of the angle between the active isostatic line anaxtedyk, we have

_fx g K KO
T = =0 : ©)
0, oD %O 10

where we denote, by o. It can be seen that the principal non-zero stress eqyals %), and
therefore in light of Eq. (3b), the admissibility condition for the stress is

0<0. (6)

In the absence of body forces the equilibrium equations,

(0K*),x+(0K),, = O, (72)
(oK) xt 0,y =0, (7b)
make up a system of conservation laws. These coincide formally with the one-dimension Euler
equations for the flow of an isentropic gas when the pressure gradient vanishes. More specifically, if
-0 andk are interpreted as the density and velocity of the gas, respectively, yad the spatial
coordinate and time, Eq. (7a) expresses the conservation of linear momentum and Eg. (7b) is the
continuity equation.
From Eq. (7) we obtain
K’ +20KK  + KO, + 0K, = 0,
KO+ 0K, +0, = 0.

Multiplying the second equation y assumed to be non-zero, and substituting it into the first, we
get

O(kK *+ K y) = 0;
therefore, forc# 0 , system (7) becomes

KK +K, =0, (8a)

KO + 0K +0, = 0. (8b)

The former equation coincides with the inviscid Burger equation and has already been derived in
(Di Pasquale 1984); the second is a linear equatiod.for

In the applications we denote the vertical and horizontal loads distributed on the top of the panel
by p andq, respectively (Fig. 1).
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Fig. 1 Rectangular panel loaded at its top

Thus, forf(x) = g%g . in view of Eq. (5) we have
o(x,0) = —p(x), (%9a)

K(x, 0) = f(x). (9b)

Then, the solution to system (8) is implicitly defined by the relations

K(x, y) = f(x=Ky), (10a)
- __P(X=ky)
o(xy) = T+ yF(x—Ky) ' (10b)

wheref’ denotes the derivative fqtf. Zauderer 1989).

If functions f andp are sufficiently smooth, then relations Eq. (10) define a regular solution to
Eq. (8) fory<y, = -1/f'(X,) , whereg is the value ok for which —=1/f'(x) reaches its smallest
non-negative value.

In general, fory >y, systems (7) and (8) are not equivalent. It has recently been proved (Brenier
and Grenier 1998), under very general conditions, that system (7) is equivalent to a single scalar
conservation law that, in general, is not the inviscid Burger equation. However, we have not utilised
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this result in the applications presented herein, because we confine ourselves to consider the solution
to system (8) in the intervél<y <y,

As already shown in (Di Pasquale 1984), the active isostatic lines of our equilibrium problem are
straight (Fig. 1); in effect, they coincide with the characteristics of system (8). Their equation is

x—=yf(A)—A = 0, (11)
where A is the abscissa of the intersection point withxteis. If f is not a constant function, the

characteristics are not parallel and, in general, envelop a €yrwhose implicit equation is
obtained by resolving the system

x—=yf(A)—A = 0, (12a)
yf'(A)+1 = 0. (12b)
In particular, iff is linear,f(A) = ¢;A + ¢, , the characteristics meet at p%n(i‘—z, l% . By comparing
Ci, Cy

Eq. (10b) and Eg. (12b), we can deduce that, moving along any active isostatic, as we approach its
point of tangency with the cunlg the principal non-zero stresg1 + K2) tends to infinity.

Whenf is continuous buf’ has a first-kind discontinuity at a pa#gnt is continuous, whiler
is discontinuous along the isostatic of equatioAyf(A,) —A, = O . The fact that a discontinuity
curve for g, across whichk is continuous, must coincide with an active isostatic line can be easily
deduced from the Rankine-Hugoniot jump conditions (Serre 1999) which for our system of
conservation laws, (7), are

s[o] = [oK], (13a)
s[ok] = [O'KZ], (13b)

wheres = dx/dy is the slope of the discontinuity curve, and the square brackets denote the jump of
the enclosed quantities across the discontinuity.

3. Examples of stress field determination

Let us now consider a rectangular panel of wibtland heighth, clamped at its bottom and
subjected to horizontal and vertical loads, both distributed on the panel’s top. We shall first consider
the case in which the vertical logdis uniform, whereas the horizontal logdhas a bilinear
distribution (Fig. 2).

1 1
For—5b</\0s5b,let . )
a(b+ 2x
_= 1l4a
o v 2a, for SD<x< Ao, (14a)
i\X) = 0
0 a(b—2x) 1
0 b-21, ' for /\Osxszb. (14b)
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Fig. 2. Load-distribution laws on the top of the rectangular panel (example 1)

The solution to system (8) is regular in the two regiéhsand Q,, divided by the isostatic line,
which, in view of Eq. (11) and Eg. (14), has the equation
X—Ag

y= =0 (15)

(cf. the discussion at the end of Section 2). From Eq. (10) we get

a(2x+b
Ray + b+ 2A,’

K(xy) =0 a(2x— b
ay—b+ 277 for (xy)0Q, (16b)

for (xy)0OQ,, (16a)

and

U —p(2A,+ b)
)

[Ray+ b+ 22y’
oxy) =0
0 —P(2A,—b)

SZGy— b+ 2A,’

for (x,y)0Q,, (17a)

for (x,y)0Q, (17b)
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and from Eq. (5)

OHpa(2x + b)(2A, + b)

, for (x,y)OQq, (18a)
O (2ay+ b+ 2,)? o) B
oY) = 0ok — by (22, — b)
0O 5 for (x,y)0Qs,, (18b)
0 (2ay—b+ 2A)
O-pa’(2x+ b)’(2A,+ b
pa’(2x+ DY(2h* b) (o g (193
O (2ay+ b+ 2Ap)
s =4 2(2x— b)*(2)4—b)
a“(2x— -
O (2ay—b+ 2Ap)
This solution is well defined foo < aj , with
c_ b 4

The horizontal distributed load,(x) = pf;(x)  has resultdnt %apb . Then, whand Ay
are fixed, the maximum value @fthat can be reached is

pb(b—24,)

c _
L= 4h

(21)

For this load value, all the active isostatic lines of Eq. (11), Aj A < %b , meet the panel’s bottom
at the cornel%b, h% ; thus the regi@n is free to rotate around this point (Fig. 3). If we interpret

as the permanent part of the load gpés the part graded by the multipleey in the framework of
Limit Analysis (Del Piero 1998)g; represents the collapse multiplier.
2
As A, varies, T; reaches a maximum valueTgf = % AQr= —%b Tmis precisely the load

at which the whole panel overturns around the point with coordir%tesh%

=

Finally, note that, in light of Eq. (14), the value of the slope of the horizontafjjéadA, < x< =b,

N

reached in correspondencedd equ-ﬁs and is therefore independignt of

Let us now consider the case in which the vertical jwésl still uniform, whereas the horizontal
load g, has a parabolic distribution (Fig. 4),
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Fig. 3 Active isostatic lines for an arbitrary valuelgfand a = af

T A AN NN

A

Fig. 4 Load-distribution laws on the top of the rectangular panel (example 2)
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uw:a%—%% (22)

The solution to system (8)

bJ— 16axy + 160{2y2 +b’ + 8axy— b’

K(X,y) = (23)
8ay’
and
-b
a(x y) = e (24)
J— 16axy+ 1607y +b
are regular throughout the panel for
b
c _ —
a<a; = g (25)
Moreover, in view of Eqg. (5), we deduce
—bp(by—16axy+ 16a°y’ + b’ + 8axy— b’
£y y) = 2B oy 1100y 1 *8axy-5) (26)
8ay J— 16axy+16a°y" +b
and
2
—bp(by— 16axy+ 16a°y’ + b> + 8axy— bf
o(xy) = =& Lo 00) L) 27)

640’y - 16axy + 16a°y + b’
Now, in light of Eq. (11), the active isostatic lines have equation

_ bzgx—)\)

Y i —an)

and, by Eq. (12), foB< A <

_ 2%+ (4 =DP)
4a

NI

b , envelop the curve

, with xz%b and y=h

whose asymptote is the isostajic= g (Fig. 5).
For a = a5, the isostatic of equation = %b intersects the envelope at the panel’s corner with

coordinate%b, h% , at which point the value of the principal non-zero stress is unbounded.
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il

Fig. 5 Envelope of the active isostatic lines, for= a3

The horizontal distributed load,(x) = pf,(X)  has resultant %apb ; thus, the value of

corresponding tax; s
pb*
c _
T, = oh (28)
Figs. 6 and 7 show the behaviour @fx, y) ang(x, y) doe= o
(b =5 m,h =10 m,p =1 MPa) and different values @f
In the analogous gas-dynamic problem, whereo and-T,, play the role of the time, density and

linear momentum per unit volume, respectively, we have the progressive formation of a shock wave
taking place at “time’h, as shown in Figs. 6 and 7.

, fixed parameter values

s Wil ligls 05 il s
! . : " x(m)
i
-5000 !
|
|
=3 -8000 '|
— —y=3
....... y=6 !
— o 11000 7 OfkP)

Fig. 6 o vsx for different values of anda = a5
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-2,5 -1,5 -0,5 0,5 L5 2,5
. . . . | x(m)

L L
— 130 <
y=0
I ,y:3
y=6
— 180 Ty (kPa)

Fig. 7 1, vsx for different values of anda = as

These examples show that, with fixed vertical load, the maximum value of the resultant of the
horizontal loads that can be assigned to the panel depends strictly on the law according to which
these loads are distributed.

4. A representation formula for the strain

In this section, given the stress field, a method for deducing the strain is presented. From Eq. (2)
and Eq. (5), we obtain

Ee = QE K —v K(1+ V) E (29)
E DK(1+ V) 1-vk’ O
Moreover, from Eq. (4) and Eg. (5) we deduce

1 —«k
E* = al O (30)
O, &M

where, in light of Eqg. (3a)ga must be a scalar non-negative field,
a(x y) = 0. (31)

Requiring thatE = E®+ E® satisfy the compatibility equation, with the help of (30) and Eqg. (29),
we obtain
(O’KZ— vo+ Ea),yyt+ (0— VOK® + EaKZ), xx

-2((1+ v)ok—-Eak) ,, = 0, (32)
from which, accounting for the fact that by system (7) we have
= 0, (33)

2
(OK"), xx+ 2(0K) xy* Ty
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we obtain fora the equation
(aKZ), x+2(aK) +ta,, = 6, (34)

where
EO = [a(1+ K], xx+ [O(1+ K))], vy (35)
is the Laplacian of the trace of the stress.
Therefore, for no-tension materials, stress compatibility does not require that the stress trace be
harmonic, as in the linear elastic case, but calls for the existence of a non-negative &utiwdion

satisfies Eq. (34). Moreover, note tlais independent of the value of
Eqg. (34) is parabolic and its characteristic has the equation

ax _
dy K. (36)
In view of Eq. (8a), this suggests the change of variables
¢ = k(% Y), (37a)
n=y. (37b)

Sincen , =Ny =Ny =Ny =0 andp, =1 , we have the relations

&y = a¢Ky (38a)
ay=aky,ta, (38Db)

a, XX — a, EEK,§+a,.{K, XX (380)

Ayy = A geKxKyTa gnK x T8 Ky (38d)
Ayy = a,&‘K,j"' 28 enK gt @ pp F A K yy (38e)

and from Eq. (34) we can, through a number of steps, deduce
(KK« + K,y)za, gt 2(KK  tK )a g ta,,+
(KZK’XX+ 2KK yy* K ya+2K,a, = 6. (39)
From Eq. (8a) it is a simple matter to show that
K2K’XX+ 2KK yy+ Ky =0 (40)

and thereby from Eq. (39) obtain

a,,*+2K,a, = 6. (41)
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Now, setting
T (42)
we can write

a'l, +2k,a = 0, (43)

which, oncek , and 8 are expressed as functionsétndn, can be treated as an ordinary linear
first-order differential equation. To this aim, under the assumption that relations (37) can be
inverted, we consider the inverse transformation

X = x(¢& n), (44a)
y=n, (44b)
and obtain
-1
Kx = X ¢ (45a)
K, = -i—*z. (45b)

X, =& (46)
from which we arrive at
X = &én+ ys), (47)
where, in light of Eq. (10a) and Eq. (37a), = £ . In effectf is generally a non-injective

function, this relation is valid only locally. Moreovay; is not differentiable along any isostatic
originating in a point ok axis wheref' vanishes. From Eq. (46) and Eq. (47) we obtain

Xg=n+y(s), (48a)
X en =1, (48b)

X e = " ($), (48c)
Xpp = 0. (48d)

Egs. (45a), (46) and (48) allow us to expreésg and k ,, as a function of andn. In fact,
recalling thaty , = 0 andn, ,= 1, we have

_ _ _ X& o _ e .
K,xx - (K,x) X (K,x) E,x - = - ’ (49)
| o x>  (n+ @)’
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2
2X X =X ee(X ) _

Kyy = (Ky)y = (Ky) &yt (Ky) pNy = (o)

28(n+ Y'(&) —filﬂ"(f). (50)

(n+ (<))
Moreover, from the relations
k(& n) = ¢ (51a)
_ _pyE)Y (&
o(é n) = PENTIN (51b)
as a consequence of Eqg. (10), Eq. (44), Eq. (47) and the rel,ati@n"l , we can calculate all

derivatives ofc and ok? with respect to variableg andn, and therefore, with the help of Eq. (35),
Eq. (38) and Eq. (45), determiise= 6 (&, n). Proceeding in this way we obtain

o= OCuw" —3C ()" + 3Ly (u' + 4&y) |

E¢°
(Lpr+ A28y + uEE+ 1)) (52)
E¢
where, for the sake of brevity, we have set
H(&) = =y ($)p(w(é)), (53a)
{=1+8& (53b)
(& n) = n+ (). (53¢)

Hence, by accounting for Eq. (45a) and Eq. (48a), from Eq. (43) and Eq. (53c), we obtain
+=a = 6, (54)

whose solution can be expressed in the well-known form
(&) +[B(& n)*6(& n)dn
¢(¢.n)° |

where ¢ is an arbitrary function. The integral at the right side of Eq. (55) can be calculated
explicitly. In fact, with the help of Eq. (52) and Eq. (53), we obtain
_ dng(Ap+ 12p&"+ BEQ+ ) 3y (L + 4EQu) + Cpy”

E¢’ E¢’

a'(&n) (55)

al

3Cuwy’, c (56)
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from which, integrating with respect tp we get

_ Ing(Zu" + 4284 +3u&+ p))  ZCu(y)” |

a

E¢ 2E¢°
Cuy™ + 3Cp g+ 12ECuy” +
2E¢°
2 n r 2
cu'+ SEZ/JE; 4p(l+ 3¢ )_;_:SJF d (57)

whered is an arbitrary function of. Oncea is known as a function of andn, with the help of
Eqg. (37),a can be determined as a functionxaindy.
In particular, for@ = 0, from Egs. (55), (53c), (47), (45) and (37a), we obtain

= —c(Kk ,+d(k). (58)

5. Examples of strain field determination

We now propose to verify whether the stress state determined by the Egs. (16)-(19) solves the
boundary-value problem for the case shown in Fig. 2. In other words, we wish to see whether there
exists a displacement field satisfying the boundary conditions whose corresponding strain satisfies
the constitutive equation for some>0 . For the sake of simplicity, we shall limit ourselves to
considering the case in whidig = 0 andv = 0.

We begin by looking at the regid®;. From Eq. (47), Eq. (16) and Eq. (17) it is a simple matter
to obtain

b(&—-
wie = Al (59)
and therefore from Eq. (53a) we deduce
_ _bb
u = oo (60)

Thus, from Eg. (57) we obtain

b
—2pb(1 + 352)%1 + In%] + 5‘&% -
-5+ d(9). (61)

b b
Ea% * 2q0 n* 2a

a(é, n) =

In order to determine the displacement in redinit is convenient to make reference to a polar
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g

Fig. 8 Polar coordinates used for displacement determination

coordinate system 3, with origins at poin%—%b, —%E , the intersection of the straight;ldr:e—%b

with the isostatic of equation= ay (Fig. 8).
By virtue of Eq. (5), Eqg. (30) and Eq. (29), fer= 0, we have

g = o(l+ KZ), (62a)

T = 0y = 0; (62b)

€ = a(l+ K, (63a)

& = &9= 0; (63b)
2

& = g1+ k) 1; Kl (64a)

g5 = &5= 0. (64b)
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As it holds that

_ reing_ D
n = rsingd >0 (65)
and that, in light of Eq. (16), Eq. (17) and Eq. (37a), we have
_ __pb
g 2arsing ’ (662)
& = Kk = ctgd, (66b)
from Eq. (63) and Eq. (64), we get
g = ——pb.—3 : (67a)
2aErsin™d
a a
&y = ——, 67b
7 sintd (670)

where, by virtue of Eqg. (61), Eqg. (65) and Eg. (66b),

_ 2bp 2 . C(9)
a(r,d) = - Earsinﬁ(l + 3ctg 3)(1 + In(rsind)) ~Teing + D(9), (68)

with C andD are arbitrary functions aof.
Denoting the radial displacement by from the relation

_du

gr - dr! (69)
with the help of Eq. (67a) we obtain
u = ——200C (), (70)
2Easin’d
, , . ; : H O_
whereF is an arbitrary function. As the panel’s bottom is clamped, we % ’9D =0 , for
_he D
H=h+ >0 (72)
and can therefore write
_ __bp oH O
s 2Ecrsin3‘z‘)|nG5inz9D (72)
Analogously, denoting the circumferential displacementigyfrom the relation
_ U, 10u
£y = r+ré’z9’ (73)

with the help of Eq. (67b), Eq. (68) and Eqg. (72), we obtain
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U = bp((In(1—cos?)(1—8InH)) + 3In(1+ cos9))+
v 32Ea

bpin(sind)nH | 3cos? 10,
2Ea 0 2 Sin429 4D

bpcosd (5, InH _ 3inr +9ct 2 21 O
: — = SClg 9 +——=—+
2Easin’d™ 2 sinPg 8 8sint 9™

rD(9) - C(9) + G(r), (74)
where G is an arbitrary functionf:(z‘)) is a primitive @(J)/sir’d and 15(19) is a primitive of

D(9)/sin*d. FunctionsC, D and G can be determined by requiring that the displacement vanish at
the panel’s bottom and using the well-known relation

_ 1du duy U,
289 = o9 r 1 (%)
From this, in light of Eq. (72) and Eq. (74), we obtain
Cc(9) = —pr[16InH(2003419—coszz9 —1) +cos’d(sin' 9 +sin*d + 1) +
8Easin'9
cos 9(8 - 20sirt9) + cosd(sin’d — 1) — 8] (76)

which, by substituting into Eqg. (74), furnishes a new expressiongfownith the help of which we
can, from Eq. (75), obtain

G'(r)——G—r(Q -0
which in turn implies that
G(r) = cr, (77)

where ¢ is an arbitrary constant. Recalculatipgwith the help of Eq. (76) and Eq. (77) and
imposing the boundary condition

uga:i—i—?, sd=o,
we obtain
D(9) = E—?}{Pﬁ(u 3ctd9) (78)
and
¢ =0, (79)
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which finally allows us to write

riL+2co§z9 rrsmﬁg
a(r.9) = Ea[ rsind % 0"

ool 1 g 1 ;J
3etg I — 5=—sp pencpldl| (80)

_ bpcosﬁ[ 3 |‘[SII’129|:| 1 LJ (81)

| -=.
Eqsin®s 2sing "0 H O sind H

In order that the strain and displacement fields obtained solve our boundary-value prolilem for
at this point it is sufficient to check thafr, 3) >0 @h, that is to say for

arcctga) <9< % (82a)
b H
and asing =" =sing (82D)

To this end, we observe that, in light of Eq. (82b), we have

Ja _ b [ rrsmﬁg 5cog9
28 = — 2B _I2(2c089 + 1)Inc 1}<o (83)
o Ear’sin’9 ( ) o 2

and therefore, for every fixefl, a assumes its minimum value for= H/sing, so that

oH .o0-_bp 0l .0
a(r,ﬁ)zatémﬁﬁ 2EaH g 1 =0. (84)

Regarding regio,, from Eq. (47), Eq. (16) and Eg. (17), we deduce, in place of Eqg. (59) and
Eqg. (60), that

pie = He=s) (852)
_ bb
H= S (85b)
and then, in light of Eq. (57) we can write
=2pb(1+ 362)%[ + |na%—n% o(8)
a(é, n) = + + d($). (86)

nb .0 b O
eyl g0
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For calculation of the displacement it is now convenient to make reference to a polar coordinate
system with origin at point(2, b/2a), as shown in Fig. 8. Therefore, @3 it holds that

arccta) <9< %n, (87a)

b_gahsrs p .
2asing 2asind

(87b)

In this case, in place of Eqg. (65), we haye 5% - rsind and, in light of Eq. (16), Eq. (17) and

Eq. (37a), Egs. (62), (63), (64), (66) and (67) maintain their validity, with

_ 2bp 2 . C(3)
a(r, 9) Earsinﬁ(l + 3ctgd ) (1 + In(rsind)) + o +D(39), (88)

which differs from Eq. (68) in the sign of the tel;%inﬁzz?

Proceeding in a manner analogous to the foregoing case, we arrive at expressiposdnd uy
that are formally identical to those obtained €oy, provided that in Eqgs. (80), (72) and (81) we
replace Eq. (71) with
b
= ——h. 9
H 2a h (89)
In this case, howeves, is not non-negative throughout. To verify this fact, it is enough to consider
the restrictiona of to the segment

J = ln, (90a)
2
H<r< b (90b)
srso-.
Then, from Eqg. (87) we in fact obtain
ary = ok 1,0 bpr 2, org 1.1
a(r) = a%,zr% = Ea[ Nt HJ (91)
and therefore hava(H) =0 and, moreodz,rr <0 in a right-sided neighborhétd of

Therefore, the stress state defined by Eqgs. (16)-(19) does not allow determining a solution to our
boundary-value problem.

Nevertheless, if we consider a body whose shape is that of the fegiconstrained and loaded
as shown in Fig. 9, the Egs. (16a)-(19a), (80), (72) and (81) are the solution of the boundary-value
problem. An interesting outcome is that the solution is unique with respect to both the strain and the
displacement.
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op

crgP=0u

/

Fig. 9 The boundary value problem that has been solved

5. Conclusions

For a broad class of boundary value problems for plane bodies made of no-tension materials, the
method here proposed provides a way to determine a stress state that is both admissible and
equilibrated with the assigned loads. In some cases, once the stress state is known, it is also possible
to determine an admissible strain state and the associated displacement field satisfying the assigned
boundary conditions, thereby providing a complete solution to the given boundary value problem.

As highlighted in the examples, by examining load processes depending on a specific multiplier,
the method can also be used to determine the corresponding collapse load.
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