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Abstract. This paper proposes a new method for the preliminary design of cable-stayed bridges that
belong to the radial system subjected to static loads (self weight, traffic loads, concentrated loads, etc).
The method is based on the determination of the each time existing relation between the tension forces of
the cables and the corresponding bridge-deck deformations, and can be extended on any type of cable
layout (fan, parallel, or mixed system). Galerkin’s method is used for the final determination of the cable
stresses and the bridge deformation. The determination of the equation, which gives the forces of the
cables in relation to the deck’s configurations, permits us to convert the problem to the solving of a
continuous beam without cables.
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1. Introduction

Cable-stayed bridges have been known since the beginning of theeh8iry Leonard (1972),

Chang and Cohen (1981), but they have been of great interest only in the last fifty years,
particularly due to their special shape and also because they are an alternative solution to suspension
bridges for long spans O’Connor (1971), Podonly and Scalzi (1976), Troitsky (1988), Gimsing
(1997). The main reasons for this delay were the difficulties in their static and dynamic analysis, the
various non-linearities, the absence of computational capabilities, the lack of high strength materials
and the lack of construction techniques. There is a great number of studies concerning the behaviour
(static, dynamic and stability) of cable-stayed bridges, some of which are referred to in this study
here Tang (1971), Lazar (1972), Fleming (1979), Fleming and Egeseli (1980), Bruno and Grimaldi
(1985), Nazmy and Abdel-Ghaffar (1990), Ermopowdbsl. (1992), Chatterjeet al (1994), Bruno

and Golotti (1994), Khalil (1996), Bosdogianni and Olivari (1997), Virlogeux (1999).

In this paper a quick and efficient method of preliminary analysis of cable-stayed bridges that
belong to the radial system is described. The parallel system will be covered in the future in another
publication, since the mathematical treatment needs a different approach compared to the one used
here. The shape functions of the corresponding continuous beam of the bridge deck without cables
and Galerkin’s method are used here. The determination of the equation, which gives the forces of
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Fig. 1 Typical cable-stayed bridge of a radial system

the cables in relation to the deck’s configurations, permits us to convert the problem to the solving
of a continuous beam without cables.

2. Analysis

In the following analysis, a 2D model of a cable-stayed bridge shown in Fig. 1 is used.

The following assumptions are made:
» The pylon provides only vertical support to the deck of the bridge, so the deck can be

characterized as a three- span continuous beam.
» The tangent modulus of elasticiB for the cables is used.
» The influence of axial forces either of the pylon or of the deck is neglected.

2.1 Deformation of the system deck-pylon

The relative horizontal deformatiodu of the top of the pylon, in regard to the point of the
vertical support of the deck for a lo&yg,,, that acts at its top and is vertical to its axes, is given by

the formula:

P, H’ H 72 3
Su = u,—u, = —gEE[Z—e[ﬁZJ + E%ZEJ 1)

where:
P, the horizontal force that acts at the top of the pylon
E, the modulus of elasticity of the material of the pylon, and
I, the moment of inertia of the cross-section of the pylon.
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Fig. 2 The right and left-side cables of a radial system

2.2 Relation between axial loads P; and vertical displacements w;

The horizontal force that acts at the top of the pylon and causes the defoumaigiven by the
following sum: ZP‘ [king, — ZPJ [(sing; , wherg andi are the cables on the left and right side
T ]

connected at the top of the pylon as shown in Fig. 2.
The total relative deformatiodu is:

du = U—ug = 6:; [2 3[HJ N EHEZEJDZ P EBinqSi—ZPj ESinquE @)

The elongatior\s of the cabld due to its axial forc®; is:

s [P;

e 3
wheres is the length of cablein the undeformed statg; is its tangent modulus of elasticity and
A is the area of its cross-section.

According to the geometry of the bridge shown in Fig. 3(a), and projecting the displacements on
axis a-a the following equation is derived for the cables on the right side of the pylon:

As =

U, [sing; + w, [cosy; + (s + As;))cosAg; = s + uqy [King; + w; [osy, ()]

Neglectingw, which is a very small quantity and replacingafys= 1, we get:
(up—Uug)sing; + As, = w;cosg; or

G 2- 3[HJ EHQZE [EZP sing, — 3 P ESIn¢JDDEB|n¢, EA = w,cosf,
and finally: A[]éiP (king, — ZP DS'”¢JDEB|n¢, EAi = W, cosp, 5)

o - _ rHary
where i = (p+1)to(p+k),j=1top, andA= 6E| E’:Z 3|: J +DHDJ
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Fig. 3 Deformation of the system in the case of cables (a) right and (b) left to the pylon

In a similar way according to the geometry of the bridge shown in Fig. 3(b), and projecting the
displacements on axis a-a the following equation is derived for the cables on the left side of the

pylon:

. o P

I

withi = (p+1)to(p+K),j=1top
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From Egs. (5) and (6) and by setting:= s/EA;, b = s/EA
the following system is obtained:

in“¢. . .0 eind o
] i i O i
O
E (7)
right: ADS—'Q—"l Dé’ZP Csing; — ZP ES|n¢JD+ singp. = M Eslncg Eboscb.g
' N
with i = (p+1)to(p+k),j=1top or
sm w; [Bing; [tosg .
A[]? DD%EP [king; — ZP ESIn¢.D+ zsmq)J = Z J J%
] J N
. 2¢ % (8)
A i ino 2 < w, Csing, Ccosp,
Pi |3|n i P ESIFI i P. = | 1 ID
AEléii b, %EEZ ¢ ]Z j ¢E+ zsm¢|P. > b =
I i D
Adding Egs. (8a) and (8b) finally the following equation is derived:
sin2¢. [w; 3 sin2¢; O,
DJ bi .z b; %
E‘Zsmq),PJ ZSInqﬁ PID 1 ©)
]

2
sin ¢J sm 0
A ﬁ bi %+ 1

From Egs. (5) and (6) the expressions of the cable fé%casdP; can be determined as follows:

sm2¢, sin2¢; (O,
EZ D

. I 0
p - &1 W S|n¢1 E%D - (10a)
sm ¢, sin"g; 1
] b " Z bi TA
§S|n2¢] zsin2¢i BNE
b;
P = COS¢| [, Sln¢| E% 0 I o (10b)
' sin‘g;  sin'g,

1
by, "4 bi Ta

with i = (p+1)to(p+k)andj=1top
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Fig. 4 The loady(x), which expresses the effect of the cables on the bridge deck

2.3 Relation between distributed load q(x) of the cables and vertical displacement w of
the deck

Let us consider that the cables are placed very densely at a didiafiég. 4). Then we can
consider a distributed vertical loagfk), extended fronwor; to a, and froma, .1 to a, ., which atx

will be equal to: q(x) = chPi Tcosd, (11)

It is evident that for a radial system the total horizontal force that acts at the top of the pylon and
causes deformatiom is:

Ay x a,

= [ ai(x) Oang; Ldx — _[qj(x) (tang; Cdx (12)

ap+l

So Eq. (2) becomes:

G

E[Z 3[ J H_HLZEJ ?Kq(x)tanqbdx jqj(X)taWPJd&} (13)

p+1

6EI

L Xi L —X .
Taking into account thatang, = H—' an@ng; = —JH—l we can write:
1 1

=1L J’Kq(x)Ekde, Iq,(x)[(l_ x,-)[uxj} (14)

p+1
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Fig. 5 Cable-stayed bridge studied by Kollbruner, Hajdin, Stipanic (1980) in their paper

Eq. (4), neglectingy, as a very small quantity and replacing/ofs= 1, leads to:

D o, O

p+K I:l Pi B
DHl ED;[ﬂq () Ok Cdx — J’qj(x) L —x;) Lo Dgﬂslnqﬁ, EA = W;COS§, (15)
O O

In a similar way according to the geometry of the bridge shown in Fig. 3(b) the following equation
is derived for the cables on the left side of the pylon :

D D
p+K P
D—— E%’qj(x) QL —x;) Colx; — i gi(%) ¥, deﬂmDsmqﬁ, %AL = w;cosg, (16)
ap+1
D D
From Egs. (15) and (16) and by setti®y:= 1/EA, B; = 1/EA
we obtain the following:
0 0
oA 07 oS 00 deg
left: O COf g (L —x) Oox, — J’ g Ox [xO0Csing; + —1—1—1 = W, cosg,
DH]‘ 1 p+1 D S¢J
0 0
7)
. pes % 00 B,d
right: D—A— 1 0 % - [ C1Ly =) (x5 sing, 35%9 - W, cosg,
o Loy, 00 cosp,
0 0

withi = (p+1)to(p+ k), j=1top
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Taking into account that:

X; L —X . Xi . L —X;
S=—+, §=——1 sing = , sing, = ———"~1—
sing; sing, /Hi+xi2 /Hi’f (L, —XJ-)Z
Hy

Hi
cosp; = ———, cosp; =

JHI+ X JHT + (L =)

Eq. (17) can be written under the form of the following system of equations:

left: (1 +1y) Of gy L —x;) Tox =1y O [ g B THx = 1y
right:  —l1p Of g T(L; =) [ + (1 + 14p) O [ 05 ¢ TOX = Iog
where:
% A(x) QL —x)>2 P A (%) O
= AE O AL X = amE D ARIDC
a[Hy+ (L —x)] Goea[HI + X7 ]
la = IFll [, (x;) [ log = I Fir OW; (X)) T

_ E, D"i LA (%) [(Lj _Xj) _ E, D"i LA (%) £X

I:ll I:lR
[H2+ (L, —x)7" [H+x"°
A A
A. X:) = - A X) = -
) =3 =3

The solution of the above system of Eq. (19), gives the following:

Iy + g Oy + 14 Oog
1+1y+ Ig

J o Ly —x) tdx =

a
o log + 11 Oo + 14 Hog
i Ok Ldx =
a,{lq 1+1y +1g
o o lor—|
and finally: [ a Coix — [a L, —x) Hx = - +2T1| +2||1R
ap+1 a;

(18)

(19)

(20)

(21)

(22)
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The expression of the distributed vertical lagx) can be easily determined as follows:
ESCACAC) OLi=%) - lr—ln , _ECHIDA(X)
3/2 3/2
[Hi+(G—x)1" I luthe [HE+ (L -x)7)

qi(xi):EstAi(Xis)zD(i Iy =1k +EsD_|iDA‘i(Xi)
[Hi+x17° tHlutle (Hiext]™”

qj(xj) = IjNj(xi)

O (%)) (23)

2.4 Solution of the static problem applying Galerkin’s method

2.4.1 Sparse distribution of cables
The equilibrium equation of the bridge deck is the following:

EploW"" (X) = Pror(X) (24)

where E, is the modulus of elasticity of the bridge deck,
I, the moment of inertia of the cross-section of the bridge deck,
w(x) the total vertical displacement of the bridge deck, and

Poi(X) = 9(X) +p(x) + 5 Po(x—a) = P;jcosp;o(x—a;) = Picospo(x—ai)  (25)
X ] |

in which g(x) the dead load of the bridge deck
p(x) the live load of the bridge
Py are concentrated loads (dead or live load) at positiena,
P; the forces of the cables right to the pylon given by Eq. (10b)
P, the forces of the cables left to the pylon given by Eq. (10a)

Eqg. (24), taking into account Eq. (25) becomes:

E l,Ww""(X) = g(X) +p(x) + Z Po(x—a)— z P, cosg;o(x—a;) — z P,cosg;d(x—a;) (26)
k I [
Applying Galerkin’s method a solution under the following form is investigated:

Wi = Y 6 W () (27)

i=1

where:c are unknown coefficients under determination #{g) are arbitrarily chosen functions xf

which must satisfy the boundary conditions of the deck. In this case the shape functions of the
corresponding continuous beam (which has the same characteristics with the bridge but without
cables) are chosen (see Appendix). Introducing Egs. (10) and (27) into (26), multiplying the
outcome successively by;, W,, ..., ¥, and integrating from O t& the results, by taking into
account the orthogonality conditions of the shape functions, a linear systemeqtiations is
obtained, with unknowns the coefficients ¢y, ..., ¢, Which can be written under the following

form:

A, +A, B+ ... + AL [, = B i=12..m) (28)
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Solving the above system the values of the unknosyns,, ..., ¢, are obtained and thus the
equation of the vertical deformation of the bridge is derived. Finally from Eq. (10) the values of the
tensile forces of the cables are determined.

2.4.2 Dense distribution of cables
The equilibrium equation of the bridge deck is given by Eq. (24), where:

Pot(X) = 9(x) + p(x) + ZP5(X—ak)—Q(X) (29)

in which q(x) is the load of the cables given by Eq. (23).
Eqg. (24), taking into account Eq. (29) becomes:

EolpW™' (x) = g(X) + p(x) + ZP5(X—ak)—Q(X) (30)

Applying Galerkin’s method a solution under the form of Eq. (27) is investigated. Following the
same procedure as in paragraph 2.4.1 a linear systemeqtiations similar to that of Eq. (28) is
obtained. The solution of this system gives the values of the coefficiemtbile Eq. (27) leads to
the displacement of the bridge deck.

Using the equations of paragraphs 2.4.1 or 2.4.2 one can find, for the Iga@el§ weight), the
needed negative constructional deformation of the deck (see Figs. 7 and 8) and also the
corresponding cable tensions (prestressing loads and predeformation).

3. Numerical results and discussion
3.1 Sparse distribution of cables

In order to check the accuracy of the above-described method, the bridge which is studied by C.
F. Kollbruner, N. Hajdin, B. Stipanic (1980) is considered. It is a cable-stayed bridge with two equal
spans of 150 m. The bridge is loaded by the uniformly distributed deadj lea?0 kN/m and by
the concentrated loads; =400 kN andG, = 300 kN, due to the weights of the cables, anchor
heads and anchor girders (Fig. 6). The bridge has the following characteristics:

L; =150 m, L, =150 m, E,=E,=2.1" 16kN/m? E; =205 18kN/m?, 1,= 1.2 nf,
l,b=06nf, H=45m, H;=45m, H,=0, A =0.0449 M A, =0.0296 A

The subscriptd, p andc refer to the deck, the pylon and the cables correspondingly.

Applying the analysis presented here the configuration of the deck shown in Fig. 7 is determined
and the tensile forces of the cables are found as shown in column 2 of Table 1. In addition the same
bridge has been solved using the Computer Program SOEI&TSofistik Gmbh, column 3. The
cable forces given by the above mentioned paper are also presented in column 4.

It can be seen that the accuracy of the proposed method of analysis is acceptable for a preliminary
design of a cable-stayed bridge.
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Table 1 Comparison of cable forces after solution of the bridge by 3 different methods
Authors’ method SOFISTIK
Cables (kN)

Results from paper
(kN) (kN) [(1)-(2)]% [(1)-(3)]%
) (2 (3)
T1 12850 13450 13860 -4.46% -7.28%
T, 9560 9320 9027 +2.57% +5.9%
3.2 Dense distribution of cables

characteristics is considered:

In the case of a bridge with a dense distribution of cables the bridge of Fig. 1 with the following
lb=12nf 1,=230 ",

L;=80m, L,=200m, Ly=80m, E,=21-10N/mn? E,=21" 18 N/mn?,
Ec.=21 -18N/mnf, H=45m, H;=40m, H,=5m,

a; = 0,
Golotti 1994):

02:80 m, 0320, ay = 100 m, 052100 m, 06:200 m, a7:O, 08:80 m,
m = 1200 kg, g =120 kN/m, p =120 kN/m
The cross-section of the cables is supposed to change according to the following law (see Bruno and

= _g_
AlX) g, [osg
where:g the uniform distributed self weight of the deck

the design live load.

(31)
gy the initial tensile stress of the stay’s curtain, dug:to, = g, 9
o, the allowable stress of cables, and
p

g+p
The application of the proposed method led to the following results:

1. For load case 1 (only dead logd= 120 kN/m on the bridge deck) the plot of Fig. 7 for the

11
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equivalent vertical distributed load, which replaces the action of the cables on the deck, and the
plot of Fig. 8 for the deck deformation were obtained.

. For load case 2 (dead logd= 120 kN/m, live loac = 120 kN/m on the bridge deck) the plot

of Fig. 9 for the equivalent vertical distributed load, which replaces the action of the cables on
the deck, and the plot of Fig. 10 for the deck deformation were obtained.

. For load case 3 (dead logd 120 kN/m, live loag = 120 kN/m only on the first span of the

bridge deck) the plot of Fig. 11 for the equivalent vertical distributed load, which replaces the
action of the cables on the deck, and the plot of Fig. 12 for the deck deformation were

obtained.

. For load case 4 (dead logd= 120 kN, live loadp = 120 kN only on the second span of the

bridge deck) the plot of Fig. 13 for the equivalent vertical distributed load, which replaces the
action of the cables on the deck, and the plot of Fig. 14 for the deck deformation were obtained.
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Fig. 9 Cable tension for load case 2 (dead Igad  Fig. 10 Deck configuration for load case 2 (dead
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bridge deck) on the bridge deck)
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Fig. 11 Cable tension for load case 3 (dead pad Fig. 12 Deck configuration for load case 3 (dead
120 kN/m, live loadp = 120 kN/m only on load g = 120 kN/m, live loach = 120 kN
the first span of the bridge deck) only on the first span of the bridge deck)
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Fig. 13 Cable tension for load case 4 (dead pad Fig. 14 Deck configuration for load case 4 (dead
120 kN/m, live loadp = 120 kN/m only on load g = 120 kN/m, live loach = 120 kN
the second span of the bridge deck) only on the second span of the bridge deck)

4. Conclusions

On the basis of the chosen model, the following conclusions may be drawn:
1. The cable tensile forcdy and the distributed load(x) that expresses the effect of the cables
can be determined with adequate accuracy, according to the results included in Table 1.
2. The proposed procedure of preliminary design based on Galerkin’s method is adequately quick

and efficient.
3. The obtained results compared to those of a usual analysis can be considered as satisfactory.
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Appendix
1. Two-span continuous beam

Eigenfrequencies equation:

coshil, [sinAl; CsinAl, CsinhAl; + coshAl; [sinAl; CsinAl, OsinhAl,
— cosAl, CsinhAl; GsinhAl, OsinhAl, — cosAl, OsinhAl, OsinhAl, DsinhAl, = 0

Shape-functions equation:

__1 : 1 .
W.(xy) = sin)\nllsm/\”xl —sinh}\nllsmh/\”xl for O0<x, <1,
W.(X2) = —cotA,l,sinA X, + CosA X, + cothA,l,SinhA X, — COSMA X, for 0<x,<lI,
2 025
where: A, = [ [

O

- UEI
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2. Three-span continuous beam
Eigenfrequencies equation:

coshA, |, Ccosh, |5 OsinAgl; CsinA,l, OsinAql; OsinhA L, +
coshA, |, Ccosh, |5 OsinA,l; CinA,l, OsinA,l; OsinhAl, —
cosA,l, Cbos, |5 CBinA,l; OsinA,l; OsinhA, |, OsinhA, L, —
cosA, |, CcosM |5 CsinA,l, OsinA,l; CsinhA,l, OsinhAl, +
cos, |, CcosM, |, (sinA,l; CsinA,l, OsinA,l; OsinhAl; —
cosA,l; CcosM, |, CsinA,l, OsinA,l, CsinhA,l, OsinhAl; +
co€A,l, [8inA,l; [8inA,l; TsinhA,l, CsinhA,l; —

2 [cosA, |, Ccosh, |, TeinA,l; s8inA, |3 OsinhA |, OsinhA, L5 +
cosKA,l, OsinA,l; OsinA,l; OsinhA,l, OsinhA 1 —

cosA, |, CcosM, |, CsinA,l, OsinA,l; CsinhA,l, OsinhAl; +
SinA,l, OsirfA,l, C6inA L5 C5inhA L, CsinhAls —

cosA,l; CcosM, |, CsinA,l, OsinA,l, CkinhA,l, CsinhAl; —
cosA,l, Cbosh, |, CBinA,l, OsinA,l; OsinhAl, OsinhA L5 +
cosA,l, [cosA,l; sinA,l; OsinhA, |1, C5inhA L, CsinhAl 5 +
cosA,l, [osA,l; [kinAl, CsinhAl; CsinhA,l, CsinhAl; +
cosA,l; [cosA,l, (sinA,l; CeinhA,l, CkinhA,l, CsinhAl; —
sinA,l; OsinA,l; OsinhA,l, OsinBA,l, CsinhAl; = 0

Shape-functions equation:

I N
W.(x) = sin}\nllsm)‘”xl sinh}\nllsmh)‘”xl for 0<x; <l
W.(x,) = E—cotx\nlz+ ﬁ%in)\mﬁ COSA X,
C .
+ 8:oth}\nl2 - SiT/\nlz%SInm"Xz — coshA, x, for 0<x,<|I,
l'I'Jn(X?,) = -C EbOtAnlg, DSinAn|3 +C EbOSAnX;g
+ C [cothA,l5 [kinhA,x; — C [coshA x5 for 0<x3<ly
0.25
.y = nah]
where: A, = OEr O
andC = sinA,l, —sinhA,l,

sinA,l, OsinhA, 1, ( cotM,l, + cothA, I3 — cotA,l, — cotA,l5)





