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Abstract. This paper proposes a new method for the preliminary design of cable-stayed bridges that
belong to the radial system subjected to static loads (self weight, traffic loads, concentrated loads, etc).
The method is based on the determination of the each time existing relation between the tension forces of
the cables and the corresponding bridge-deck deformations, and can be extended on any type of cable
layout (fan, parallel, or mixed system). Galerkin’s method is used for the final determination of the cable
stresses and the bridge deformation. The determination of the equation, which gives the forces of the
cables in relation to the deck’s configurations, permits us to convert the problem to the solving of a
continuous beam without cables. 
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1. Introduction

Cable-stayed bridges have been known since the beginning of the 18th century Leonard (1972),
Chang and Cohen (1981), but they have been of great interest only in the last fifty years,
particularly due to their special shape and also because they are an alternative solution to suspension
bridges for long spans O’Connor (1971), Podonly and Scalzi (1976), Troitsky (1988), Gimsing
(1997). The main reasons for this delay were the difficulties in their static and dynamic analysis, the
various non-linearities, the absence of computational capabilities, the lack of high strength materials
and the lack of construction techniques. There is a great number of studies concerning the behaviour
(static, dynamic and stability) of cable-stayed bridges, some of which are referred to in this study
here Tang (1971), Lazar (1972), Fleming (1979), Fleming and Egeseli (1980), Bruno and Grimaldi
(1985), Nazmy and Abdel-Ghaffar (1990), Ermopoulos et al. (1992), Chatterje et al. (1994), Bruno
and Golotti (1994), Khalil (1996), Bosdogianni and Olivari (1997), Virlogeux (1999).

In this paper a quick and efficient method of preliminary analysis of cable-stayed bridges that
belong to the radial system is described. The parallel system will be covered in the future in another
publication, since the mathematical treatment needs a different approach compared to the one used
here. The shape functions of the corresponding continuous beam of the bridge deck without cables
and Galerkin’s method are used here. The determination of the equation, which gives the forces of
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the cables in relation to the deck’s configurations, permits us to convert the problem to the solving
of a continuous beam without cables.

2. Analysis

In the following analysis, a 2D model of a cable-stayed bridge shown in Fig. 1 is used. 
The following assumptions are made:
• The pylon provides only vertical support to the deck of the bridge, so the deck can be

characterized as a three- span continuous beam.
• The tangent modulus of elasticity Es for the cables is used.
• The influence of axial forces either of the pylon or of the deck is neglected.

2.1 Deformation of the system deck-pylon

The relative horizontal deformation δu of the top of the pylon, in regard to the point of the
vertical support of the deck for a load Ppylon that acts at its top and is vertical to its axes, is given by
the formula:

 (1)

where: 
Pp the horizontal force that acts at the top of the pylon
Ep the modulus of elasticity of the material of the pylon, and
Ip the moment of inertia of the cross-section of the pylon.

δu up ud–
Pp H3⋅
6EpIp
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Fig. 1 Typical cable-stayed bridge of a radial system
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2.2 Relation between axial loads Pi and vertical displacements wi 

The horizontal force that acts at the top of the pylon and causes the deformation u, is given by the
following sum: , where j and i are the cables on the left and right side

connected at the top of the pylon as shown in Fig. 2.
The total relative deformation δu is: 

 (2)

The elongation ∆si of the cable i due to its axial force Pi is:

  (3)

where si is the length of cable i in the undeformed state, Es is its tangent modulus of elasticity and
Ai is the area of its cross-section.

According to the geometry of the bridge shown in Fig. 3(a), and projecting the displacements on
axis a-a the following equation is derived for the cables on the right side of the pylon:

 (4)

Neglecting wp which is a very small quantity and replacing cos∆ϕi = 1, we get:
 or 

and finally: (5)

where

Pi
i

∑ ϕ isin Pj
j

∑– sinϕ j⋅ ⋅
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Fig. 2 The right and left-side cables of a radial system
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In a similar way according to the geometry of the bridge shown in Fig. 3(b), and projecting the
displacements on axis a-a the following equation is derived for the cables on the left side of the
pylon:

  (6)

with 

A Pj

j
∑ ϕ jsin Pi

i
∑– sinϕ i⋅ ⋅

 
 
 

ϕ jsin⋅ ⋅
sjPj

EsAj

----------+ wj ϕ jcos=

i ρ 1+( ) to ρ κ+( ), j 1=  to ρ=

Fig. 3 Deformation of the system in the case of cables (a) right and (b) left to the pylon
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From Eqs. (5) and (6) and by setting: 
the following system is obtained:

(7)

with or

(8)

Adding Eqs. (8a) and (8b) finally the following equation is derived:

(9)

From Eqs. (5) and (6) the expressions of the cable forces Pi and Pj can be determined as follows:

 (10a)

 (10b)

with 
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2.3 Relation between distributed load q(x) of the cables and vertical displacement w of
the deck

Let us consider that the cables are placed very densely at a distance dc (Fig. 4). Then we can
consider a distributed vertical load q(x), extended from α1 to αρ and from αρ + 1 to αρ + κ , which at xi

will be equal to:  (11)

It is evident that for a radial system the total horizontal force that acts at the top of the pylon and
causes deformation u is:

  (12)

So Eq. (2) becomes:

(13)

Taking into account that  and  we can write:

  (14)

q xi( ) 1
dc

----Pi ϕ icos⋅=

Pp qi xi( )
αρ 1+

αρ κ+

∫ ϕitan dxi⋅ ⋅ qj xj( )
α1

αρ

∫ ϕjtan dxj⋅ ⋅–=

δu
H

3

6EpIp

------------- 2 3
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∫ ϕjtan dxj–⋅ ⋅=

ϕ itan
xi

H1
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--------------=
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Fig. 4 The load q(x), which expresses the effect of the cables on the bridge deck
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Eq. (4), neglecting wp as a very small quantity and replacing cos∆ϕi = 1, leads to:

(15)

In a similar way according to the geometry of the bridge shown in Fig. 3(b) the following equation
is derived for the cables on the left side of the pylon :

(16)

From Eqs. (15) and (16) and by setting: 
we obtain the following:  

 (17)
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Fig. 5 Cable-stayed bridge studied by Kollbruner, Hajdin, Stipanic (1980) in their paper
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Taking into account that:

 (18)

Eq. (17) can be written under the form of the following system of equations:

 

 (19)

where:

 (20)

The solution of the above system of Eq. (19), gives the following:

 (21)

and finally:  (22)
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The expression of the distributed vertical load q(x) can be easily determined as follows:

 (23)

2.4 Solution of the static problem applying Galerkin’s method 

2.4.1 Sparse distribution of cables 
The equilibrium equation of the bridge deck is the following:

  (24)

where Eb is the modulus of elasticity of the bridge deck,
Ib the moment of inertia of the cross-section of the bridge deck,
w(x) the total vertical displacement of the bridge deck, and 

(25)

in which g(x) the dead load of the bridge deck
p(x) the live load of the bridge
Pk are concentrated loads (dead or live load) at positions x = ak

Pi the forces of the cables right to the pylon given by Eq. (10b)
Pj the forces of the cables left to the pylon given by Eq. (10a)

Eq. (24), taking into account Eq. (25) becomes:

(26)

Applying Galerkin’s method a solution under the following form is investigated:

   (27)

where: ci are unknown coefficients under determination and Ψi(x) are arbitrarily chosen functions of x,
which must satisfy the boundary conditions of the deck. In this case the shape functions of the
corresponding continuous beam (which has the same characteristics with the bridge but without
cables) are chosen (see Appendix). Introducing Eqs. (10) and (27) into (26), multiplying the
outcome successively by Ψ1, Ψ2, …, Ψm and integrating from 0 to L the results, by taking into
account the orthogonality conditions of the shape functions, a linear system of m equations is
obtained, with unknowns the coefficients c1, c2, …, cm which can be written under the following
form:

  (28)

qj xj( )
Es A Aj xj( ) Lj xj–( )⋅ ⋅ ⋅

H1
2

Lj xj–( )2+[ ]
3 2⁄

--------------------------------------------------------
I2R I2l–

1 I1l I1R+ +
----------------------------⋅

Es H1
2

Aj xj( )⋅ ⋅
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2

Lj xj–( )2+[ ]
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--------------------------------------------- wj xi( )⋅+=

qi xi( )
Es A Ai xi( ) xi⋅ ⋅ ⋅
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2 xi

2+[ ]
3 2⁄

----------------------------------------
I2l I2R–

1 I1l I1R+ +
----------------------------⋅

Es H1
2

Ai xi( )⋅ ⋅

H1
2 xi

2+[ ]
3 2⁄

----------------------------------+ wi xi( )⋅=

EbIbw″″ x( ) ptot x( )=

ptot x( ) g x( ) p x( ) Pδ x ak–( )
k

∑ Pj ϕjcos δ x αj–( )
j

∑– Pi ϕicos δ x αi–( )
i

∑–+ +=

EbIbw″″ x( ) g x( ) p x( ) Pδ x ak–( )
k

∑ Pj ϕjcos δ x αj–( )
j

∑– Pi ϕicos δ x αi–( )
i

∑–+ +=

w x( ) ci
i 1=

m

∑ Ψ i x( )⋅=

Ai 1 c1⋅ Ai2+ c2⋅ … Aim+ + cm⋅ Bi  i( 1 2 … m), , ,= =
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Solving the above system the values of the unknowns c1, c2, …, cm are obtained and thus the
equation of the vertical deformation of the bridge is derived. Finally from Eq. (10) the values of the
tensile forces of the cables are determined.

2.4.2 Dense distribution of cables 
The equilibrium equation of the bridge deck is given by Eq. (24), where:

  (29)

in which q(x) is the load of the cables given by Eq. (23).
Eq. (24), taking into account Eq. (29) becomes:

   (30)

Applying Galerkin’s method a solution under the form of Eq. (27) is investigated. Following the
same procedure as in paragraph 2.4.1 a linear system of m equations similar to that of Eq. (28) is
obtained. The solution of this system gives the values of the coefficients ci, while Eq. (27) leads to
the displacement of the bridge deck.

Using the equations of paragraphs 2.4.1 or 2.4.2 one can find, for the loading g (self weight), the
needed negative constructional deformation of the deck (see Figs. 7 and 8) and also the
corresponding cable tensions (prestressing loads and predeformation).

3. Numerical results and discussion

3.1 Sparse distribution of cables

In order to check the accuracy of the above-described method, the bridge which is studied by C.
F. Kollbruner, N. Hajdin, B. Stipanic (1980) is considered. It is a cable-stayed bridge with two equal
spans of 150 m. The bridge is loaded by the uniformly distributed dead load g = 120 kN/m and by
the concentrated loads G1 = 400 kN and G2 = 300 kN, due to the weights of the cables, anchor
heads and anchor girders (Fig. 6). The bridge has the following characteristics:

L1 = 150 m, L2 = 150 m, Eb = Ep = 2.1 · 108 kN/m2, Ec = 2.05 · 108 kN/m2, Ib = 1.2 m4,
Ip = 0.6 m4, H = 45 m, H1 = 45 m, H2 = 0, A1 = 0.0449 m2, A2 = 0.0296 m2

The subscripts b, p and c refer to the deck, the pylon and the cables correspondingly. 
Applying the analysis presented here the configuration of the deck shown in Fig. 7 is determined

and the tensile forces of the cables are found as shown in column 2 of Table 1. In addition the same
bridge has been solved using the Computer Program SOFISTIK of Sofistik Gmbh, column 3. The
cable forces given by the above mentioned paper are also presented in column 4.

It can be seen that the accuracy of the proposed method of analysis is acceptable for a preliminary
design of a cable-stayed bridge.

ptot x( ) g x( ) p x( ) Pδ x ak–( ) q x( )–
k

∑+ +=

EbIbw″′′ x( ) g x( ) p x( ) Pδ x ak–( ) q x( )–
k

∑+ +=
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3.2 Dense distribution of cables

In the case of a bridge with a dense distribution of cables the bridge of Fig. 1 with the following
characteristics is considered:

L1 = 80 m, L2 = 200 m, L3 = 80 m, Eb = 2.1 · 105 N/mm2, Ep = 2.1 · 105 N/mm2,
Ib = 1.2 m4, Ip = 30 · Ib, Ec = 2.1 · 105 N/mm2, H = 45 m, H1 = 40 m, H2 = 5 m, α1 = 0,
α2 = 80 m, α3 = 0, α4 = 100 m, α5 = 100 m, α6 = 200 m, α7 = 0, α8 = 80 m,
m = 1200 kg, g = 120 kN/m, p = 120 kN/m

The cross-section of the cables is supposed to change according to the following law (see Bruno and

Golotti 1994):  (31)

where: g the uniform distributed self weight of the deck 
σg the initial tensile stress of the stay’s curtain, due to g: 
σa  the allowable stress of cables, and 
p the design live load.

The application of the proposed method led to the following results:
1. For load case 1 (only dead load g = 120 kN/m on the bridge deck) the plot of Fig. 7 for the

A x( ) g
σg ϕcos⋅
----------------------=

σg σα
g

g p+
------------⋅=

Table 1 Comparison of cable forces after solution of the bridge by 3 different methods

Cables 
Authors’ method

(kN)
(1)

SOFISTIK
(kN)
(2)

Results from paper 
(kN)
(3)

[(1)-(2)]% [(1)-(3)]%

T1 12850 13450 13860 −4.46% −7.28%
T2 9560 9320 9027 +2.57% +5.9%

Fig. 6 Configuration of the deck of the bridge shown in Fig. 6 calculated by the presented analysis



12 G. T. Michaltsos, J. C. Ermopoulos and T. G. Konstantakopoulos

equivalent vertical distributed load, which replaces the action of the cables on the deck, and the
plot of Fig. 8 for the deck deformation were obtained.

2. For load case 2 (dead load g = 120 kN/m, live load p = 120 kN/m on the bridge deck) the plot
of Fig. 9 for the equivalent vertical distributed load, which replaces the action of the cables on
the deck, and the plot of Fig. 10 for the deck deformation were obtained.

3. For load case 3 (dead load g = 120 kN/m, live load p = 120 kN/m only on the first span of the
bridge deck) the plot of Fig. 11 for the equivalent vertical distributed load, which replaces the
action of the cables on the deck, and the plot of Fig. 12 for the deck deformation were
obtained.

4. For load case 4 (dead load g = 120 kN, live load p = 120 kN only on the second span of the
bridge deck) the plot of Fig. 13 for the equivalent vertical distributed load, which replaces the
action of the cables on the deck, and the plot of Fig. 14 for the deck deformation were obtained.

Fig. 9 Cable tension for load case 2 (dead load g =
120 kN/m, live load p = 120 kN/m on the
bridge deck)

Fig. 10 Deck configuration for load case 2 (dead
load g = 120 kN/m, live load p = 120 kN/m
on  the bridge deck)

Fig. 7 Cable tension for load case 1 (only dead load
g = 120 kN/m on the bridge deck)

Fig. 8 Deck configuration for load case 1 (only dead
load g = 120 kN/m on the bridge deck) 
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4. Conclusions

On the basis of the chosen model, the following conclusions may be drawn:
1. The cable tensile forces Pi and the distributed load q(x) that expresses the effect of the cables

can be determined with adequate accuracy, according to the results included in Table 1.
2. The proposed procedure of preliminary design based on Galerkin’s method is adequately quick

and efficient.
3. The obtained results compared to those of a usual analysis can be considered as satisfactory.
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Appendix

1. Two-span continuous beam

Eigenfrequencies equation: 

Shape-functions equation:

 

where:  

λl2cosh λl1sin λl2sin λl 1sinh⋅ ⋅ ⋅ λl1cosh λl1sin λl 2sin λl2sinh⋅ ⋅ ⋅+

λl2cos λl1sinh λl1sinh λl2sinh⋅ ⋅ ⋅– λl1cos λl2sinh λl1sinh λl 2sinh⋅ ⋅ ⋅– 0=

Ψn x1( ) 1
λnl1sin

----------------- λnx1sin 1
λnsinh l1

-------------------- λnx1            sinh for 0 x1 l1≤ ≤–=

Ψn x2( ) cotλnl2sinλnx2– cosλnx2 cothλnl 2sinhλnx2 coshλnx2 for 0 x2 l 2≤ ≤–+ +=

λn
mωn

2

EI
---------- 

 
0.25

=
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2. Three-span continuous beam

Eigenfrequencies equation:

Shape-functions equation:

          

                     

where: 

and 

λnl 2cosh λnl3cosh λnl1sin λnl2sin λnl3sin λnl 1sinh⋅ ⋅ ⋅ ⋅ ⋅  +
λnl 1cosh λnl3cosh λnl1sin λnl2sin λnl3sin λnl 2sinh⋅ ⋅ ⋅ ⋅ ⋅  –

λnl2cos λnl3cosh λnl1sin λnl3sin λnl1sinh λnl 2sinh⋅ ⋅ ⋅ ⋅ ⋅  –
λnl1cos λnl3cosh λnl2sin λnl3sin λnl1sinh λnl 2sinh⋅ ⋅ ⋅ ⋅ ⋅  +

λnl 1cosh λnl2cosh λnl1sin λnl2sin λnl3sin λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  –
λnl3cos λnl2cosh λnl1sin λnl2sin λnl1sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  +

cos2λnl 2 λnl1sin λnl3sin λnl1sinh λnl3sinh⋅ ⋅ ⋅ ⋅  –
2 λnl2cos λnl 2cosh λnl 1sin λnl 3sin λnl1sinh λnl3sinh⋅ ⋅ ⋅ ⋅ ⋅ ⋅  +
cosh2λnl2 λnl1sin λnl3sin λnl1sinh λnl 3sinh⋅ ⋅ ⋅ ⋅  –

λnl1cos λnl2cosh λnl2sin λnl3sin λnl1sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  +
λnl1sin sin2λnl2 λnl3sin λnl 1sinh λnl3sinh⋅ ⋅ ⋅ ⋅  –
λnl3cos λnl1cosh λnl1sin λnl2sin λnl2sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  –
λnl2cos λnl1cosh λnl1sin λnl3sin λnl2sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  +
λnl2cos λnl3cos λnl1sin λnl12sinh λnl2sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  +
λnl1cos λnl3cos λnl2sin λnl1sinh λnl2sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  +
λnl1cos λnl2cos λnl3sin λnl1sinh λnl2sinh λnl 3sinh⋅ ⋅ ⋅ ⋅ ⋅  –
λnl1sin λnl3sin λnl1sinh sinh2λnl2 λnl3sinh⋅ ⋅ ⋅ ⋅ 0=

Ψn x1( ) 1
λnl1sin

----------------- λnx1sin 1
λnl1sinh

-------------------- λnx1   sinh for 0 x1 l1≤ ≤–=

Ψn x2( ) cotλnl2– C
λnl2sin

-----------------+ 
  λnx2sin λnx2cos+=

cothλnl2
C
λnl2sinh

--------------------– 
  λnx2sinh λnx2cosh– for 0 x2 l2≤ ≤+

Ψn x3( ) C– λnl 3cot λnl 3sin⋅ ⋅ C λnx3cos⋅+=
 C λnl 3coth λnx3sinh⋅ ⋅ C λnx3     cosh for 0 x3 l 3≤ ≤⋅–+

λn
mωn

2

EI
---------- 

 
0.25

=

C
λnl2sin λnl 2sinh–

λnl 2sin λnl2sinh cothλnl2 cothλnl3 cotλnl2– cotλnl3–+( )⋅
--------------------------------------------------------------------------------------------------------------------------------------------=




