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Abstract. In this paper, a novel numerical solution technique, the differential cubature method is
employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-
uniform boundary constraints based on the first order shear deformation theory. By using this method, the
governing differential equations at each discrete point are transformed into sets of linear homogeneous
algebraic equations. Boundary conditions are implemented through discrete grid points by constraining
displacements, bending moments and rotations of the plate. Detailed formulation and implementation of
this method are presented. The buckling parameters are calculated through solving a standard eigenvalue
problem by subspace iterative method. Convergence and comparison studies are carried out to verify the
reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the
present method are demonstrated through solving several sample plate buckling problems with various
mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical
solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-
times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling
of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark
values for further studies in the future.

Key words: differential cubature method; buckling analysis; critical load; thick quadrilateral plates;
plates with mixed boundary conditions.

1. Introduction

Both thin and thick rectangular plates are extensively used in mechanical, civil, nuclear and
aerospace structures. A good understanding of the buckling behaviors of these structural components
is crucial to the design and performance evaluation of mechanical systems. A vast amount of
literature for buckling analysis of plates is available. Srinivas and Rao (1969) presented an exact
three dimensional analysis for the buckling of simply supported thick rectangular plates. Brunelle
(1971) solved the buckling problems of thick rectangular plates with two opposite edges simply
supported and the other edges arbitrary constrained. Brunelle and Robertson (1974) derived the
governing equations of a transversely isotropic, initially stressed Mindlin plates, and presented the
buckling solutions for a simply supported rectangular plate under combination of a uniform
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compressive stress and a uniform bending stress acting in the same direction. Hinton (1978) also
studied the buckling of initially stressed Mindlin plates by the finite strip method, and obtained
some results for plates with two opposite sides simply supported and various edge conditions on the
other sides. Rao et al. (1975) analyzed the stability of moderately thick rectangular plates by using a
high precision triangular finite element. Luo (1982) performed a hybrid finite element formulation
for buckling of thin and thick plates. Dawe and Roufaeil (1982) solved the buckling problem of
thick plates by using the finite strip method and Rayleigh-Ritz method.

In all the papers mentioned above, researchers have confined their studies to a simple rectangular
domain, and only the uniform boundary conditions were considered. For the stability analysis of
plates with arbitrary shape, Kennedy and Prabhakara (1979) used the classical Rayleigh-Ritz method
to study the buckling of orthotropic skew plates. Based on the classical Rayleigh-Ritz method,
Wang et al. (1992) and Kitipornchai et al. (1993) developed pb-2 Ritz functions for approximating
the deflected shape of skew plates in order to study the buckling of skew plates with simply
supported edges and internal supports. They presented design charts for skew plates with different
edge conditions. Besides the energy method, other numerical methods are also usually used to study
this problem. For examples, Wittrick (1956), Edwardes and Kabaila (1978) and Hegedus (1988)
investigated the buckling problem by using the finite difference method, finite element method and
finite strip method, respectively. Regarding the plates with mixed boundary conditions, Hamada
et al. (1967) studied the buckling of thin plates with simply supported but partially clamped edges.
Keer and Stahl (1972) presented an exact analytical solution of buckling problem for a simply
supported thin plate having mixed boundary conditions. Using an approximate method, Sakiyama
and Matsuda (1987) analyzed the buckling of rectangular Mindlin plates with mixed edge
conditions. However, only the solutions for thin plates with mixed boundary conditions were
presented. Up to now, solutions to the buckling of thick plates with mixed boundary conditions are
extremely scarce in the open literature.

Recently, an efficient global solution technique, the differential quadrature(DQ) method was
introduced by Bellman and his associates (Bellman and Casti 1971, 1972) for solving linear and
nonlinear differential equations with a little computational cost. Since then, there have been
numerous developments and applications of the method in structural mechanics (Bert and Malik
1996, Liew et al. 1996, Malik and Bert 1998). However, further application of the method has been
greatly restricted by the disadvantage that it cannot be directly used to solve problems with
discontinuities or with complex domains. Besides, although the differential quadrature method is
also applicable to multidimensional problems, it is most suitable for solving one-dimensional
problems, since it is based on a weighted linear sum of discrete function values in a single variable.
To overcome these drawbacks, Civan (1994) developed a novel numerical technique, the differential
cubature(DC) method as an accurate alternative to the differential quadrature method in dealing with
multi-dimensional differential equations. The DC method is a direct discretization method, which
approximates the partial derivatives of a function by means of polynomials, which expressed as a
weighted linear sum of function values at the grid points in the overall physical domain. The
practical importance of the DC method is that it needs to use only a few grid points which is able to
obtain an acceptable accuracy in an arbitrary domain. And, the DC method is much simpler than the
differential quadrature method when treating the multivariable problems. In his publication, Civan
has shown that the differential cubature method is exceptionally efficient in solving the
mathematical models of Buckley-Leverett problem for water flooding of naturally fractured oil
bearing reservoirs and that the DC method is particularly advantageous over the differential
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quadrature method when dealing with mixed operations, such as . Furthermore, since the
grid points are located in arbitrary position, the DC method can be easily used to solve the problems
in various shaped domains and with various boundary constraints. Liew and Liu (1997, 1998) have
used this method for static analysis of arbitrary shaped thin and thick plates. They concluded that
the DC method can yield rapidly convergent numerical solutions and the results were in excellent
agreement with the exact analytical solutions. Therefore it has been claimed to be a superior
numerical method for solving the multi-dimensional problems in arbitrary domains. However, to the
author’s knowledge, the potential of this method for solution of a varied class of problems has not
been explored and no any work has been reported on the application of the differential cubature
method for plate buckling and vibration problems as yet. In view of the fact that few solutions to
buckling of thick plates with non-uniform boundary conditions are reported and the potential
capability of the differential cubature method, the authors attempt to exploit this new numerical
method for buckling analysis of thick plates with arbitrary shape and mixed boundary conditions. In
this paper, the suitability, efficiency, simplicity and convergence properties of this method were all
demonstrated. The numerical accuracy is verified by the comparison of the present results with
corresponding exact solutions or other numerical solutions in the open literature.

2. The differential cubature method

Basically, the differential cubature method is a numerical procedure expressing a linear operation
such as a continuous function or any orders of partial derivatives of multivariable function or
combinations of them as a weighted linear sum of discrete function values chosen within the overall
domain of a problem. For a two dimensional problem, supposing that there are n arbitrary located
grid points indexed in one dimensional, the cubature approximation at the ith discrete point can be
expressed as

(1)

where  denotes a linear differential operator, cij   is the cubature weighting coefficients. According
to Civan (1994) and Liew (1997, 1998), the weighting coefficients cij can be determined by the
following expression

(2)

The n-monomials, , are used to obtain a unique solution of Eq. (2). Once the grid points
(xi , yi) are given, the cubature weighting coefficients can be obtained by solving an n × n orders
linear algebraic equations.

3. Governing equations and boundary conditions

3.1 Basic governing equations

Consider a flat, isotropic, thick plate of uniform thickness h, length a and oblique width b. On the
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basis of Mindlin’s concept, the buckling equation of the plate subjected to in-plane compressive
forces Nx, Ny is given by

(3a)

(3b)

(3c)

where

(4)

(5)

and w is the transverse deflection; ψx and ψy are the rotations of the normal about the x-axis and
y-axis respectively; D is the plate flexural rigidity; E, G and ν are the Young’s modulus, the shear
modulus and the Poisson’s ratio; k is the shear correction factor taken to be 5/6;  is  Laplace’s
two-dimensional operator; 

In light of the relationship between force resultants and deformation variables, the bending
moments, the twisting moments and the shear force can be expressed in terms of the plate
deflection and the rotations as follows

(6)

(7)

To normalize the above equations, the following non-dimensional parameters are introduced

(8)

Substituting Eq. (8) into Eq. (3), normalizing and rearranging them, we can obtain 
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Substituting Eq. (8) into Eqs. (6), (7), the bending moments and the shear resultants are normalized
as follows

(10)

(11)

where,

3.2 Boundary conditions

The boundary conditions for an arbitrary edge of Mindlin plates are (Kitipornchai et al. 1993)
(1) Generalized soft simply supported edge (S')

(12)

(2) Generalized hard simply supported edge (S)

(13)

(3) Clamped edge (C)

(14)

(4) Generalized free edge (F)

(15)

where  and  denotes the shear force, the bending and twisting moments on the edge of
the plate respectively; ψn and ψt is the rotations of the midplane in the normal plane and in the
tangent plane, to the plate boundary, respectively; and the subscripts n and t represents, respectively,
the normal and the tangent directions of the edge. Substituting Eqs. (10), (11) into Eqs. (12)-(15),
one can obtain the dimensionless boundary conditions in terms of the transverse displacement and
rotations
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(1) Generalized soft simply supported edge

W = 0

(16)

(2) Generalized hard simply supported edge
 

W = 0

(17)

(3) Clamped edge

(18)   

(4) Generalized free edge 

(19)

4. Discretization of governing equations and boundary conditions 

First, we define the following linear operators, which will be required in the discretization of the
governing equations and boundary conditions

(20)

Using the differential cubature procedures, the normalized governing Eqs. (9a-c) can be
discretized as follows
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(21a)

(21b)

(21c)

where n is the total number of the discrete points, and i is the index number, i = 1, 2, ..., n;  is
the cubature weighting coefficients corresponding to the linear operator .

Similarly the normalized boundary conditions for an arbitrary edge are discretized as
(1) Generalized soft simply supported edge
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(2) Generalized hard simply supported edge

(23)

(3) Clamped edge

(24)   
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(25)

where i is the index number of the points on boundary. 

5. Eigenvalue problem for buckling factors

Combining the discretized governing Eq. (21) at each discrete point in the physical domain and
the boundary condition Eqs. (22)-(25) at each boundary point, and rewriting them in terms of
matrix, we obtain

(26)

where [K] and [M] are the bending stiffness matrix and the geometric stiffness matrix respectively,
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Fig. 1 Grid point pattern for square plate problem
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the elements of which are determined by Eqs. (21a-c) or Eqs. (22)-(25); {q} is the displacement
vector, which is expressed as

(27)

Eq. (26) is a standard eigenproblem, of which the eigenvalues and eigenvectors can be calculated
by using an ordinary eigenvalue equation system solver. 

6. Numerical results and discussion 

To demonstrate the applicability of the DC method for buckling analysis of moderately thick
plates, numerical calculations have been performed for plates with different mixed boundary

q{ } W1 ψx1 ψy1 W2 ψx2 ψy2 … Wn ψxn ψyn, , , , , , , , ,{ }T=

Fig. 2 Configurations of thick plates with various mixed boundary conditions
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conditions, different thickness to span ratios, and different aspect ratios. The numerical procedure
based on the differential cubature method proposed in this paper has been implemented in
FORTRAN computer code and applied to rectangular plates and skew plates with different
boundary conditions. Several examples are selected in this section to show the performance of the
differential cubature method. For all cases considered herein, the Poisson’s ratio ν is taken to be 0.3.
For convenience of presentation and comparison of the numerical results, a dimensionless buckling
parameter  has been defined as

(28)

where Nx, b, D are of the same meanings as in Eq. (3).

6.1 Rectangular plates

First, convergence studies are carried out to establish the minimum grid points required for
obtaining accurate solutions for a square plate with various boundary conditions under uniaxial
pressing load. The grid pattern for this problem is shown in Fig. 1, and the number of grid points is
changing from 13 to 181. In order to denote the support edge conditions of the plate, a four-letter
symbol consisting of a combination of letters C, S and F has been used. The first, second, third and
fourth letters represent respectively, the support conditions along the edges AB, BC, CD and DA(see
Fig. 1). The symbol, CSCF, for example, represents clamped, simply supported, clamped and free
support conditions along the edges AB, BC, CD, DA, respectively. 

The convergence characteristic of buckling parameters  for this problem is studied by gradually
increasing the number of grid points for the selected plate with different boundary conditions and
different thickness to span ratios. The numerical results are presented in Table 1. From Table 1, it is
found that the buckling parameters converge to stable values for thin and thick plates as the number
of grid points increases, and the convergence of the present solutions with grid refinement
demonstrates fluctuant characteristic for all boundary conditions considered in this paper. It is
evident that at least 41 grid points are needed to acquire solutions with acceptable precision. When
the mesh size becomes 61, a converged solution for the buckling parameter to at least three
significant figures could always be achieved except for thin plate. The relative error between the
numerical results obtained using 61 grid points and the converged results is within 6.88%, regardless
of the plate thickness. For thin plates with SSSS boundary conditions (h/a = 0.01), 61 grid points
provide acceptable results with a maximum discrepancy of 6.88%. For moderately thick plates with
arbitrary boundary conditions, however, the discrepancies are all within 0.1%. In order to ensure
high accuracy of the present solutions, 61 grid points are therefore employed to general all the
numerical results in the following studies. Furthermore, it is observed from the comparison studies
that a better convergece characteristic of the DC method is achieved for the CCCC boundary
conditions than the SSSS boundary conditions, especially for thin plates. Table 1 also shows that the
thicker a plate, the faster the convergence rate will be. 

To validate the numerical accuracy and efficiency of the solution method, the present results are
also compared with other existing exact and numerical solutions. It is evident in Table 1 that all the
present results agree very well with the other solutions for plates with both SSSS and CCCC
boundary conditions. One can easily find that the present results seem to be somewhat higher than
the 3-d exact solutions. Compared to the 3-d exact solutions, the present results using 61 grid points

p

p Nxb
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have a maximum discrepancy of 1.1%. Nevertheless, the present results are in close agreement with
other numerical solutions, especially with the differential quadrature element solutions obtained by
Liu. The present values of the buckling parameters are almost identical to those of DQE solutions.
The main reason for this is that the present results and the DQE results given by Liu are all
generated by using polynomials as trial functions and based on the same plate theory, i.e., the first
order shear deformation theory. Indeed, the differential cubature method is an extension of
differential quadrature method. However, it should be noted that Liu’s DQE results were generated
by using 13 × 13 grid points, while the present results were generated only by using 61 grid points.
This means that the total degrees of freedom using by DQE method would be as 2.77 times large as
those using by the differential cubature method. So, we can conclude that the present differential
cubature method is much more efficient than the differential quadrature element method.

Based on the previous convergence and comparison studies, the present numerical method has
now been employed to determine the critical load of moderately thick plates. In this paper, the

Table 1 Convergence study of buckling parameters  for a square plate under uniaxial compressing load

Boundary 
conditions n

h/a

0.01 0.05 0.1 0.2 0.3

SSSS 13 1520.8 61.758 16.132 4.6216 2.3742
25 3.9263 3.6997 3.7712 3.6778 2.3270
41 3.9736 3.9535 3.7826 3.2578 2.6520
61 4.2766 3.9549 3.7860 3.2642 2.6529
85 3.9958 3.9511 3.7858 3.2640 2.6523
113 4.0154 3.9514 3.7859 3.2638 2.6523
145 4.0011 3.9512 3.7859 3.2638 2.6523
181 4.0012 3.9512 3.7859 3.2637 2.6523

DQE solutiona 3.99775 3.94439 3.78645 3.26373 ---
Finite strip solutionb --- 3.944 3.786 3.264 ---

Rayleigh-Ritz methodc --- 3.929 3.731 --- ---
Exact solutiond --- 3.911 3.741 3.15 ---

Thin plate solutione 4.000 --- --- --- ---
p-Ritz solutionf --- 3.944 3.786 3.264 ---

CCCC 13 713.42 32.377 10.807 4.6067 2.7713
25 8.6753 8.4240 7.7093 5.0474 2.9732
41 10.296 9.5527 8.2532 5.3400 3.2522
61 10.490 9.5592 8.2900 5.3146 3.1967
85 10.043 9.5517 8.2898 5.3147 3.1973
113 10.078 9.5516 8.2899 5.3147 3.1973
145 10.072 9.5516 8.2899 5.3147 3.1972
181 10.074 9.5517 8.2899 5.3147 3.1973

DQE solutiona 10.052 9.5586 8.2916 5.3156 ----
p-Ritz solutionf ---- 9.5588 8.2917 5.3156 ----

a; Liu (2001), b; Hinton (1978) c; Dawe and Roufaeil (1982), d; Srinivas and Rao (1969), e; Alexander
(1982),  f; Xiang (1993)

p
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authors calculated the buckling parameters for a square plate having various mixed boundary
constraints subjected to uniaxial and biaxial compress loads (Fig. 2(a-d)). The numerical results are
tabulated in Tables 2 to 5 respectively. It is observed from these tables that the buckling parameters
increase as the clamped portions ratio increases for all the relative thickness varying from 0.1 to 0.3.
Also, the authors studied the influence of the aspect ratio to buckling factors of a rectangular plate
with different relative thickness and mixed boundary conditions (Fig. 2(c, d)) under uniaxial loading
condition, and the numerical results are presented in Tables 6-7. From these two tables, it is
observed that regardless of the relative thickness, the buckling parameter decreases as the aspect
ratio a/b increases. However, the variety pattern does not demonstrate the monotonic properties. It
should be noted that when the aspect ratio a/b varies, the clamped ratio or the simply supported
ratio c/a = d/b is taken to be a constant 0.2; i.e., the buckling parameter is not only the function of

Fig. 3 Configuration of a skew plate  Fig. 4 Grid point pattern for skew plate problem

Table 3 Buckling parameters  for a simply supported square plate partially clamped along two opposite
edges subjected to uniaxial compressing load (Fig. 3b)

h/a
c/a

0.0 0.2 0.4 0.6 0.8 1.0

0.1 3.785150 4.297997 5.043557 5.830410 6.376959 6.400690
0.2 3.263690 3.515746 3.880054 4.203066 4.342392 4.342935
0.3 2.653240 2.724059 2.757091 2.850446 2.883739 2.888282

p

Table 2 Buckling parameters  for a simply supported square plate partially clamped along one edge under
uniaxial compressing load (Fig. 3a)

h/a
c/a

0.0 0.2 0.4 0.6 0.8 1.0

0.1 3.786045 4.083044 4.450221 5.121418 5.216457 5.215809
0.2 3.264236 3.410466 3.675255 4.024441 4.152924 4.151449
0.3 2.652978 2.711804 2.748032 2.799802 2.817187 2.815337

p
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aspect ratio, but also the function of clamped side length. These numerical values can be served as a
benchmark for future studies.

Table 4 Buckling parameters  for a simply supported square plate partially clamped along four edges
symmetrically from the corners (Fig. 3c)

Loading conditions c/a
h/a

0.1 0.2 0.3

Uniaxial(Nx)
0.2 6.079890 4.480995 3.069418
0.4 8.317241 5.355851 3.240878

Biaxial(Nx = Ny)
0.2 3.335272 2.415733 1.746879
0.4 4.684618 3.287795 2.229513

p

Table 5 Buckling parameters  for a simply supported square plate but partially clamped along central
portions of four edges subjected to uniaxial compressing load (Fig. 3d)

Loading conditions c/a
h/a

0.1 0.2 0.3

Uniaxial(Nx)
0.2 8.229237 5.255400 3.011846
0.4 6.798482 4.621438 3.011416

Biaxial(Nx = Ny)
0.2 4.485126 3.207488 2.186402
0.4 3.767321 2.699908 1.891833

p

Table 6 Buckling parameters  for a simply supported rectangular plate but partially clamped along two
opposite edges subjected to uniaxial compressing load (Fig. 3c)

a/b
h/b

a/b
h/b

0.1 0.2 0.3 0.1 0.2 0.3

0.5 12.47308 6.223735 3.404814 1.0 5.043557 3.880054 2.757091
0.6 8.326212 5.056317 3.083836 1.1 4.630253 3.627263 2.660839
0.7 6.308306 4.253829 2.836055 1.2 4.261912 3.461529 2.625069
0.8 5.448079 3.880453 2.740824 1.3 4.046765 3.386294 2.642043
0.9 5.168001 3.878681 2.814005 1.4 4.052723 3.420290 2.335669

p

Table 7 Buckling parameters  for a simply supported rectangular plate but partially clamped along central
portions of four edges subjected to uniaxial compressing load (Fig. 3d)

a/b
h/b

a/b
h/b

0.1 0.2 0.3 0.1 0.2 0.3

0.5 12.77294 6.560153 3.560303 1.0 8.229237 5.255400 3.011846
0.6 10.81427 6.128338 3.472331 1.1 7.810606 4.958963 2.842505
0.7 9.574515 5.810514 3.389223 1.2 7.292115 4.754931 2.673244
0.8 8.840962 5.593931 3.267632 1.3 6.983388 4.493064 2.523094
0.9 8.436534 5.420046 3.148860 1.4 6.716741 4.409866 2.348395

p
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6.2 Skew plates

In this subsection, a thick skew plate is considered to demonstrate the versatility and the simplicity
of the DC method to plate problems with a complex domain. The geometry of the plate and the grid
point pattern employed for this problem is shown in Fig. 3 and Fig. 4, respectively. First we carried

Table 9 Convergence of buckling parameters  for a skew plate with a/b= 1 under uniaxial compressing load

Boundary 
conditions n

h/a = 0.001 h/a = 0.2

β = 0o β = 15o β = 30o β = 45o β = 0o β = 15o β = 30o β = 45o

SSSS 13 1520.8 2237.4 3812.3 3773.6 4.6216 4.7432 8.3201 12.235
25 3.9263 4.6786 6.7854 12.343 3.6778 4.0456 4.5880 7.8345
41 3.9735 4.4012 8.3233 14.779 3.2577 3.5157 4.4483 6.1347
61 4.2765 4.4338 6.0110 10.746 3.2642 3.5325 4.4567 6.1587
85 3.9958 4.3955 5.8874 10.354 3.2640 3.5330 4.4515 6.1573
113 4.0154 4.3976 5.9118 10.421 3.2638 3.5329 4.4510 6.1564
145 4.0011 4.3938 5.8989 10.807 3.2638 3.5328 4.4509 6.1574
181 4.0012 4.3939 5.8970 10.503 3.2637 3.5329 4.4509 6.1542

CCCC 13 713.42 874.82 1078.4 1843.6 4.6067 4.7784 5.0483 5.3881
25 8.6753 8.8932 11.478 16.669 5.0474 5.3140 5.9192 6.5843
41 10.296 10.997 14.630 21.038 5.3400 5.5539 6.1478 6.9937
61 10.490 10.778 13.744 20.485 5.3146 5.4747 6.0574 6.9719
85 10.043 10.865 13.661 20.632 5.3147 5.4932 6.0637 6.9730
113 10.078 10.854 13.544 20.232 5.3147 5.4932 6.0553 6.9715
145 10.072 10.851 13.545 20.535 5.3147 5.4932 6.0552 6.9725
181 10.074 10.852 13.545 20.135 5.3147 5.4932 6.0553 6.9716

CFCF 13 1883.5 2272.8 3684.5 3378.1 4.6782 4.9065 5.5485 6.2734
25 4.7328 4.8994 6.8341 10.345 2.7432 3.4044 3.8843 4.5503
41 3.8906 4.3445 5.4515 8.4995 2.6258 2.7883 3.4329 4.0438
61 4.1472 4.5457 5.8334 8.6432 2.6976 2.8516 3.4402 4.2312
85 4.0171 4.3061 5.7421 8.2114 2.7061 2.8743 3.4578 4.2585
113 3.8992 4.2809 5.6485 8.4062 2.6965 2.8621 3.4447 4.1773
145 3.9189 4.2822 5.6072 8.5963 2.6962 2.8622 3.4203 4.2459
181 3.9193 4.2824 5.6159 8.0948 2.6961 2.8622 3.4071 4.0458

p

Table 8 Comparison studies of buckling parameters  for a skew thin plate with a/b = 1 under uniaxial
compressing load (h/a = 0.001)

Researchers
SSSS CCCC

β = 0o β = 15o β = 30o β = 45o β = 0o β = 15o β = 30o β = 45o

Mizusawa (1980) 4.000 4.3514 5.6177 8.6410 ---- ---- ---- ----
Wang (1992) 4.000 4.4341 6.1867 10.600 10.080 10.889 13.749 20.680

Kitipornchai (1993) 4.000 4.3939 5.9217 10.104 10.074 10.834 13.538 20.112
Saadatpour (1998) 4.000 4.3928 5.8684 9.7560 ---- ---- ---- ----

Navin (1995) 3.999 4.4020 5.8970 10.103 10.073 10.835 13.548 20.616
Present method 4.2765 4.4338 6.0110 10.746 10.490 10.778 13.744 20.485

p
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out a comparison study of the present results for the buckling factors with other exact or numerical
solutions for a clamped and a simply supported thin plate with different sharp angle. The relative
thickness of the plate is taken to be 0.001. The numerical results are tabulated in Table 8. Again, the
present results are in good agreement with all other exact solutions and numerical solutions,
especially with Navin’s Rayleigh-Ritz solutions and Kitipornchai’s pb-2 Ritz solutions. The
maximum relative error between the present results and Navin’s results or Kitipornchai’s is 6.93%. It
is interesting to note that the results from Navin’s analyses were carried out using a 66-term
series(330 degrees of freedom); the Kitipornchai’s results were generated using 120-term series(360
degrees of freedom); while the present results are calculated by using only 61 grid points(183 degrees
of freedom). That is to say that the total number of degrees of freedom using in Navin’s method or
Kitipornchai’s method is as almost 2 times large as that using in the present method. It should also be
noted that the present method need not geometric map, while the Ritz energy method used by Navin
and Kitipornchai need to transform the physical domain to a computational domain, and that is not
very convenient for some operators especially for higher order operators. 

The convergence characteristics of the buckling parameters are presented in Table 9 for plates
having various sharp angles with various relative thickness and different boundary conditions.
Similar properties to rectangular plates have been found. The buckling parameters converge to stable
values very quickly for most cases. However, when the skew angle is 45o, the convergence of the
present DC results is not quite satisfactory because of the singularities of stresses at the obtuse
corners. It is also observed that the convergence rate for plate with SSSS or CCCC boundary
conditions is faster than that for plate with CFCF boundary conditions. Generally speaking, the
convergence rate will be slow when the plate having free edges.   

7. Conclusions

In this paper, the differential cubature method has been applied to solve the buckling problems of
moderately thick plates with arbitrary shape and discontinuous mixed edge conditions. This is the
first endeavor to exploit the DC method for buckling analysis of thick plates. Several examples have
been selected to demonstrate the convergency, accuracy and applicability of the DC procedures. The
numerical results have been compared with the opening literature. It has been shown that the DC
method yields quickly convergent and accurate solutions for thin and thick plate buckling problems
with a rectangular domain, and the DC results are in excellent agreement with the exact analytical
solutions and other numerical solutions. For comparable accuracy, the differential cubature method
required 2.77-times less degrees of freedom than the differential quadrature element method and 2-
times less degrees of freedom than Rayleigh-Ritz method. However, for skew plate problems with a
small sharp angle, the convergence rate is not quite satisfactory because of the stresses singularities
at obtuse corners. Therefore, we can conclude that this method can be used as an alternative to other
existing numerical methods for the solutions of thick rectangular plate buckling problems. For skew
plate, however, much more grid points should be employed to acquire more accurate solutions. 
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